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Abstract. We prove a de Finetti theorem for exchangeable sequences of states
on test spaces, where a test space is a generalization of the sample space
of classical probability theory and the Hilbert space of quantum theory. The
standard classical and quantum de Finetti theorems are obtained as special
cases. By working in a test space framework, the common features that are
responsible for the existence of these theorems are elucidated. In addition, the
test space framework is general enough to imply a de Finetti theorem for classical
processes. We conclude by discussing the ways in which our assumptions may
fail, leading to probabilistic models that do not have a de Finetti theorem.
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1. Introduction

There are many scenarios involving probabilistic reasoning about a large number of systems,
where it is important that these systems can be regarded as identical and independent. Classical
parameter estimation and quantum tomography, in which a source is calibrated by measuring
separately a number of systems it has produced, provide excellent examples. More generally,
much of experimental science involves repetition of an experiment, with conclusions drawn
from observed relative frequencies, where the conclusions are only valid under the assumptions
of identity and independence of the separate trials. A problem that arises, therefore, is what
justifies these assumptions? De Finetti theorems are designed to answer this question.

De Finetti theorems have a fundamental significance for the subjective Bayesian
interpretation of probabilities. They enable the subjective Bayesian to explain why a rational
agent treats a sequence of trials as identical and independent, without appealing to a notion of
objective chance, or to unknown probabilities. In addition to this fundamental significance, they
are also important technical tools. For example, quantum de Finetti theorems have been applied
to various problems in quantum information theory, including proofs of the security of quantum
key distribution [1], algorithms for deciding the separability of bipartite quantum states [2, 3]
and global optimization of the maximum output purity of quantum channels [4].

In this paper, we provide a de Finetti theorem for nonsignalling states on test spaces. A test
space is a generalization of the sample space of classical probability theory and the Hilbert space
of quantum theory. The de Finetti theorem for test spaces includes the classical and quantum
theorems as special cases. It also implies a de Finetti theorem for classical processes, which can
also be viewed as a theorem about states in theories that exhibit ‘superquantum’ correlations, as
have been studied recently in quantum information [5]–[17].

The remainder of this paper is structured as follows. In section 2, the classical and quantum
de Finetti theorems are reviewed and their relevance for Bayesian statistics is discussed.
In section 3, the test space framework is introduced and its connection to the convex sets
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framework used in [18, 19] is explained. Section 4 states the de Finetti theorem for test spaces
and section 5 outlines some of its consequences, including the classical and quantum theorems
and the theorem for classical processes. Section 6 discusses the role of the various assumptions
of the test space framework and outlines some more general scenarios in which the theorem
fails. Section 7 concludes.

2. The classical and quantum de Finetti theorems

De Finetti introduced his theorem in the context of a subjective Bayesian approach to probability
theory [20, 21]. In this approach, probabilities are not defined as limiting relative frequencies,
nor as objective properties of the physical world. Instead they are measures of the degrees of
belief of a decision-making agent. An immediate question is, why should degrees of belief be
represented by real numbers obeying the Kolmogorov axioms? De Finetti’s answer is provided
by his famous Dutch Book argument [20, 21]4. But a second question is, why do the usual rules
of statistical inference apply to these quantities? In particular, how and why should relative
frequencies be used to update probability assignments?

Consider an experiment in which a trial with d possible outcomes is repeated n times.
Under a standard sort of analysis, the trials are first judged to be independent and identically
distributed, so that the probability of getting the outcome sequence x1, . . . , xn is given by
Pn(x1, . . . , xn) = p(x1) × · · · × p(xn), for some ‘unknown’ probability distribution p. The
distribution p is a parameter to be estimated.

To the subjective Bayesian, however, this is problematic since no sense can be given to an
‘unknown’ probability. De Finetti provides an alternative analysis. If the trial can in principle
be repeated an arbitrary number of times, then the joint distribution over outcome sequences
Pn should be defined for any n, so consider an infinite sequence of distributions P1, P2, . . . .
Suppose that for the first n trials, the agent is indifferent as to whether any further trials are
actually performed or not, and that the agent is also indifferent as to the order in which the
outcomes are reported. This suggests that the sequence P1, P2, . . . should satisfy the following.

Definition 1. Pn is symmetric if and only if it is invariant under permutations of the n
tests. That is, Pn(x1, . . . , xn) = Pn(xπ(1), . . . , xπ(n)) for all permutations π : {1, 2, . . . , n} →

{1, 2, . . . , n}.

Definition 2. The sequence P1, P2, . . . is exchangeable if and only if

1. ∀n, Pn is symmetric,
2. ∀n, ∀x1, . . . , xn,

Pn(x1, . . . , xn) =
∑d

xn+1=1 Pn+1(x1, . . . , xn, xn+1).

Theorem 1 (de Finetti’s representation theorem [21, 24]). If the sequence P1, P2, . . . is
exchangeable, then Pn can be written in the form

Pn(x1, . . . , xn) =

∫
1d

dµ(p) p(x1) · · · p(xn), (1)

where 1d is the set of all probability distributions over the outcomes {1, . . . , d}, µ is a
probability measure on 1d , µ is independent of n and µ is unique.

