
A Clustering-Based Algorithm for Data Reduction
Chi-Yuan Yeh, Jeng Ouyang, and Shie-Jue Lee

Department of Electrical Engineering
National Sun Yat-Sen University

Kaohsiung 80424, Taiwan
leesj@mail.ee.nsysu.edu.tw

Abstract—Finding an efficient data reduction method for large-
scale problems is an imperative task. In this paper, we propose
a similarity-based self-constructing fuzzy clustering algorithm to
do the sampling of instances for the classification task. Instances
that are similar to each other are grouped into the same cluster.
When all the instances have been fed in, a number of clusters are
formed automatically. Then the statistical mean for each cluster
will be regarded as representing all the instances covered in the
cluster. This approach has two advantages. One is that it can
be faster and uses less storage memory. The other is that the
number of new representative instances need not be specified in
advance by the user. Experiments on real-world datasets show
that our method can run faster and obtain better reduction rate
than other methods.

Index Terms—Large-scale dataset, fuzzy similarity, data reduc-
tion, prototype reduction, instance-filtering, instance-abstraction.

I. INTRODUCTION

Due to rapid progress of information technologies, Internet
technologies, and advanced database system technologies, the
amount of data has been growing explosively, such as, text
mining datasets, web mining datasets, image mining datasets,
network auditing datasets, etc. A classifier generally suffers
from very large memory requirements, and may result in very
slow execution speed or even failure. Therefore, finding an
efficient method to reduce the demand in time complexity
and storage requirements, without degrading the generalization
accuracy, is imperative. Data reduction techniques, also called
prototype reduction techniques, which avoid using all the
training data, can be applied for this purpose.

The data reduction techniques can be divided into two
categories. One is instance-filtering which selects a part of
original instances from the training data as representative
instances. The other is instance-abstraction which generates
new instances by summarizing the characteristics of similar
instances as representative instances. Usually, the two ap-
proaches are used independently. Lam et al. [1] integrated
the advantages of instance-filtering and instance-abstraction
approaches to develop a framework, called prototype gener-
ation and filtering (PGF), for data reduction. They claimed
that PGF works well and gains a significant improvement in
data reduction compared with pure filtering-based and pure
abstraction-based approaches. In the literature, most of the
data reduction techniques were developed for instance-based
classifiers (i.e., k-nearest neighbor [2]) to speed up searching
the nearest neighbors [1, 3–13]. These approaches suffer from

excessive computational burden for large-scale problems. To
overcome this problem, Kim and Oommen [14] proposed
an adaptive recursive partitioning algorithm, in which the
training data are recursively subdivided into smaller subsets
by the k-means algorithm [15] to filter out the less useful
internal instances, and then apply conventional data reduction
techniques to process the smaller subsets of the training data.

The simplest way of instance-filtering is random sampling
which selects at random a small portion of the training data as
new representative instances. Random sampling by SVM [16–
18] classifiers usually has better relative performance at higher
data reduction rates [19–22]. However, this approach may fail
to work due to the highly unbalanced training data. Stratified
sampling which selects a small portion of the training data
per class uniformly at random can be used and slightly outper-
forms random sampling [23]. Lee and Huang [24] also claimed
that random sampling can be further improved by stratified
sampling. Besides, they implemented uniform random subset
selection which is a space-filling design for SVM and claimed
that uniform random subset selection is an optimal sampling
strategy. Instance-abstraction approaches include the symbolic
nearest mean classifier [6] in which k-means approach [15]
is adopted to group similar instances of the same class and
generates new representative instances using cluster means.
Lozano et al. implemented learning vector quantization (LVQ)
[25] and found that LVQ with dissimilarity-based classifier
works well. Sanchez [10] proposed three abstraction-based
approaches, called RSP-1, RSP-2, and RSP-3, based on space
partitioning for data reduction. Lam et al. [1] adopted agglom-
erative clustering approach which merges two instances with
the shortest distance to form a new instance at each iteration
for instance abstraction.

