1,002,436 research outputs found

    The de Finetti theorem for test spaces

    Get PDF
    We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.Comment: 10 pages, 3 figures, revtex

    The connection between `emergence of time from quantum gravity' and `dynamical collapse of the wave-function in quantum mechanics'

    Full text link
    There are various reasons to believe that quantum theory could be an emergent phenomenon. Trace Dynamics is an underlying classical dynamics of non-commuting matrices, from which quantum theory and classical mechanics have been shown to emerge, in the thermodynamic approximation. However, the time that is used to describe evolution in quantum theory is an external classical time, and is in turn expected to be an emergent feature - a relic of an underlying theory of quantum gravity. In this essay we borrow ideas from Trace Dynamics to show that classical time is a thermodynamic approximation to an operator time in quantum gravitational physics. This prediction will be put to test by ongoing laboratory experiments attempting to construct superposed states of macroscopic objects.Comment: 6 pages. References updated. To appear in Int. J. Mod. Phys. D [special issue

    Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    Full text link
    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modelled by the BKS potential. We find that at density ρ=4.38\rho=4.38~g/cm3^3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n)\Delta G(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200 and 3300 K. We find that the prediction of CNT for the n-dependence of ΔG(n)\Delta G(n) fits reasonably well to the data at all T studied, and at 3300 K yields a chemical potential difference between liquid and stishovite that matches independent calculation. We find that nn^*, the size of the critical nucleus, is approximately 10 silicon atoms at T=3300 K. At 3000 K, nn^* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n)\Delta G(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n)\Delta G(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g. the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC

    Coordinate time dependence in Quantum Gravity

    Get PDF
    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.Comment: 35 pages, 17 figure. Revised version. To appear in Phys. Rev.

    A Massive Study of M2-brane Proposals

    Full text link
    We test the proposals for the worldvolume theory of M2-branes by studying its maximally supersymmetric mass-deformation. We check the simplest prediction for the mass-deformed theory on N M2-branes: that there should be a set of discrete vacua in one-to-one correspondence with partitions on N. For the mass-deformed Lorentzian three-algebra theory, we find only a single classical vacuum, casting doubt on its M2-brane interpretation. For the mass-deformed ABJM theory, we do find a discrete set of solutions, but these are more numerous than predicted. We discuss possible resolutions of this puzzling discrepancy. We argue that the classical vacuum solutions of the mass-deformed ABJM theory display properties of fuzzy three-spheres, as expected from their gravitational dual interpretation.Comment: 33 pages, LaTeX; references and acknowledgment adde

    Classical Duals, Legendre Transforms and the Vainshtein Mechanism

    Get PDF
    We show how to generalize the classical duals found by Gabadadze {\it et al} to a very large class of self-interacting theories. This enables one to adopt a perturbative description beyond the scale at which classical perturbation theory breaks down in the original theory. This is particularly relevant if we want to test modified gravity scenarios that exhibit Vainshtein screening on solar system scales. We recognise the duals as being related to the Legendre transform of the original Lagrangian, and present a practical method for finding the dual in general; our methods can also be applied to self-interacting theories with a hierarchy of strong coupling scales, and with multiple fields. We find the classical dual of the full quintic galileon theory as an example.Comment: 16 page

    Simon Grant, Monti, Martin Osherson, Daniel

    Get PDF
    The classical theory of preference among monetary bets represents people as expected utility maximizers with nondecreasing concave utility functions. Critics of this account often rely on assumptions about preferences over wide ranges of total wealth. We derive a prediction of the theory that bears on bets at any fixed level of wealth, and test the prediction behaviorally. Our results are discrepant with the classical account. Competing theories are also examined in light of our data.

    Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory

    Get PDF
    Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which for low supersaturations of the solid solution have the L12 structure. The aim of the present study is to model at an atomic scale this kinetics of precipitation and to build a mesoscopic model based on classical nucleation theory so as to extend the field of supersaturations and annealing times that can be simulated. We use some ab-initio calculations and experimental data to fit an Ising model describing thermodynamics of the Al-Zr and Al-Sc systems. Kinetic behavior is described by means of an atom-vacancy exchange mechanism. This allows us to simulate with a kinetic Monte Carlo algorithm kinetics of precipitation of Al3Zr and Al3Sc. These kinetics are then used to test the classical nucleation theory. In this purpose, we deduce from our atomic model an isotropic interface free energy which is consistent with the one deduced from experimental kinetics and a nucleation free energy. We test di erent mean-field approximations (Bragg-Williams approximation as well as Cluster Variation Method) for these parameters. The classical nucleation theory is coherent with the kinetic Monte Carlo simulations only when CVM is used: it manages to reproduce the cluster size distribution in the metastable solid solution and its evolution as well as the steady-state nucleation rate. We also find that the capillary approximation used in the classical nucleation theory works surprisingly well when compared to a direct calculation of the free energy of formation for small L12 clusters.Comment: submitted to Physical Review B (2004
    corecore