4 More sophisticated arguments, framed in terms of decision theory, are advocated by many contemporary
subjective Bayesians [22, 23].
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This is the classical de Finetti theorem for infinite sequences and a finite number of
outcomes. It shows that if the sequence P1, P2, . . . is exchangeable, then Pn can be written as
if it were generated via a probability distribution µ over unknown probabilities p. In particular,
if the first m < n trials are performed, and standard Bayesian updating applied directly to the
joint distribution Pn, one finds that the posterior probability for the remaining n − m trials is
given by

Pn(xm+1, . . . , xn|x1, . . . , xm) =

∫
1d

dµ(p|x1, . . . , xm) p(xm+1) · · · p(xn), (2)

where µ is updated as if Bayesian conditioning had been performed on an unknown parameter
p directly:

dµ(p|x1, . . . , xm) =
dµ(p) × p(x1) × · · · × p(xm)

Pn(x1, . . . , xm)
.

The quantum de Finetti theorem is a generalization of the classical theorem. It was first
presented in [25, 26], and a simpler proof given in [27, 28]. Whereas the classical theorem
concerned the outcome probabilities of a test that could be repeated an arbitrarily large number
of times, the quantum theorem concerns the joint state of an arbitrarily large number of quantum
systems. Suppose that each of these systems is associated with a d-dimensional Hilbert space
Hd . The joint state of n systems is then a density operator on the tensor product Hilbert space
H⊗n

d . Exchangeability is defined for a sequence of states ω1, ω2, . . ., where ωn is a state of n
systems.

Definition 3. ωn is symmetric if and only if it is invariant under permutations of the n systems,
i.e.

Tr (Q1 ⊗ · · · ⊗ Qn ωn) = Tr
(
Qπ(1) ⊗ · · · ⊗ Qπ(n) ω

n
)
,

for all permutations π : {1, 2, . . . , n} → {1, 2, . . . , n}, and for any projection operators
Q1, . . . , Qn.

Note that this is equivalent to requiring that ωn
= Sπωn S†

π for all permutations π , where Sπ

is the operator that permutes the n systems according to π .

Definition 4. The sequence ω1, ω2, . . . is exchangeable if and only if

1. ∀n, ωn is symmetric,

2. ∀n, ωn
= Trn+1(ω

n+1), where Trn+1 is the partial trace over the n + 1st system.

Theorem 2 (the quantum de Finetti theorem). If the sequence ω1, ω2, . . . is exchangeable, then
ωn can be written in the form

ωn
=

∫
�

dµ(ω) ω ⊗ · · · ⊗ω, (3)

where � is the set of density operators on Hd , µ is a probability measure on �, µ is independent
of n, and µ is unique.
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From a fundamental point of view, the quantum de Finetti theorem is particularly
important for those approaches to quantum theory that take a subjective view of the quantum
state [29]–[33]. These approaches are closely related to the Bayesian view of probabilities. A
quantum state is taken to represent the degrees of belief of an agent, where these might be beliefs
about the potential outcomes of measurements. In this case, the notion of an unknown quantum
state, so prevalent in the literature, becomes problematic. The quantum de Finetti theorem shows
how to dispense with this notion, at least in some situations.

Both of the theorems just presented assume finite sample spaces (or finite-dimensional
Hilbert spaces), and concern a number of trials or systems that tends to infinity. Both have
been generalized in a number of ways. Classical theorems for a finite number of trials are
discussed in [34]–[36] and quantum theorems for a finite number of systems in [1], [37]–[40].
In addition to the quantum de Finetti theorem, there is also a de Finetti theorem for quantum
operations [28, 41], for representations of unitary groups [40, 42] and for unitarily invariant
quantum states [43].

3. Test spaces

The classical de Finetti theorem involves probabilities of outcome sequences for a test that can
in principle be repeated an arbitrarily large number of times. The quantum de Finetti theorem
involves the joint quantum state of a number of quantum systems that can in principle be
arbitrarily large. Both of these can be viewed as special cases of a more general scenario.
Suppose that a single system is associated with a number of different possible tests, which
are mutually exclusive in the sense that only one can be performed at a time. The classical
case is recovered when there is in fact only one such test, and the quantum case when the
tests correspond to the different possible measurements on a quantum system. A state is an
assignment of probabilities to the outcomes of all the different possible tests.

Assume further that given n systems, a test for each system can be independently chosen,
and that a joint state is an assignment of probabilities to outcome sequences for each possible
sequence of tests. Given all this, it is possible to define exchangeability for a sequence of states
and to prove a de Finetti representation theorem. These ideas are formalized in this section, with
the representation theorem given in the next.

3.1. Single systems

The technical notion that we use to describe a single system is that of a test space. Test spaces
were introduced with the explicit purpose of describing probabilistic models more general than
classical and quantum theory, but including both as special cases [44, 45].

Definition 5. A test space consists of a pair (E, S), with E a set, and S a set of countable
subsets of E that covers E.