We propose an instance-abstraction based approach called
self-constructing fuzzy clustering (SCFC) algorithm to reduce
the number of instances for the classification task. The pro-
posed algorithm is an incremental-based approach in which
one instance is considered at a time. Moreover, a similarity
measure is developed to judge whether an instance and a clus-
ter are similar. Each cluster is characterized by a membership
function with statistical mean and standard deviation. Instances
that are similar to each other are grouped into the same cluster.
Once an instance is combined into an existing cluster, the
membership function of that cluster should be updated. If an
instance is not similar to any existing cluster, a new cluster
is created for this instance. When all the instances have been

Fifth International Workshop on Computational Intelligence & Applications
IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, November 10, 11 & 12, 2009

65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12531499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fed in, a desired number of clusters are formed automatically;
thus, the user need not specify the number of representative
instances in advance, and trial-and-error for determining the
appropriate number of representative instances can then be
avoided. We then have one new representative instance for
each cluster. Experiments on real-world datasets show that our
method can run faster and obtain better reduction rate than
other methods.

The rest of this paper is organized as follows. Section II
presents the proposed similarity-based self-constructing fuzzy
clustering algorithm. An example illustrating how the algo-
rithm works is given in Section III. Experimental results are
presented in Section IV. Finally, we conclude this work in
Section V.

II. PROPOSED METHOD

Most of the existing data reduction techniques suffer from
the problem of excessive computational burden by calculat-
ing the distance between any two instances on the training
data. To overcome this problem, we propose a similarity-
based self-constructing fuzzy clustering algorithm which is an
incremental-based approach to reduce the number of instances
for the classification task. The proposed approach has two
advantages. One is that it can be faster and use less storage
memory. The other is that the number of new representative
instances need not be specified in advance by the user.
Moreover, when calculating similarity, the variance of the
underlying cluster is taken into consideration.

A. Self-Constructing Fuzzy Clustering

The basic concept of the self-constructing fuzzy clustering
(SCFC) algorithm is that one training instance is considered at
a time, and then the similarity measures between this instance
and the existing fuzzy clusters are calculated to determine
either to assign it to the most similar cluster or to create a new
cluster for it. Once the training instance is combined into an
existing cluster, the membership function of that cluster should
be updated accordingly. On the contrary, when a new cluster
is created, the corresponding membership function should
be initialized. Our proposed SCFC is a five-layer network
structure. When all the training instances have been fed in,
a desired number of clusters are formed automatically.

Suppose we are given ` labeled training data
Str = {(x1, y1), (x2, y2), ..., (x`, y`)}, where
xp = [xp,1, xp,2, ..., xp,n1 , xp,n1+1, ..., xp,n], p = 1, 2, ..., `,
n1 is the number of continuous features, n is the total
number of features, ` is the number of training instances,
yp ∈ {1, 2, ..., k}, and k is the number of classes.
Note that [xp,1, xp,2, ..., xp,n1] is continuous part of xp;
[xp,n1+1, xp,n1+2, ..., xp,n] is discrete part of xp. The clusters
are c1, c2, ..., cJ , respectively. Each cluster cj has mean
mj = [mj,1,mj,2, ...,mj,n1 ,mj,n1+1, ..., mn] and standard
deviation σj = [σj,1, σj,2, ..., σj,n1]. Let sj be the size of
cluster cj . Initially, we have J = 0; namely, no clusters exist
at the beginning. Then, the first cluster c1 is created with the
first instance, i.e., m1 = x1, yc1 = y1, σ1 = σ0, and s1 = 1,

where σ0 = [σ0,1, σ0,2, ..., σ0,n1] is a user-defined constant
vector. Now, we have J = 1.

Layer 1. This layer performs the fuzzification operation. Each
node represents a cluster. Every node in this layer is
an adaptive node. Note that if the training pattern
Str contains discrete features and continuous fea-
ture, the membership function should be considered
separately. Gaussian functions are adopted for the
continuous part because of their superiority over
other functions in performance [26]. Fuzzy singleton
whose support is a single point with a membership
function of one is adopted for the discrete part. The
output of this layer for the continuous part is defined
as follows:

O
(1)
j,i =exp

[
−

(
xp,i −mj,i

σj,i

)2
]

(1)

i = 1, 2, ..., n1, j = 1, 2, ..., J , xp,i is the continuous
part of instance xp, and mj,i and σj,i denote the
mean and standard deviation, respectively, of dimen-
sion i in cluster cj . The outputs of this layer for
discrete part is defined as follows:

O
(1)
j,i =

{
1 if xp,i = mj,i

0 otherwise (2)

where i = n1 + 1, n1 + 2, ..., n, j = 1, 2, ..., J , xp,i

is the discrete part of instance xp, and mj,i is the
discrete part of cluster cj .

