26,003 research outputs found
Properties of length-apodized phase-shifted lpgs operating at the phase matching turning point
The characteristics of length-apodized phase-shifted fiber optic long period
gratings with full and partial nanostructured coatings have been explored
theoretically and experimentally. The twin rejection bands that are
characteristic of length-apodized phase-shifted long period gratings are studied
for a long period grating (LPG) operating at the phase matching turning point.
When one half of the length of the LPG is coated, complex bandgap like structure
appears within the transmission spectrum, which may be of benefit to spectral
filter design and for sensing applications
Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings
This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002104. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America.This work was financially supported by the European Commission under the FP7 EURO-FOS Network of Excellence (ICT-2007-2-224402), the Ministerio de Educación y Ciencia SINADEC project (TEC2008-06333), and the Natural Sciences and Engineering Research Council of Canada (NSERC). The work of G. E. Villanueva was supported by the Ministerio de Educación y Ciencia Formación de Profesorado Universitario programs. The work of P. Pérez-Millán was supported by the Juan de la Cierva program, JCI-2009-05805.Villanueva Ibáñez, GE.; Jakubinek, M.; Simard, B.; Oton Nieto, CJ.; Matres Abril, J.; Shao, L.; Pérez Millán, P.... (2011). Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings. Optics Letters. 36(11):2104-2106. https://doi.org/10.1364/OL.36.002104S210421063611Sakakibara, Y., Rozhin, A. G., Kataura, H., Achiba, Y., & Tokumoto, M. (2005). Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors. Japanese Journal of Applied Physics, 44(4A), 1621-1625. doi:10.1143/jjap.44.1621Chow, K. K., Yamashita, S., & Song, Y. W. (2009). A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. Optics Express, 17(9), 7664. doi:10.1364/oe.17.007664Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004). Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 137-146. doi:10.1109/jstqe.2003.822912Chow, K. K., Tsuji, M., & Yamashita, S. (2010). Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion. Applied Physics Letters, 96(6), 061104. doi:10.1063/1.3304789Chow, K. K., & Yamashita, S. (2009). Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Optics Express, 17(18), 15608. doi:10.1364/oe.17.015608Choi, S. Y., Rotermund, F., Jung, H., Oh, K., & Yeom, D.-I. (2009). Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. Optics Express, 17(24), 21788. doi:10.1364/oe.17.021788Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D. J., & Albert, J. (2007). Optical fiber refractometer using narrowband cladding-mode resonance shifts. Applied Optics, 46(7), 1142. doi:10.1364/ao.46.001142Kingston, C. T., Jakubek, Z. J., Dénommée, S., & Simard, B. (2004). Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 42(8-9), 1657-1664. doi:10.1016/j.carbon.2004.02.020Jakubinek, M. B., Johnson, M. B., White, M. A., Guan, J., & Simard, B. (2010). Novel Method to Produce Single-Walled Carbon Nanotube Films and Their Thermal and Electrical Properties. Journal of Nanoscience and Nanotechnology, 10(12), 8151-8157. doi:10.1166/jnn.2010.3014Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., … Leuthold, J. (2008). Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 16(1), 170. doi:10.1364/oe.16.00017
Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles
A novel approach to chemical application of long period grating (LPG) optical
fibers was demonstrated, which were modified with a film nanoassembled by the
alternate deposition of SiO2 nanoparticles (SiO2 NPs) and poly(diallyldimethyl
ammonium chloride) (PDDA). Nanopores of the sensor film could be used for
sensitive adsorption of chemical species in water, which induced the changes in
the refractive index (RI) of the light propagating in the cladding mode of the
optical fiber, with a concomitant effect on the transmission spectrum in the LPG
region. The prepared fiber sensor was highly sensitive to the change in the RI
of the surrounding medium and the response time was very fast within 10 s. In
addition, chemical infusion into the film was tested using a porphyrin compound,
tetrakis-(4-sulfophenyl)porphine (TSPP), which could be saturated within a few
min. The lowest detectable concentration of the TSPP analyte was 10 mu M. The
TSPP infusion led to the development of well-pronounced dual resonance bands,
indicating a large increase in the optical thickness of the film. The RI of the
film was dramatically increased from 1.200 to ca. 1.540
Duplex aluminized coatings
The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded
Hollow-core infrared fiber incorporating metal-wire metamaterial
Infrared (IR) light is considered important for short-range wireless
communication, thermal sensing, spectroscopy, material processing, medical
surgery, astronomy etc. However, IR light is in general much harder to
transport than optical light or microwave radiation. Existing hollow-core IR
waveguides usually use a layer of metallic coating on the inner wall of the
waveguide. Such a metallic layer, though reflective, still absorbs guided light
significantly due to its finite Ohmic loss, especially for transverse-magnetic
(TM) light. In this paper, we show that metal-wire based metamaterials may
serve as an efficient TM reflector, reducing propagation loss of the TM mode by
two orders of magnitude. By further imposing a conventional metal cladding
layer, which reflects specifically transverse-electric (TE) light, we can
potentially obtain a low-loss hollow-core fiber. Simulations confirm that loss
values for several low-order modes are comparable to the best results reported
so far.Comment: REVTeX, just over 9 page
Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings
High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.
Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide
The analysis of surrounding media has been a long-standing challenge of
optical fiber sensors. Measurements are difficult due to the confinement of
light to the inner core of standard fibers. Over the last two years, new sensor
concepts have enabled the analysis of liquids outside the cladding boundary,
where light does not reach. Sensing is based on opto-mechanical, forward
stimulated Brillouin scattering interactions between guided light and sound
waves. In most previous works, however, the protective polymer coating of the
fiber had to be removed first. In this work, we report the opto-mechanical
analysis of liquids outside commercially available, standard single-mode fibers
with polyimide coating. The polyimide layer provides mechanical protection but
can also transmit acoustic waves from the fiber cladding towards outside media.
Comprehensive analysis of opto-mechanical coupling in coated fibers that are
immersed in liquid is provided. The model shows that forward stimulated
Brillouin scattering spectra in coated fibers are more complex than those of
bare fibers, and strongly depend on the exact coating diameter and the choice
of acoustic mode. Nevertheless, sensing outside coated fibers is demonstrated
experimentally. Integrated measurements over 100 meters of fiber clearly
distinguish between air, ethanol and water outside polyimide coating. Measured
spectra are in close quantitative agreement with the analytic predictions.
Further, distributed opto-mechanical time-domain reflectometry mapping of water
and ethanol outside coated fiber is reported, with a spatial resolution of 100
meters. The results represent a large step towards practical opto-mechanical
fiber sensors
Modifying monolayer behaviour by incorporating subphase additives and improving Langmuir–Blodgett thin film deposition on optical fibres
Experiments showing the possibility of modifying the behaviour of calix[4]resorcinarene monolayers at the air–water interface and optimising the deposition of multilayer coatings onto optical fibres are presented. The nature of the subphase is fundamental to the behaviour of monolayers and their utility in coating and sensing applications. Here we show initial studies exploring the modification of the calix[4]resorcinarene monolayer–water interaction through the introduction of dipole altering alcohol additives to the aqueous subphase. We explored the effect of this modification for three small alcohols. The resulting isotherms of the materials showed a reduction in the surface pressure and area per molecule required in order for the monolayer to reach its point of collapse. Incorporation of alcohols shifted the point of collapse, leading to the application of ethanol being successful in improving the transfer of material via Langmuir–Blodgett coating onto optical fibres at lower pressures. This method may prove useful in allowing greater control over future sensor surface coatings
- …