The idea is that each element of E is a possible outcome of a test. Each set s ∈ S corresponds
to a possible test, with the elements of s being the outcomes of that test. The sets in S may
overlap, thus the definition of a test space is designed to allow for the possibility that outcomes
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d

gf

e

cba

Figure 1. A Greechie diagram of the test space ({a, b, c, d, e, f, g}, {{a, b, c, d},

{a, e, g}, {b, e, f }}).

Figure 2. Greechie diagram for classical probability theory over a finite set.

of two different tests are identified. The sets E and S themselves may have any cardinality, but
the definition stipulates that the outcomes of any particular test are countable.

For finite E , a test space can be conveniently summarized by a Greechie diagram [46].
Each element of E is represented by a circle, and tests are represented by connecting the
corresponding set of circles with a continuous line. Examples of Greechie diagrams are given
in figures 1–3.

Definition 6. A state on a test space is a map ω : E → [0, 1] satisfying
∑

e∈s ω(e) = 1 ∀s ∈ S.

A state defines probabilities for the outcomes of each test such that (i) these probabilities sum to
1 for each test, and (ii) if an outcome appears in more than one test it gets the same probability
in each case. Given a test space A, write the set of all possible states �(A). Note that it is easy
to construct test spaces for which �(A) is the empty set, or for which a particular outcome
has probability 0 in all states, or which may for similar reasons be judged unsatisfactory. Extra
assumptions would rule these out, but here there is no need.

The set of possible state spaces of a test space is generic, in the sense that every finite-
dimensional compact convex set arises as the set of states for some test space5. As noted above,
discrete classical probability theory is recovered when there is only one test, i.e. when A is of
the form (E, {E}) (see figure 2). It is also possible to recover classical probability theory over
an arbitrary measurable set [48]. Quantum theory with projective measurements is recovered
whenA= (P(H),M(H)), with P(H) the set of projection operators on a Hilbert space H and
M(H) the set of projective decompositions of the identity. In this case, Gleason’s theorem [49]

5 This statement extends to infinite dimensions. Precisely: every compact convex subset of a locally convex
topological vector space is affinely homeomorphic to the set of all states on some test space. In [47], this was
proved for the state space of an orthomodular lattice, but the set of all finite ortho-partitions of unity of the lattice
is a test space that has the same state space. We thank A Wilce for telling us about this result.
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(3,3)

(3,2)

(3,1)

(2,3)

(2,2)

(2,1)

(1,3)

(1,2)

(1,1)

Figure 3. The test space for a process with three inputs and three outputs.

implies that each state corresponds to a density operator ρ, with the probability assigned to
projector P given by Tr(ρ P)6.

It will be useful to define arbitrary linear combinations of states. Given states ω1, . . . , ωk ∈

�(A), the linear combination v =
∑

i riωi , for real ri , is defined as a map E →R that satisfies

v(e) =

∑
i

riωi(e) ∀e ∈ E . (4)

The set of all linear combinations of states is a vector space denoted V (A). In the case of
quantum theory, for example, V (A) is the real vector space of Hermitian operators on the Hilbert
space. Clearly, �(A) is a convex subset of V (A). Since �(A) by definition spans V (A), they
have equal dimension. Importantly, from hereon we assume the following.

Assumption 1. V (A) is finite dimensional.

Finally, let V ∗(A) be the vector space dual to V (A), that is the set of all linear maps V (A) → <.
Note that each outcome of a test, that is each e ∈ E , can be uniquely identified with a map
ẽ ∈ V ∗(A) such that ẽ(ω) = ω(e) ∀ω ∈ �(A). Under this identification one can write ω(e)
and e(ω) interchangeably, according to whether states are viewed as assigning probabilities
to outcomes of tests, or vice versa. The set E can be viewed as a subset of V ∗(A), and it is easy
to see that the span of E is equal to V ∗(A).

Before moving on to composite systems, we briefly note that there is an alternative
approach to operational probabilistic theories that has recently been used to investigate the
information theoretic properties of such theories [6, 18, 19]. In this approach one starts with a
compact convex set �, to be interpreted as a space of states, and defines measurement outcomes

6 This holds provided the dimension of the Hilbert space is > 3. A generalization of Gleason’s theorem to
encompass positive operator valued (POV) measurements does hold for dimension 2 [50, 51], but the formalism
of test spaces is not general enough to encompass these measurements. This is because a POV decomposition
of the identity can contain multiple instances of the same term, such as {I/2, I/2}, and states are constrained to
assign the same probability to each instance. In the test space formalism, different outcomes of the same test are
always considered distinct. For precisely this reason, generalizations of test spaces known as effect-test spaces have
been studied that do encompass quantum POV measurements [52, 53]. However, there is no real need to consider
them here because we are primarily concerned with properties of states, and the set of possible state spaces of an
effect-test space is no more general than that of a test space.
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to be the set of affine functionals f : � → [0, 1]. The present work could easily have been
formulated in this framework, but it would be odd to do so from a subjective Bayesian point of
view. If the states are supposed to represent degrees of belief then it makes sense to start with
the objects that they are degrees of belief about, i.e. the tests, rather than the states themselves.
There is no loss of generality in working with test spaces, since the result of [47] implies that
any compact convex set can arise as the state space of a test space in the finite-dimensional case.