Layer 2. Every node in this layer is a fixed node labeled
Π, whose output is the product of all the incoming
signals:

O
(2)
j =

n∏

i=1

O
(1)
j,i (3)

where j = 1, 2, ..., J . Each node output represents
the input similarity of xp to an existing cluster cj .

Layer 3. The single node in this layer is a fixed node labeled
C, which performs competitive operation and the
output is the largest input similarity, i.e.,

O(3) = max
1≤j≤J

O
(2)
j . (4)

Let cluster ca be the winner cluster, i.e.,

a = arg max
1≤j≤J

O
(2)
j . (5)

Layer 4. The single node in this layer is a fixed node, whose
output represents the input-output similarity defined
as follows:

O(4) = O(3) × δ (yp, yca
) (6)

where the Kronecker delta function δ(·, ·) is defined
as follows:

δ (yp, yca
) =

{
1 if yp = yca

0 otherwise . (7)

Layer 5. The single node in this layer is a fixed node with a

66

hard limit function

O(5) = hardlim
(
O(4)

)
=

{
1 if O(4) ≥ ρ
0 otherwise

(8)

where 0 ≤ ρ ≤ 1 is a predefined threshold.
If O(5) = 1, we say that xp passes the input-output
similarity test on winner cluster ca. In this case, we
regard xp to be most similar to cluster ca and assign
xp to cluster ca. Besides, ma and σa of cluster ca

should be modified to include xp as its member. The
modification to cluster ca is defined as follows:

ma,i =
sa ×ma,i + xp,i

sa + 1
(9)

where i = 1, 2, ..., n1,

σa,i = σ0,i+√
((sa)2 − 1)(σa,i − σ0,i)2 + sa (ma,i − xa,i)

2

sa(sa + 1)
,

(10)

where σ0,i is a user-defined initial standard devia-
tion, i = 1, 2, ..., n1, and

sa = sa + 1. (11)

Note that J and the discrete part of ma is not
changed in this case.
If O(5) = 0, there are no existing fuzzy clusters
on which xp has passed the input-output similarity
test. For this case, we assume that xp is not similar
enough to any existing cluster and a new fuzzy
cluster cJ+1 is created with

mJ+1 = xp, σJ+1 = σ0. (12)

The instance xp is assigned to cluster cJ+1. Note that
the size of cluster cJ+1, sJ+1, should be initialized,
i.e.,

sJ+1 = 1 (13)

and the number of clusters is increased by 1, i.e.,

J = J + 1. (14)

The above process is iterated until all instances have been
processed. Consequently, we have J clusters, i.e., new training
dataset S′tr = {(x′1, y1), (x′2, y2)..., (x′J , yJ)} where x′j is a
centroid (mean) of cluster cj , j = 1, 2, ..., J . Note that
the training instances in a cluster have a high degree of
similarity to each other. Besides, when new training instances
are considered, the existing clusters can be adjusted or new
clusters can be created, without the necessity of generating
the whole set of clusters from the scratch.

III. AN EXAMPLE

We give an example to illustrate how the proposed method
works. Let Str be a simple training data, containing 10
instances {(x1, y1), (x2, y2)..., (x10, y10)} of two classes C1

and C2, with 3 discrete features and 5 continuous features, as

follows:

X =

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

=

0.82 0.69 0.73 0.92 0.58 A D H
0.78 0.82 0.75 0.88 0.63 A D H
0.83 0.70 0.71 0.93 0.65 B E G
0.48 0.39 0.31 0.51 0.25 B E G
0.81 0.68 0.76 0.87 0.62 C E G
0.25 0.31 0.41 0.19 0.28 C E G
0.50 0.45 0.22 0.35 0.62 A F K
0.52 0.47 0.25 0.33 0.65 A F K
0.53 0.49 0.18 0.37 0.63 A F K
0.27 0.30 0.40 0.20 0.30 C E G

