141,811 research outputs found

    Defective Coloring on Classes of Perfect Graphs

    Full text link
    In Defective Coloring we are given a graph GG and two integers χd\chi_d, Δ∗\Delta^* and are asked if we can χd\chi_d-color GG so that the maximum degree induced by any color class is at most Δ∗\Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd\chi_d, Δ∗\Delta^* is set to the smallest possible fixed value that does not trivialize the problem (χd=2\chi_d = 2 or Δ∗=1\Delta^* = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd\chi_d or Δ∗\Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd\chi_d and Δ∗\Delta^* are unbounded

    Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

    Get PDF
    We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class \SPL. Since \SPL\ is contained in the logspace counting classes \oplus\L (in fact in \modk\ for all k≥2k\geq 2), \CeqL, and \PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in \FL^{\SPL}. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier. As our main technical result, we design a logspace computable and polynomially bounded weight function which isolates a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant genus. We use results from algebraic topology for proving the correctness of the weight function.Comment: 23 pages, 13 figure

    On the choosability of claw-free perfect graphs

    Full text link
    It has been conjectured that for every claw-free graph GG the choice number of GG is equal to its chromatic number. We focus on the special case of this conjecture where GG is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 44
    • …
    corecore