3.2. Multi-partite systems

In order to consider multi-partite systems, one needs to consider the composition of test spaces
and the definition of joint states. Suppose that two systems A and B are associated with test
spaces A= (E, S) and B = (F, T ). If the combined system is regarded as a system in and of
itself, then it too should be associated with a test space. But how is this constructed, and how is
it related toA and B? Nothing that has been said with respect to single systems implies a unique
answer, so further assumptions are needed.

Suppose that given separate systems A and B, it is possible to perform any test s on system
A simultaneously with any test t on system B. A joint state assigns probabilities to pairs (e, f )

of outcomes. In particular, if e ∈ s and e ∈ s ′, then the probability of obtaining (e, f ) does not
depend on whether the tests performed are s and t , or s ′ and t . Similarly if f ∈ t and f ∈ t ′.
Suppose further that a specification of the joint probability for all outcome pairs serves to define
the joint state uniquely.

This motivates the following.

Definition 7. Given two test spaces,A= (E, S) and B = (F, T ), the Cartesian product,A×B,
is a new test space whose set of outcomes is the set theoretic Cartesian product E × F, and
whose set of tests is {s × t |s ∈ S, t ∈ T }, where s × t is again the set theoretic Cartesian
product.

From definition 6, a state on A×B is a map E × F → [0, 1], with probabilities summing to 1
for each pair of tests (s, t).

Definition 8. Consider a bipartite system corresponding to a test space A×B. A state ω ∈

�(A×B) is nonsignalling if and only if∑
f ∈t

ω(e, f ) =

∑
f ∈t ′

ω(e, f ) ∀e, t, t ′, (5)

∑
e∈s

ω(e, f ) =

∑
e∈s′

ω(e, f ) ∀ f, s, s ′. (6)

If a state is nonsignalling, then the marginal probability of obtaining outcome e for test s
does not depend on which B test is performed. This means that a marginal state ωA ∈ �(A), can
be defined such that

ωA(e) =

∑
f ∈t

ω(e, f ), (7)

where the right-hand side does not depend on the choice of t . Similarly, one can define a
marginal ωB ∈ �(B).
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Definition 9. Given ωA ∈ �(A) and ωB ∈ �(B), the direct product, ωA ⊗ ωB ∈ �(A×B), is
defined so that

(ωA ⊗ ωB)(e, f ) = ωA(e)ωB( f ) ∀(e, f ) ∈ E × F. (8)

The definition of the Cartesian product of test spaces is valid for any pair of test spaces,
including the case in which one of them is itself a Cartesian product. Considering three test
spaces,A= (E, S), B = (F, T ) and C = (G, U ), it is easy to see that (A×B) × C is isomorphic
to A× (B× C). Thus one can simply write A×B× C, with states on A×B× C identified
with maps E × F × G → [0, 1]. The product A×A× · · · ×A, where there are n terms in the
decomposition, can be written A×n.

The notion of a nonsignalling state has been defined with respect to bipartite
decompositions. It extends readily to the case of an n-fold product.

Definition 10. Consider a product of test spaces,A1 × · · · ×An. A state ω ∈ �(A1 × · · · ×An)

is n-fold nonsignalling if and only if ω is nonsignalling with respect to every bipartite split. More
formally, let α be a subset of {1, . . . , n}, let |α| = k, and write α = {i1, . . . , ik}. Then ω is n-fold
nonsignalling iff∑

ei1∈ti1

· · ·

∑
eik ∈tik

ω(e1, . . . , en) =

∑
ei1∈t ′i1

· · ·

∑
eik ∈t ′ik

ω(e1, . . . , en),

for all α, for all e j with j /∈ α, and for all tests ti1, . . . , tik and t ′

i1
, . . . , t ′

ik
.

Finally, this will be useful.

Lemma 1. Consider the test space A1 × · · · ×An. The direct product states, of the form
ω1 ⊗ · · · ⊗ωn, span a subspace of V (A1 × · · · ×An), and the subspace can be identified with
V (A1) ⊗ · · · ⊗ V (An). If a joint state ω is n-fold nonsignalling, then ω ∈ V (A1) ⊗ · · · ⊗ V (An),
i.e. ω can be written as a linear combination of direct products.

Proof. Begin with the n = 2 case. The tensor product V (A1) ⊗ V (A2) can be defined as the set
of bilinear maps V ∗(A1) × V ∗(A2) → <. Any direct product ω1 ⊗ ω2 defines such a map via
(a, b) → a(ω1)b(ω2), and it is straightforward that these span V (A1) ⊗ V (A2). Now consider a
nonsignalling joint state ω. The fact that ω is nonsignalling permits the definition of the marginal
state ω1. Define the conditional state ω2|e such that ω2|e( f ) is the probability of outcome f
on system 2, given that outcome e was obtained on system 1. Thus ω(e, f ) = ω1(e)ω2|e( f ),
for all (e, f ) ∈ E × F . Note that ω2|e ∈ �(A2). Now suppose that f and {gi} are elements of
F such that, considered as elements of V ∗(A2), f =