,

y =
[

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

]T

=
[

1 1 1 1 1 2 2 2 2 2
]T

. (15)

We run the proposed self-constructing fuzzy clustering
algorithm, by setting ρ = 0.85 = 0.328 and σ0 =
[0.1, 0.1, 0.1, 0.1, 0.1]. Firstly, the first instance x1 is fed in
SCFC and obtain the first cluster c1; we have

m1 = [0.82 0.69 0.73 0.92 0.58 A D H],
yc1 = 1,

σ1 = [0.1 0.1 0.1 0.1 0.1].

Then, the second instance x2 is fed in SCFC.

Layer 1. The membership degree is

O
(1)
1,i = [0.852 0.914 0.961 0.779 0.779 1 1 1].

Layer 2. The input similarity is

O
(2)
1 = 0.852× 0.914× 0.961× 0.779× 0.779

×1× 1× 1
= 0.454.

Layer 3. The winner cluster is c1 and

O(3) = 0.454.

Layer 4. The input-output similarity is

O(4) = 0.454× 1 = 0.454.

Layer 5. Because O(4) > ρ, we have O(5) = 1. Thus, x2 is
assigned to cluster c1, and m1 and σ1 of cluster c1

should be modified as

m1 = [0.800 0.705 0.740 0.905 0.605 A D H],
σ1 = [0.128 0.121 0.114 0.135 0.135].

When all the training instances in Str have been fed in, we
obtain 6 clusters c1, c2, c3, c4, c5, and c6, which are shown

67

in Table I. The transformed dataset S′tr is shown as follows

X =
[

x′1 x′2 x′3 x′4 x′5 x′6
]T

=

0.800 0.705 0.740 0.905 0.605 A D H
0.830 0.700 0.710 0.930 0.650 B E G
0.480 0.390 0.310 0.510 0.250 B E G
0.810 0.680 0.760 0.870 0.620 C E G
0.260 0.305 0.405 0.195 0.290 C E G
0.517 0.470 0.217 0.350 0.633 A F K

,

y =
[

y1 y2 y3 y4 y5 y6

]T

=
[

1 1 1 1 2 2
]T

.

Based on S′tr, a classifier can be built.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results to show the
effectiveness of the proposed self-constructing fuzzy clustering
method. We compare the proposed method with two instance-
filtering based data reduction methods: stratified sampling
[23, 24] and DROP3 [7], and two instance-abstraction based
data reduction methods: k-means [27–29] and RSP3 [10]. For
convenience, the proposed method is abbreviated as SCFC
and stratified sampling method is abbreviated as SS. We use
support vectors machines (SVM) [16–18] as the classifier to
test the effectiveness of the reduced datasets. Two well-known
datasets, shuttle and 1999 KDD Cup, taken from the UCI
Repository of Machine Learning Databases [30] and 1998
DARPA Intrusion Detection Evaluation Program administered
by MIT Lincoln Labs [31], respectively, are used in the
following experiments. The shuttle dataset contains 58,000
instances composed of 7 classes. Each instance consists of
9 numerical features which were then scaled to fit into a
range from -1 through 1. The shuttle dataset has a skewed
distribution and approximately 80% of the data belongs to
class 1. We use 43,500 instances for training and the rest for
testing. In the 1999 KDD dataset, 4898431 connection records
are used as training data and 311029 connection records are
used as testing data. Both training and testing data contain
one normal network traffic (Normal) and four major attack
categories: Denial-of-Service (DoS), Probing (Prob), User-
toRoot (U2R), and Remote-to-Local (R2L). Each instance
consists of 32 numerical features and 9 nominal features.
The numerical features were then scaled to fit into a range
from -1 through 1. This dataset has a skewed distribution,
approximately 20% of the data belongs to class normal and
approximately 80% of the data belongs to class DoS.

