15,158 research outputs found

    Recurrent Pixel Embedding for Instance Grouping

    Full text link
    We introduce a differentiable, end-to-end trainable framework for solving pixel-level grouping problems such as instance segmentation consisting of two novel components. First, we regress pixels into a hyper-spherical embedding space so that pixels from the same group have high cosine similarity while those from different groups have similarity below a specified margin. We analyze the choice of embedding dimension and margin, relating them to theoretical results on the problem of distributing points uniformly on the sphere. Second, to group instances, we utilize a variant of mean-shift clustering, implemented as a recurrent neural network parameterized by kernel bandwidth. This recurrent grouping module is differentiable, enjoys convergent dynamics and probabilistic interpretability. Backpropagating the group-weighted loss through this module allows learning to focus on only correcting embedding errors that won't be resolved during subsequent clustering. Our framework, while conceptually simple and theoretically abundant, is also practically effective and computationally efficient. We demonstrate substantial improvements over state-of-the-art instance segmentation for object proposal generation, as well as demonstrating the benefits of grouping loss for classification tasks such as boundary detection and semantic segmentation

    Classification and Geometry of General Perceptual Manifolds

    Get PDF
    Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination requires classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry revealing a remarkable relation to the mathematics of conic decomposition. Novel geometrical measures of manifold radius and manifold dimension are introduced which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including L2 ellipsoids prototypical of strictly convex manifolds, L1 balls representing polytopes consisting of finite sample points, and orientation manifolds which arise from neurons tuned to respond to a continuous angle variable, such as object orientation. The effects of label sparsity on the classification capacity of manifolds are elucidated, revealing a scaling relation between label sparsity and manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from neuronal responses to object stimuli, as well as to artificial deep networks trained for object recognition tasks.Comment: 24 pages, 12 figures, Supplementary Material

    Unsupervised machine learning for detection of phase transitions in off-lattice systems I. Foundations

    Full text link
    We demonstrate the utility of an unsupervised machine learning tool for the detection of phase transitions in off-lattice systems. We focus on the application of principal component analysis (PCA) to detect the freezing transitions of two-dimensional hard-disk and three-dimensional hard-sphere systems as well as liquid-gas phase separation in a patchy colloid model. As we demonstrate, PCA autonomously discovers order-parameter-like quantities that report on phase transitions, mitigating the need for a priori construction or identification of a suitable order parameter--thus streamlining the routine analysis of phase behavior. In a companion paper, we further develop the method established here to explore the detection of phase transitions in various model systems controlled by compositional demixing, liquid crystalline ordering, and non-equilibrium active forces

    Adaptive Seeding for Gaussian Mixture Models

    Full text link
    We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known KK-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original KK-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016. The final publication is available at link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2 24

    On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling

    Get PDF
    A multi-fidelity surrogate model for highly nonlinear multiscale problems is proposed. It is based on the introduction of two different surrogate models and an adaptive on-the-fly switching. The two concurrent surrogates are built incrementally starting from a moderate set of evaluations of the full order model. Therefore, a reduced order model (ROM) is generated. Using a hybrid ROM-preconditioned FE solver, additional effective stress-strain data is simulated while the number of samples is kept to a moderate level by using a dedicated and physics-guided sampling technique. Machine learning (ML) is subsequently used to build the second surrogate by means of artificial neural networks (ANN). Different ANN architectures are explored and the features used as inputs of the ANN are fine tuned in order to improve the overall quality of the ML model. Additional ANN surrogates for the stress errors are generated. Therefore, conservative design guidelines for error surrogates are presented by adapting the loss functions of the ANN training in pure regression or pure classification settings. The error surrogates can be used as quality indicators in order to adaptively select the appropriate -- i.e. efficient yet accurate -- surrogate. Two strategies for the on-the-fly switching are investigated and a practicable and robust algorithm is proposed that eliminates relevant technical difficulties attributed to model switching. The provided algorithms and ANN design guidelines can easily be adopted for different problem settings and, thereby, they enable generalization of the used machine learning techniques for a wide range of applications. The resulting hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase composite with pseudo-plastic micro-constituents. Numerical examples highlight the performance of the proposed approach

    Large-Margin Determinantal Point Processes

    Full text link
    Determinantal point processes (DPPs) offer a powerful approach to modeling diversity in many applications where the goal is to select a diverse subset. We study the problem of learning the parameters (the kernel matrix) of a DPP from labeled training data. We make two contributions. First, we show how to reparameterize a DPP's kernel matrix with multiple kernel functions, thus enhancing modeling flexibility. Second, we propose a novel parameter estimation technique based on the principle of large margin separation. In contrast to the state-of-the-art method of maximum likelihood estimation, our large-margin loss function explicitly models errors in selecting the target subsets, and it can be customized to trade off different types of errors (precision vs. recall). Extensive empirical studies validate our contributions, including applications on challenging document and video summarization, where flexibility in modeling the kernel matrix and balancing different errors is indispensable.Comment: 15 page

    Machine learning cosmological structure formation

    Get PDF
    We train a machine learning algorithm to learn cosmological structure formation from N-body simulations. The algorithm infers the relationship between the initial conditions and the final dark matter haloes, without the need to introduce approximate halo collapse models. We gain insights into the physics driving halo formation by evaluating the predictive performance of the algorithm when provided with different types of information about the local environment around dark matter particles. The algorithm learns to predict whether or not dark matter particles will end up in haloes of a given mass range, based on spherical overdensities. We show that the resulting predictions match those of spherical collapse approximations such as extended Press-Schechter theory. Additional information on the shape of the local gravitational potential is not able to improve halo collapse predictions; the linear density field contains sufficient information for the algorithm to also reproduce ellipsoidal collapse predictions based on the Sheth-Tormen model. We investigate the algorithm's performance in terms of halo mass and radial position and perform blind analyses on independent initial conditions realisations to demonstrate the generality of our results.Comment: 10 pages, 7 figures. Minor changes to match version published in MNRAS. Accepted on 22/06/201
    • …
    corecore