∑
i ri gi . Thus ω2( f ) =

∑
i riω2(gi) for

all ω2 ∈ �(A2). Then ω(e, f ) = ω1(e)ω2|e( f ) =
∑

i riω1(e)ω2|e(gi) =
∑

i riω(e, gi). A value
ω(e, b) can now be defined for arbitrary b ∈ V ∗(A2) by linear extension. Similar reasoning
concludes that ω(e, b) is linear in the first argument, hence can be extended to ω(a, b) for
a ∈ V ∗(A1). So ω defines a bilinear map V ∗(A1) × V ∗(A2) → < as required. The extension to
general n is straightforward. ut

Note that if we have two quantum test spaces A= (P(HA),M(HB)) and B =

(P(HB),M(HB)) then the space of nonsignalling states on A×B is larger than the state space
of AB = (P(HA ⊗ HB),M(HA ⊗ HB)). To see this, recall that the nonsignalling state space
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of A×B only has to be positive for all possible choices of local measurements on A and B,
whereas the test space AB includes joint measurements, such as the Bell measurement for
example. Thus, the criteria to be a state on AB are more restrictive than those for nonsignalling
states on A×B. Indeed, if we take a state on AB and perform a positive, but not completely
positive, map on systemA then the result is still a valid state onA×B, but not onAB in general,
e.g. consider performing a partial transpose on a Bell state. Nevertheless, the state space of AB
is still a convex subset of the nonsignalling states on A×B, which is enough to apply our
theorem. More generally, one might want to consider rules for composing subsystems that yield
a convex subset of the nonsignalling states on the Cartesian product for arbitrary test spaces.

4. A de Finetti theorem for test spaces

Given a system associated with a test space A= (E, S), suppose that n copies are associated
with the product A×n. Given an infinite sequence of states ω1, ω2, . . . where ωn

∈ �(A×n), it
is possible to define symmetry and exchangeability in a manner similar to the classical and
quantum cases. The main difference is that here, the definition of exchangeability involves the
extra condition that the states are nonsignalling.

Definition 11. A state ωn
∈ �(A×n) is symmetric if and only if it is invariant under

permutations of the n systems. That is,

ωn(e1, . . . , en) = ωn(eπ(1), . . . , eπ(n)),

for all permutations π : (1, . . . , n) → (1, . . . , n).

Definition 12. A sequence of states ω1, ω2, . . . where ωn
∈ �(A×n) is exchangeable if and

only if

1. ∀n ωn is symmetric,
2. ∀n ωn is n-fold nonsignalling,
3. ωn(e1, . . . , en) =

∑
en+1∈s ωn+1(e1, . . . , en, en+1).

Theorem 3 (the de Finetti theorem for test spaces). Suppose that the sequence ω1, ω2, . . . where
ωn

∈ �(A×n), is exchangeable. Then ωn can be written in the form

ωn
=

∫
�(A)

dµ(ω) ω ⊗ · · · ⊗ω, (9)

where µ is a probability measure on �(A), µ is independent of n, and µ is unique.

Proof. The proof is an adaptation of the proof of the quantum de Finetti theorem due to Caves
et al [27]. Recall that in quantum theory, an informationally complete measurement is a POV
measurement such that if the outcome probabilities are all known, then the state is determined
uniquely. The strategy of Caves et al is to generate a classical distribution by considering an
informationally complete POV measurement performed separately on each quantum system.
Applying the classical de Finetti theorem to the distribution of outcome sequences allows the
form of the quantum state to be inferred.

In our context, the test space A need not include a test that is informationally complete for
the state space �. But for the purposes of proof, this does not matter. All that is needed is a
corresponding mathematical construction.
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Lemma 2. There exists a set M = {a1, . . . , ad}, where ai ∈ V ∗(A) and d is the dimension of
V ∗(A), such that

1. M is a basis for V ∗(A), i.e., the ai are linearly independent,
2. 06 ai(ω)6 1 ∀ω ∈ �(A),
3.
∑

i ai(ω) = 1 ∀ω ∈ �(A).

Proof. This result is not new. It is also used in [18], and we give the same proof. A more
general version is proven in [54]. Let u be the unique vector in V ∗(A) such that u(ω) = 1 for
all ω ∈ �(A). Consider an arbitrary basis {b1, . . . , bd} of V ∗(A). Apply an invertible linear
transformation to obtain {b̃1, . . . , b̃d}, where

∑
i b̃i = u. Some of the b̃i may be negative on

some states ω. Define a constant c as the minimum value of b̃i(ω), where the minimum
is taken over all i and all ω ∈ �(A). Then b̃i − cu is positive and nonzero. It follows that∑

i(b̃i − cu) = (1 − dc)u, with 1 − dc > 0. Define ai = (b̃i − cu)/(1 − dc). ut

The set M will play the role of an informationally complete measurement. The linear
independence of the ai means that a state ω is determined uniquely by the values ai(ω). The
idea now is that given a nonsignalling ωn