Stratified sampling (SS) and k-means need to know the
number of representative instances in advance. The number
of representative instances for each class is the same as that
obtained by SCFC. Note that RSP3 and DROP3 do not need to
know the number of representative instances in advance. The
results are summarized in Table II and III in which reduction
rates, execution time, and accuracy are listed. Because SS is
sensitive to the randomly selected representative instances and
k-means is sensitive to the initial randomly selected cluster
centers, we conduct independently 10 times for each dataset.

Each entry in the table represents the average result of the
10 runs except for “Original” column, “RSP3” column, and
“DROP3” column. Apparently, SS method runs much faster
than other methods because it requires no extra computation.
However, it may select inappropriate instances and results in
bad performance. For example, SS with 1-NN gets 96.86% in
classification accuracy for the shuttle dataset. From Table II,
we can see that SCFC runs much faster than k-means, RSP3,
and DROP3 except for the SS method. For example, SCFC
needs 9.25 seconds for about 280 representative instances,
while k-means requires 58.45 seconds and RSP3 requires
2070.48 seconds. DROP3 requires 5389 seconds for 15614
representative instances. Although, RSP3 and DROP3 run
significantly slow, the reduction rate of RSP3 (99.36%) is
higher than that of DROP3 (41.12%). SCFC performs better
than k-means, SS, and RSP3 in classification accuracy. DROP3
performs slightly better than SCFC, but the reduction rate of
DROP3 (41.12%) is lower than that of SCFC (99.35%).

From Table III, we can see that SCFC runs much faster than
k-means, RSP3, and DROP3 except for the SS the method.
For example, SCFC needs 473.92 seconds for about 1470
representative instances, while k-means requires 12618.35
seconds and RSP3 requires 218208.58 seconds. DROP3 re-
quires 157795.70 seconds for 49403 representative instances.
Although, RSP3 and DROP3 run significantly slow, the re-
duction rate of RSP3 (99.70%) is higher than that of DROP3
(90.00%). SCFC performs better than k-means, SS, and RSP3
in classification accuracy. DROP3 (92.41%, 92.51%, 92.50%)
performs slightly better than that of SCFC (92.51%, 92.83%,
92.11%), but the reduction rate of DROP3 (90.00%) is lower
than SCFC (99.70%). SS can not perform well, for example,
SS with SVM gets 76.05% in classification accuracy for 1999
KDD Cup dataset. Note that the proposed SCFC can handle
large-scale problem. We try to reduce the original 1999 KDD
Cup dataset which contains 4,898,431 instances. SCFC spends
2048.66 seconds to abstract 3152 representative instances as
shown in Table IV. The reduced instances get 92.38% in
accuracy for SVM.

From Table IV, we can see that SCFC can handle the
problem when pattern distributions are significantly different
among different classes. Suppose one class contains patterns
with a dense distribution, SCFC abstracts a small number
of representative instances. On the contrary, if another class
contains sparsely distributed patterns, SCFC abstracts a large
number of representative instances. For example, class 1
(normal network traffic) in 1999 KDD Cup dataset is a sparse
distribution, the reduction rate is 99.17%, while class 2 (DoS
attack) is a dense distribution, the reduction rate is 99.91%.
An interesting phenomenon in 1999 KDD Cup dataset is that
the original size of class 2 is larger than that of class 1, but the
reduced size of class 2 is smaller than that of class 1. However,
this situation won’t affect the classification accuracy.

In summary, SS method runs much faster than other meth-
ods because it requires no extra computation, but the selected
instances are not good for classification. SCFC can not only
run much faster than k-means, RSP3, and DROP3 in data re-

68

duction, but also provide comparably good or better abstracted
new instances for classification. RSP3 has the same reduction
rate as SCFC, but spends more time for calculating distances
between instances. DROP3 works well in classification, but
spends more time in data reduction. Besides, k-means is
sensitive to the initial randomly selected cluster centers.

V. CONCLUSION

We have presented a self-constructing fuzzy cluster (SCFC)
algorithm to reduce the number of instances for classification.
We have compared SCFC with two instance-filtering based
data reduction methods, stratified sampling and DROP3, and
two instance-abstraction based data reduction methods, k-
means and RSP3. Experimental results from two well-known
datasets have shown that SCFC can run faster and obtain better
reduction rate than other methods.

