22,809 research outputs found

    Structure-semantics interplay in complex networks and its effects on the predictability of similarity in texts

    Get PDF
    There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between the various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expected because the golden standards used are themselves based on word co-occurrence. Notwithstanding, the Katz similarity, which involves semantic and structure in the comparison of texts, achieved the highest correlation with the NIST measurement, indicating that in some cases the combination of both approaches can improve the ability to quantify quality in MT. In authorship recognition, again the topological features were relevant in some contexts, though for the books and authors analyzed good results were obtained with semantic features as well. Because hybrid approaches encompassing semantic and topological features have not been extensively used, we believe that the methodology proposed here may be useful to enhance text classification considerably, as it combines well-established strategies

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    Character-level Convolutional Networks for Text Classification

    Get PDF
    This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.Comment: An early version of this work entitled "Text Understanding from Scratch" was posted in Feb 2015 as arXiv:1502.01710. The present paper has considerably more experimental results and a rewritten introduction, Advances in Neural Information Processing Systems 28 (NIPS 2015

    Overview of the 2005 cross-language image retrieval track (ImageCLEF)

    Get PDF
    The purpose of this paper is to outline efforts from the 2005 CLEF crosslanguage image retrieval campaign (ImageCLEF). The aim of this CLEF track is to explore the use of both text and content-based retrieval methods for cross-language image retrieval. Four tasks were offered in the ImageCLEF track: a ad-hoc retrieval from an historic photographic collection, ad-hoc retrieval from a medical collection, an automatic image annotation task, and a user-centered (interactive) evaluation task that is explained in the iCLEF summary. 24 research groups from a variety of backgrounds and nationalities (14 countries) participated in ImageCLEF. In this paper we describe the ImageCLEF tasks, submissions from participating groups and summarise the main fndings

    Joint Intermodal and Intramodal Label Transfers for Extremely Rare or Unseen Classes

    Full text link
    In this paper, we present a label transfer model from texts to images for image classification tasks. The problem of image classification is often much more challenging than text classification. On one hand, labeled text data is more widely available than the labeled images for classification tasks. On the other hand, text data tends to have natural semantic interpretability, and they are often more directly related to class labels. On the contrary, the image features are not directly related to concepts inherent in class labels. One of our goals in this paper is to develop a model for revealing the functional relationships between text and image features as to directly transfer intermodal and intramodal labels to annotate the images. This is implemented by learning a transfer function as a bridge to propagate the labels between two multimodal spaces. However, the intermodal label transfers could be undermined by blindly transferring the labels of noisy texts to annotate images. To mitigate this problem, we present an intramodal label transfer process, which complements the intermodal label transfer by transferring the image labels instead when relevant text is absent from the source corpus. In addition, we generalize the inter-modal label transfer to zero-shot learning scenario where there are only text examples available to label unseen classes of images without any positive image examples. We evaluate our algorithm on an image classification task and show the effectiveness with respect to the other compared algorithms.Comment: The paper has been accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence. It will apear in a future issu
    • …
    corecore