∈ �(A×n), one can at least imagine a measurement
corresponding to M performed separately on each system. The probability of obtaining
an outcome sequence (ai1, . . . , ain) for a direct product state ω1 ⊗ · · · ⊗ωn is defined as
ai1(ω1) · · · ain(ωn). Recalling lemma 1, according to which a nonsignalling state can be written
as a linear combination of direct product states, the probability of the sequence (ai1, . . . , ain)

for an arbitrary nonsignalling state can be defined by linear extension. Note that this way,
the sequence (ai1, . . . , ain) corresponds to a vector ai1 ⊗ · · · ⊗ ain ∈ (V ∗(A))⊗n, such that the
probability is given by (ai1 ⊗ · · · ⊗ ain)(ω

n). The vectors ai1 ⊗ · · · ⊗ ain are linearly independent
and span the tensor product space (V ∗(A))⊗n. This means that the joint measurement M×n is
informationally complete for the nonsignalling n-partite system.

For simplicity, write the probability of the outcome sequence (ai1, . . . , ain) as
Pn(i1, . . . , in) so that

Pn(i1, . . . , in) = (ai1 ⊗ · · · ⊗ ain)(ω
n). (10)

If ωn is symmetric, then so is Pn, since

Pn(iπ(1), . . . , iπ(n)) = (aiπ(1)
⊗ · · · ⊗ aiπ(n)

)(ωn)

= (ai1 ⊗ · · · ⊗ ain)(5(ωn))

= (ai1 ⊗ · · · ⊗ ain)(ω
n)

= Pn(i1, . . . , in), (11)

for any permutation π .
Further, if the sequence ω1, ω2, . . . is exchangeable, then so is the sequence P1, P2, . . . ,

since it is symmetric and∑
in+1

Pn+1(i1, . . . , in, in+1) =

∑
in+1

(ai1 ⊗ · · · ⊗ ain ⊗ ain+1)(ω
n+1)

= (ai1 ⊗ · · · ⊗ ain)(ω
n)

= Pn(i1, . . . , in). (12)

New Journal of Physics 11 (2009) 033024 (http://www.njp.org/)

http://www.njp.org/


12

Now apply the classical de Finetti theorem (theorem 1) to the sequence P1, P2, . . . to obtain

Pn(i1, . . . , in) =

∫
1d

dµ(p) p(ai1) · · · p(ain), (13)

where 1d is the set of probability distributions over {a1, . . . , ad}.
For each such distribution p, there is a unique ωp ∈ V (A) such that ai(ωp) = p(ai) (where

uniqueness follows from the linear independence of the ai ). Thus equation (13) can be rewritten
as

(ai1 ⊗ · · · ⊗ ain)(ω
n) =

∫
1d

dµ(p) ai1(ωp) · · · ain(ωp). (14)

Since the joint measurement is informationally complete for the nonsignalling n-partite states,
this implies

ωn
=

∫
1d

dµ(p) ωp ⊗ · · · ⊗ωp. (15)

This is not quite sufficient to establish theorem 3. The right-hand side of equation (15) is
an integral over all ωp ∈ V (A) satisfying 06 ai(ωp)6 1 and

∑
i ai(ωp) = 1. That is, it is an

integral over all ωp that return sensible probabilities for the imaginary informationally complete
measurement. But in general, there are ωp satisfying these conditions that are not valid states
because they return a value < 0 for some element of the test space. It remains to show that the
integral can be restricted to those ωp ∈ �(A).

To this end, consider an ωp ∈ V (A) such that 06 ai(ωp)6 1 and
∑

i ai(ωp) = 1, but
ωp(e) < 0 for some e ∈ E . It must be the case that e ∈ s for some test s. Let the other elements
of s be { f1, . . . , fk} and note that

∑
i ωp( fi) > 1. There must exist an ε > 0 and a neighborhood

N of ωp in V (A) such that
∑

i ω( fi) > 1 + ε for all ω ∈ N . Let Ñ be the subset of 1d such that
p(ai) = ai(ω) for some ω ∈ N . Expression (15) holds for any n, so suppose that n is even and
that the test s is performed on each of the n systems. The probability that outcome e is never
obtained is defined by ωn and is given by∫

1d

dµ(p)

(∑
i

ωp( fi)

)n

=

∫
1d\Ñ

dµ(p)

(∑
i

ωp( fi)

)n

+
∫

Ñ
dµ(p)

(∑
i

ωp( fi)

)n

>

∫
Ñ

dµ(p)

(∑
i

ωp( fi)

)n

> (1 + ε)n

∫
Ñ

dµ(p), (16)

where we have used the fact that the first term after the equality is > 0 if n is even. For large
enough n this expression is > 1 unless µ(Ñ ) = 0. This holds for any ωp /∈ �(A). It follows that,
with a suitable redefinition of µ,

ωn
=

∫
�(A)

dµ(ω) ω ⊗ · · · ⊗ω. (17)

ut
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5. Consequences of theorem 3

The de Finetti theorem for test spaces is rather general. Very little goes into the definition of
a test space itself. In fact, in the finite-dimensional case we are considering, the state space
of an individual system may be an arbitrary compact convex set. Thus, the most substantive
assumptions that go into the theorem are those that concern how test spaces combine when joint
systems are considered.

