21,742 research outputs found

    Application of Stationary Wavelet Support Vector Machines for the Prediction of Economic Recessions

    Get PDF
    This paper examines the efficiency of various approaches on the classification and prediction of economic expansion and recession periods in United Kingdom. Four approaches are applied. The first is discrete choice models using Logit and Probit regressions, while the second approach is a Markov Switching Regime (MSR) Model with Time-Varying Transition Probabilities. The third approach refers on Support Vector Machines (SVM), while the fourth approach proposed in this study is a Stationary Wavelet SVM modelling. The findings show that SW-SVM and MSR present the best forecasting performance, in the out-of sample period. In addition, the forecasts for period 2012-2015 are provided using all approaches

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    A Clustering-Based Algorithm for Data Reduction

    Get PDF
    Finding an efficient data reduction method for large-scale problems is an imperative task. In this paper, we propose a similarity-based self-constructing fuzzy clustering algorithm to do the sampling of instances for the classification task. Instances that are similar to each other are grouped into the same cluster. When all the instances have been fed in, a number of clusters are formed automatically. Then the statistical mean for each cluster will be regarded as representing all the instances covered in the cluster. This approach has two advantages. One is that it can be faster and uses less storage memory. The other is that the number of new representative instances need not be specified in advance by the user. Experiments on real-world datasets show that our method can run faster and obtain better reduction rate than other methods

    Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods

    Full text link
    The job of software effort estimation is a critical one in the early stages of the software development life cycle when the details of requirements are usually not clearly identified. Various optimization techniques help in improving the accuracy of effort estimation. The Support Vector Regression (SVR) is one of several different soft-computing techniques that help in getting optimal estimated values. The idea of SVR is based upon the computation of a linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function. Further, the SVR kernel methods can be applied in transforming the input data and then based on these transformations, an optimal boundary between the possible outputs can be obtained. The main objective of the research work carried out in this paper is to estimate the software effort using use case point approach. The use case point approach relies on the use case diagram to estimate the size and effort of software projects. Then, an attempt has been made to optimize the results obtained from use case point analysis using various SVR kernel methods to achieve better prediction accuracy.Comment: 13 pages, 6 figures, 11 Tables, International Journal of Information Processing (IJIP

    FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods
    corecore