153 research outputs found

    Node Classification in Social Networks

    Full text link
    When dealing with large graphs, such as those that arise in the context of online social networks, a subset of nodes may be labeled. These labels can indicate demographic values, interest, beliefs or other characteristics of the nodes (users). A core problem is to use this information to extend the labeling so that all nodes are assigned a label (or labels). In this chapter, we survey classification techniques that have been proposed for this problem. We consider two broad categories: methods based on iterative application of traditional classifiers using graph information as features, and methods which propagate the existing labels via random walks. We adopt a common perspective on these methods to highlight the similarities between different approaches within and across the two categories. We also describe some extensions and related directions to the central problem of node classification.Comment: To appear in Social Network Data Analytics (Springer) Ed. Charu Aggarwal, March 201

    AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding

    Full text link
    Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.Comment: 8 pages, 5 figure
    • …
    corecore