In the classical case, the test space (E, {E}) contains a single test and the state space for an
individual system is 1d , where d is the number of elements of E . In this case, the nonsignalling
condition is redundant because there is just a single test on each system and hence no freedom
to choose alternative measurements. The Cartesian product of classical test spaces corresponds
to the usual Cartesian product of sample spaces and so theorem 3 reduces to theorem 1
straightforwardly. The quantum case is a little more subtle because the state of n quantum
systems belongs to the state space of (P(H⊗n),M(H⊗n)), rather than the state space of the
Cartesian product of n test spaces of the form (P(H),M(H)). Nevertheless, a quantum state
defined by a density operator on H⊗n is uniquely specified by the probabilities for measurement
outcomes of the form Q1 ⊗ Q2 ⊗ · · · ⊗ Qn, where the Qi are projection operators. It follows
that the states on (P(H⊗n),M(H⊗n)) can be identified with a subset of the nonsignalling states
on (P(H),M(H))×n. Hence theorem 3 implies the quantum de Finetti theorem.

As a further illustration of the generality of the result, we note that a theorem for classical
processes, or conditional probabilities, can also be viewed as a special case of theorem 3. A
process C can be thought of as taking an input Y into an output X , where Y takes values in
{1, . . . , k} and X takes values in {1, . . . , d}. The process can be defined as the set of conditional
probabilities of the form P(X = x |Y = y) (abbreviated P(x |y)). Clearly, the set of all such
C can be regarded as the set of states on a test space (E, S), where E consists of ordered
pairs with E = {(x, y)}x=1,...,d,y=1,...,k and S = {{(x, 1)}d

x=1, . . . , {(x, k)}d
x=1}, as illustrated for

the d = k = 3 case in figure 3. The state space of this test space is isomorphic to the set of
conditional probability distributions via the identification ω((x, y)) = P(x |y).

More generally, a process Cn takes inputs Y1, . . . , Yn into outputs X1, . . . , Xn, where
each Yi takes values in {1, . . . , k}, and each X i takes values in {1, . . . , d}. Such a Cn can be
defined as the set of conditional probabilities of the form Pn(x1, . . . , xn|y1, . . . , yn), and can
also be identified with a state on the Cartesian product (E, S)×n. The n-fold nonsignalling
and symmetry conditions can be defined for Cn exactly as they are in definitions 10 and 11.
Exchangeability for a sequence C1, C2, . . . can be defined exactly as in definition 12. Theorem 3
becomes the following theorem for classical processes.

Theorem 4. If the sequence C1, C2, . . . is exchangeable, then the conditional probabilities
defining Cn can be written in the form

P(x1, . . . , xn|y1, . . . , yn) =

∫
�

dµ(p) p(x1|y1) · · · p(xn|yn), (18)

where � is the set of processes that take a single input X into a single output Y , µ is a probability
measure on �, µ is independent of n, and µ is unique.

A couple of remarks regarding theorem 4 might be helpful.
Firstly, we described theorem 4 as a special case of theorem 3. It is worth noting the sense

in which it is strictly less general. After all, any state on any test space could be thought of as
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a classical process, which takes an input (choice of test) into an output (outcome of test). The
point is that, with this identification applied to a generic test space A, not all sets of conditional
probabilities p(x |y) will correspond to valid states on A. It is only if A has the special feature
that the tests are nonoverlapping that this will be the case. The integral in equation (18) ranges
over all processes of the form p(x |y), whereas in equation (9), it is important that the integral
ranges only over �(A).

Secondly, the de Finetti theorem for classical processes can be viewed as a de Finetti
theorem for states in a theory that is nonclassical and nonquantum, but admits the most
general type of correlations compatible with the nonsignalling requirement. This theory is
discussed in [6], where it is called generalized nonsignalling theory. It admits superquantum
correlations, which have been discussed in the quantum information literature under the name
Popescu–Rohrlich, or nonlocal, boxes. Of course, as in the quantum case, exchangeable states
do not actually exhibit such correlations, since the de Finetti theorem shows that they are
separable.

6. When does a de Finetti-type theorem not hold?

The de Finetti theorem for test spaces holds thanks to a number of assumptions concerning
how systems combine to make joint systems. One of these is the nonsignalling condition for
joint states. Others are encoded in the formal definition of a Cartesian product of test spaces.
It is interesting to see what happens when these assumptions are relaxed, so in this section we
present a number of cases where the theorem fails.

6.1. The nonsignalling condition

First, the assumption that the joint states are nonsignalling is crucial not only in the proof, but
also in the very definition of exchangeability. In general, if a state ω ∈ �(A1 ×A2) is signalling,
then it is not possible to define marginal states ω1 and ω2. But exchangeability requires that,
given the n + 1st state in the sequence, the marginal state of the first n systems should be defined
and should equal the nth state. In fact, if a state ω ∈ �(A1 ×A2) is only signalling in one
direction then one of the marginals can be defined. For example, if probabilities of outcomes
for system 2 depend on which test was performed on system 1, but not vice versa, then ω1 is
well defined. But such a state is not symmetric, thus could not form part of an exchangeable
sequence. Arguably, the possibility of performing tests on one system that do not affect the
other is part and parcel of what we mean when we speak of separate systems (or separate trials).