ACKNOWLEDGMENT

This work was supported by the Ministry of Economic
Affairs under the grant 98-EC-17-A-02-S2-0114.

REFERENCES

[1] W. Lam, C.-K. Keung, and C. X. Ling, “Learning good-
prototypes for classification using filtering and abstraction of
instances,” Pattern Recognition, vol. 35, no. 7, pp. 1491–1506,
July 2002.

[2] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classi-
fication,” IEEE Transactions on Information Theory, vol. 13,
no. 1, pp. 21–27, January 1967.

[3] D. L. Wilson, “Asymptotic properties of nearest neighbor rules
using edited data,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 2, no. 3, pp. 408–421, July 1972.

[4] G. W. Gates, “The reduced nearest neighbor rule,” IEEE Trans-
actions on Information Theory, vol. 18, no. 3, pp. 431–433,
May 1972.

[5] G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour,
“An algorithm for a selective nearest neighbor decision rule,”
IEEE Transactions on Information Theory, vol. 21, no. 6, pp.
665–669, November 1975.

[6] P. Datta and D. Kibler, “Symbolic nearest mean classifiers,” in
Proceedings of the 14th International Conference on Machine
Learning, July 1997, pp. 82–87.

[7] D. R. Wilson and T. R. Martinez, “Reduction techniques for
instance-based learning algorithms,” Machine Learning, vol. 38,
no. 3, pp. 257–286, March 2000.

[8] H. Brighton and C. Mellish, “Reduction techniques for instance-
based learning algorithms,” Data Mining and Knowledge Dis-
covery, vol. 6, no. 2, pp. 153–172, April 2002.

[9] S.-W. Kim and B. J. Oommen, “Enhancing prototype reduction
schemes with LVQ3-type algorithms,” Pattern Recognition,
vol. 36, no. 5, pp. 1083–1093, May 2003.

[10] J. Sánchez, “High training set size reduction by space partition-
ing and prototype abstraction,” Pattern Recognition, vol. 37,
no. 7, pp. 1561–1564, July 2004.

[11] M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. P ↪ekalska, and
R. P. W. Duin, “Experimental study on prototype optimisation
algorithms for prototype-based classification in vector spaces,”
Pattern Recognition, vol. 39, no. 10, pp. 1827–1838, October
2006.

[12] S.-H. Son and J.-Y. Kim, “Data reduction for instance-based
learning using entropy-based partitioning,” in Proceedings of
the International Conference on Computational Science and its
Applications, May 2006, pp. 590–599.

[13] E. Marchiori, “Hit miss networks with applications to instance
selection,” Journal of Machine Learning Research, vol. 9, pp.
997–1017, June 2008.

[14] S.-W. Kim and B. J. Oommen, “Enhancing prototype reduction
schemes with recursion: A method applicable for “large” data
sets,” IEEE Transactions on Systems, Man, and Cybernetics,
part B: Cybernetics, vol. 34, no. 3, pp. 1384–1397, June 2004.

[15] J. Macqueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, 1967,
pp. 281–297.

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, September 1995.

[17] V. Vapnik, The nature of statistical learning theory, 2nd ed.
New York, NY, USA: Springer, November 1999.

[18] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and other kernel-based learning methods.
New York, NY, USA: Cambridge University Press, March 2000.

[19] N. A. Syed, H. Liu, and K. K. Sung, “A study of support vectors
on model independent example selection,” in Proceedings of
the 5th ACM SIGKDD international conference on Knowledge
discovery and data mining, August 1999, pp. 272–276.

[20] Y.-J. Lee and O. L. Mangasarian, “RSVM: Reduced support
vector machines,” in Proceedings of the First SIAM Interna-
tional Conference on Data Mining, April 2001, pp. 350–366.

[21] K.-M. Lin and C.-J. Lin, “A study on reduced support vector
machines,” IEEE Transactions on Neural Networks, vol. 14,
no. 6, pp. 1449–1559, November 2003.

[22] J. G. Wang, P. Neskovic, and L. N. Cooper, “Training data
selection for support vector machines,” in Proceedings of the 1st
International Conference on Advances in Natural Computation,
August 2005, pp. 554–564.

