126 research outputs found

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie

    Studies on deep learning approach in breast lesions detection and cancer diagnosis in mammograms

    Get PDF
    Breast cancer accounts for the largest proportion of newly diagnosed cancers in women recently. Early diagnosis of breast cancer can improve treatment outcomes and reduce mortality. Mammography is convenient and reliable, which is the most commonly used method for breast cancer screening. However, manual examinations are limited by the cost and experience of radiologists, which introduce a high false positive rate and false examination. Therefore, a high-performance computer-aided diagnosis (CAD) system is significant for lesions detection and cancer diagnosis. Traditional CADs for cancer diagnosis require a large number of features selected manually and remain a high false positive rate. The methods based on deep learning can automatically extract image features through the network, but their performance is limited by the problems of multicenter data biases, the complexity of lesion features, and the high cost of annotations. Therefore, it is necessary to propose a CAD system to improve the ability of lesion detection and cancer diagnosis, which is optimized for the above problems. This thesis aims to utilize deep learning methods to improve the CADs' performance and effectiveness of lesion detection and cancer diagnosis. Starting from the detection of multi-type lesions using deep learning methods based on full consideration of characteristics of mammography, this thesis explores the detection method of microcalcification based on multiscale feature fusion and the detection method of mass based on multi-view enhancing. Then, a classification method based on multi-instance learning is developed, which integrates the detection results from the above methods, to realize the precise lesions detection and cancer diagnosis in mammography. For the detection of microcalcification, a microcalcification detection network named MCDNet is proposed to overcome the problems of multicenter data biases, the low resolution of network inputs, and scale differences between microcalcifications. In MCDNet, Adaptive Image Adjustment mitigates the impact of multicenter biases and maximizes the input effective pixels. Then, the proposed pyramid network with shortcut connections ensures that the feature maps for detection contain more precise localization and classification information about multiscale objects. In the structure, trainable Weighted Feature Fusion is proposed to improve the detection performance of both scale objects by learning the contribution of feature maps in different stages. The experiments show that MCDNet outperforms other methods on robustness and precision. In case the average number of false positives per image is 1, the recall rates of benign and malignant microcalcification are 96.8% and 98.9%, respectively. MCDNet can effectively help radiologists detect microcalcifications in clinical applications. For the detection of breast masses, a weakly supervised multi-view enhancing mass detection network named MVMDNet is proposed to solve the lack of lesion-level labels. MVMDNet can be trained on the image-level labeled dataset and extract the extra localization information by exploring the geometric relation between multi-view mammograms. In Multi-view Enhancing, Spatial Correlation Attention is proposed to extract correspondent location information between different views while Sigmoid Weighted Fusion module fuse diagnostic and auxiliary features to improve the precision of localization. CAM-based Detection module is proposed to provide detections for mass through the classification labels. The results of experiments on both in-house dataset and public dataset, [email protected] and [email protected] (recall rate@average number of false positive per image), demonstrate MVMDNet achieves state-of-art performances among weakly supervised methods and has robust generalization ability to alleviate the multicenter biases. In the study of cancer diagnosis, a breast cancer classification network named CancerDNet based on Multi-instance Learning is proposed. CancerDNet successfully solves the problem that the features of lesions are complex in whole image classification utilizing the lesion detection results from the previous chapters. Whole Case Bag Learning is proposed to combined the features extracted from four-view, which works like a radiologist to realize the classification of each case. Low-capacity Instance Learning and High-capacity Instance Learning successfully integrate the detections of multi-type lesions into the CancerDNet, so that the model can fully consider lesions with complex features in the classification task. CancerDNet achieves the AUC of 0.907 and AUC of 0.925 on the in-house and the public datasets, respectively, which is better than current methods. The results show that CancerDNet achieves a high-performance cancer diagnosis. In the works of the above three parts, this thesis fully considers the characteristics of mammograms and proposes methods based on deep learning for lesions detection and cancer diagnosis. The results of experiments on in-house and public datasets show that the methods proposed in this thesis achieve the state-of-the-art in the microcalcifications detection, masses detection, and the case-level classification of cancer and have a strong ability of multicenter generalization. The results also prove that the methods proposed in this thesis can effectively assist radiologists in making the diagnosis while saving labor costs

    Machine learning methods for the analysis and interpretation of images and other multi-dimensional data

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Deep Omni-supervised Learning for Rib Fracture Detection from Chest Radiology Images

    Full text link
    Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome. Normally, developing DL-based object detection models requires huge amount of bounding box annotation. However, annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible. This poses pressing need of developing label-efficient detection models to alleviate radiologists' labeling burden. To tackle this challenge, the literature of object detection has witnessed an increase of weakly-supervised and semi-supervised approaches, yet still lacks a unified framework that leverages various forms of fully-labeled, weakly-labeled, and unlabeled data. In this paper, we present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible. Specifically, a multi-branch omni-supervised detection head is introduced with each branch trained with a specific type of supervision. A co-training-based dynamic label assignment strategy is then proposed to enable flexibly and robustly learning from the weakly-labeled and unlabeled data. Extensively evaluation was conducted for the proposed framework with three rib fracture datasets on both chest CT and X-ray. By leveraging all forms of supervision, ORF-Netv2 achieves mAPs of 34.7, 44.7, and 19.4 on the three datasets, respectively, surpassing the baseline detector which uses only box annotations by mAP gains of 3.8, 4.8, and 5.0, respectively. Furthermore, ORF-Netv2 consistently outperforms other competitive label-efficient methods over various scenarios, showing a promising framework for label-efficient fracture detection.Comment: 11 pages, 4 figures, and 7 table

    Recent Progress in Transformer-based Medical Image Analysis

    Full text link
    The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.Comment: Computers in Biology and Medicine Accepte

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho
    • …
    corecore