6.2. Simultaneous measurements

Implicit in the definition of the Cartesian product of test spaces is the idea that a test on one
system can be regarded as simultaneous with a test on the other system. One can certainly
imagine rules for combining systems where this is not the case. As a very simple example,
consider two classical bits which have combined in the following strange manner. If bit 1 is
measured before bit 2, then the bits are found to be 00 or 11 with equal probability. On the other
hand, if bit 2 is measured before bit 1, then the outcomes are 01 and 10 with equal probability.
Note that a suitable nonsignalling condition is satisfied and it is possible to define marginal
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states for these bits. With more complicated test spaces one can construct examples like this
which are also symmetric7. We leave open the status of the de Finetti theorem in such cases.

6.3. Extra degrees of freedom

Another assumption that is implicit in the Cartesian product of test spaces is that the joint state
of two systems is completely specified by the probabilities for the joint outcomes (e, f ) of each
pair of local tests (s, t).

One can construct theories in which a joint state does indeed determine such probabilities,
but is not completely specified by them. There are extra degrees of freedom, bound up in the
two systems, which are inaccessible unless some kind of joint operation involving both systems
at once is performed.

As discussed in [27], a clear example of this is provided by a modification of quantum
theory in which real Hilbert spaces are used rather than complex Hilbert spaces. States and
observables correspond to real symmetric, rather than complex Hermitian, operators. For a
two-dimensional system (a rebit), there are measurements corresponding to x- and z-spin but not
y-spin. In this case, if σy is the usual Pauli matrix, then 1/4(I ⊗ I + σy ⊗ σy) is an allowed state
of two rebits. But the only way it can be distinguished from 1/4(I ⊗ I ) is if a joint observable
such as σy ⊗ σy is measured. Note that in real quantum theory, this really is a joint observable:
it cannot be measured via a separate σy measurement on each system.

In [27] it is shown explicitly that the de Finetti theorem fails in real quantum theory. If ωn

is defined by

ωn
=

1

2

(
I + σy

2

)⊗n

+
1

2

(
I − σy

2

)⊗n

, (19)

then it is real and symmetric, and the sequence ω1, ω2, . . . is exchangeable. But by the de Finetti
theorem for complex quantum theory, the right-hand side of equation (19) is the unique de
Finetti representation for this sequence.

7. Conclusion

In this paper, an infinite de Finetti theorem for test spaces has been presented, which generalizes
both the classical and quantum de Finetti theorems. To illustrate the generality of the result, we
have shown that a de Finetti theorem for classical processes, which may also be interpreted as a
de Finetti theorem for nonlocal boxes, follows as a special case.

From a practical point of view, proving theorems for test spaces, rather than just for
quantum theory, confers significant advantages. Not only do we achieve a unification of the
classical and quantum results, but we also obtain results that apply to essentially arbitrary
convex sets. This is potentially relevant when technological limitations prevent the preparation

7 Consider the test space A, with outcomes E = {a, b, c, d}, and two tests corresponding to s1 = {a, b}, and
s2 = {c, d}. Suppose that there are two systems, A and B, each described by the test space A, and that they
have combined as follows. If the test s1 is performed on both systems, the outcomes are completely random
and uncorrelated. If the test s2 is performed on both systems, then the outcomes are completely random and
uncorrelated. On the other hand, if the test s1 is performed on either one of the systems, followed by s2 on the
other, then the joint outcomes are ac or bd with equal probability. If the test s2 is performed on either one of the
systems, followed by s1 on the other, then the joint outcomes are ad or bc with equal probability. It is clear that this
peculiar bipartite system does not allow signalling and is also invariant under a permutation of the two systems.
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of arbitrary quantum states of certain systems, so that there is an effective restriction to a convex
subset.

From a foundational point of view, this work can be seen as part of a project of
understanding what is responsible for the enhanced information processing power of quantum
theory, and for the project of deriving quantum theory from information theoretic axioms. In
particular, if one adopts a subjective Bayesian approach to probability, it might be desirable to
impose the requirement that, in any reasonable theory, one should be able to make sense of
the idea of reconstructing an unknown state of a system by making repeated measurements on
identically prepared copies. Having a de Finetti theorem for test spaces means that this does
indeed make sense for theories in this framework, and that the existing approaches to Bayesian
state tomography in quantum theory would generalize straightforwardly.

There are various directions for future work. It would be useful to produce a finite de Finetti
theorem for test spaces. It would also be useful to establish whether a (finite or infinite) de Finetti
theorem holds without the assumption made here of finite dimensionality of state spaces.
Finally, as discussed in section 6.2, it might be interesting to explore the status of de Finetti-type
theorems in cases where systems combine in nonstandard ways.

Note added. Related results have recently been obtained by Christandl and Toner [55], who
derive a de Finetti theorem for classical processes, analogous to theorem 4 of the present work,
but extended to the finite case.
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