[23] E. P ↪ekalska, R. P. W. Duin, and P. Paclı́k, “Prototype selection
for dissimilarity-based classifiers,” Pattern Recognition, vol. 39,
no. 2, pp. 189–208, February 2006.

[24] Y.-J. Lee and S.-Y. Huang, “Reduced support vector machines:
A statistical theory,” IEEE Transactions on Neural Networks,
vol. 18, no. 1, pp. 1–13, January 2007.

[25] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quan-
tizer design,” IEEE Transaction on Communications, vol. 28,
no. 1, pp. 84–95, January 1980.

[26] G. J. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and
applications, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, May 1995.

[27] M. B. de Almeida, A. de Padua Braga, and J. P. Braga, “SVM-
KM: speeding SVMs learning with a priori cluster selection
and k-means,” in Proceedings of the 6th Brazilian Symposium
on Neural Networks, November 2000, pp. 162–167.

[28] S. Zheng, X. Lu, N. Zheng, and W. Xu, “Unsupervised cluster-
ing based reduced support vector machines,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing, April 2003, pp. 821–824.

[29] R. Koggalage and S. K. Halgamuge, “Reducing the number of
training samples for fast support vector machine classification,”
Neural Information Processing - Letters and Reviews, vol. 2,
no. 3, pp. 57–65, March 2004.

[30] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[31] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan,
“Cost-based modeling for fraud and intrusion detection: Results
from the jam project,” in In Proceedings of the 2000 DARPA
Information Survivability Conference and Exposition, January
2000, pp. 130–144.

69

Table I
FOUR CLUSTERS OBTAINED FOR Str

size s mean standard deviation
c1 2 [0.800 0.705 0.740 0.905 0.605 A D H] [0.128 0.121 0.114 0.135 0.135]
c2 1 [0.830 0.700 0.710 0.930 0.650 B E G] [0.100 0.100 0.100 0.100 0.100]
c3 1 [0.480 0.390 0.310 0.510 0.250 B E G] [0.100 0.100 0.100 0.100 0.100]
c4 1 [0.810 0.680 0.760 0.870 0.620 C E G] [0.100 0.100 0.100 0.100 0.100]
c5 2 [0.260 0.305 0.405 0.195 0.290 C E G] [0.114 0.107 0.107 0.107 0.114]
c6 3 [0.517 0.470 0.217 0.350 0.633 A F K] [0.115 0.120 0.135 0.120 0.115]

Table II
A COMPARISON OF DATA REDUCTION METHODS FOR SHUTTLE DATASET.

Abstraction-based Filtering-based
Original SCFC k-means RSP3 SS DROP3

Number of data 43500 284.4 280 279 280 15614
Reduction rate (%) 0.00 99.35 99.36 99.36 99.36 41.12
Time (sec) 0.00 9.25 58.45 2070.48 0.13 5389.00
SVM (%) 99.79 99.20 97.90 98.54 97.66 99.74

Table III
A COMPARISON OF DATA REDUCTION METHODS FOR 1999 KDD CUP DATASET.

Abstraction-based Filtering-based
Original SCFC k-means RSP3 SS DROP3

Number of data 494021 1470.8 1465 1555 1465 49403
Reduction rate (%) 0.00 99.70 99.70 99.69 99.70 90.00
Time (sec) 0.00 473.92 12618.35 218208.58 1.22 157795.70
SVM (%) 92.51 91.97 87.56 92.20 76.05 92.41

Table IV
DETAILED REDUCTION RESULTS FOR EACH DATASET.

Shuttle 1999 KDD Cup 1999 KDD Cup (10%)
Original Reduced Original Reduced Original Reduced

Class 1 34108 134 972781 1729 97278 805
Class 2 37 9 3883370 451 391458 351
Class 3 132 9 41102 879 4107 213
Class 4 6748 76 52 33 52 34
Class 5 2458 36 1126 60 1126 62
Class 6 6 58 - - - -
Class 7 11 11 - - - -
Total 43500 280 4898431 3152 494021 1465

70

