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Abstract: A novel approach to chemical application of long period grating 

(LPG) optical fibers was demonstrated, which were modified with a film 

nanoassembled by the alternate deposition of SiO2 nanoparticles (SiO2 NPs) 

and poly(diallyldimethyl ammonium chloride) (PDDA). Nanopores of the 

sensor film could be used for sensitive adsorption of chemical species in 

water, which induced the changes in the refractive index (RI) of the light 

propagating in the cladding mode of the optical fiber, with a concomitant 

effect on the transmission spectrum in the LPG region. The prepared fiber 

sensor was highly sensitive to the change in the RI of the surrounding 

medium and the response time was very fast within 10 s. In addition, 

chemical infusion into the film was tested using a porphyrin compound, 

tetrakis-(4-sulfophenyl)porphine (TSPP), which could be saturated within a 

few min. The lowest detectable concentration of the TSPP analyte was 10 

µM. The TSPP infusion led to the development of well-pronounced dual 

resonance bands, indicating a large increase in the optical thickness of the 

film. The RI of the film was dramatically increased from 1.200 to ca. 1.540. 
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1. Introduction 

Optical techniques have been considered as powerful tools for the development of chemical 

and biological sensors [1–3]. In particular, the combination of optical fibers and nanomaterials 

provides a prospect for the fabrication of sensors with high sensitivity and that offer specific 

response to targeted chemical species [4–6]. A long period grating (LPG) is a periodic 

modulation of the refractive index (RI) of the core of the fiber, with a period that typically lies 

within the range of 10 µm–1 mm [4]. The LPG couples the light from the forward propagating 

mode of the core to a discrete set of co-propagating cladding modes at wavelengths governed 

by the phase matching condition [7]: 

 
( ) ( )

( )
x core clad x

n nλ = − Λ   (1) 

where λ(x) represents the wavelength at which the coupling occurs to the linear polarized 

(LP0,x) mode, ncore is the effective RI of the mode propagating in the core, nclad(x) is the 

effective RI of the LP0,x cladding mode, and Λ is the period of the grating. 

The attenuation of the cladding modes results in the presence of a series of resonance 

bands in the transmission spectrum of the fiber [7], as shown in Fig. 1(b), centered at 

wavelengths that satisfy Eq. (1). A portion of the electric field of the cladding mode penetrates 

into the surrounding medium in the form of an evanescent wave and thus the effective RI of 

the cladding mode and the λ(x) of the resonance band within the optical transmission spectrum 

of the fiber will depend on physico-chemical parameters of the surrounding medium, such as 

RI, and concentration. Therefore, the central wavelength and extinction of the resonance 

bands are dependent on the period of the LPG and the thickness and refractive index of 

coatings deposited on the surface of the cladding. 

Several approaches for depositing coatings of sub-µm thickness onto the surface of LPGs 

have been examined, such as Langmuir-Blodgett (LB) [4], electrostatic self-assembly (ESA) 

[5], layer-by-layer (LbL) and dip-coating [2,3] techniques. Such surface modification has 

enabled sensitive and selective measurements, with reports of demonstrations of specific 

optical sensors for pH, humidity, and chemical and biological components [8–14]. The 

sensitivity of the LPG’s resonance bands to changes in the optical properties of the deposited 
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film is largest when the optical thickness of the coating (product of the physical thickness and 

refractive index) is of the order 300 nm [8]. The thickness of individual layers deposited by 

the LB and LbL techniques is in order of few nanometers and thus the deposition of at least 

100 layers are required, which is a time consuming process. 

LPG 

grating Input 

spectrum
Output 

spectrum

LPG 

grating Input 

spectrum
Output 

spectrum

500 600 700 800 900 1000 1100 1200

20 %

T
ra

n
s
m

is
s
io

n
 /
 %

(iii)  400 µm

Wavelength / nm

20 % (ii)  80 µm

 

(i)  100 µm

20 %

(a)  

(b)  

LPG 

grating Input 

spectrum
Output 

spectrum

LPG 

grating Input 

spectrum
Output 

spectrum

500 600 700 800 900 1000 1100 1200

20 %

T
ra

n
s
m

is
s
io

n
 /
 %

(iii)  400 µm

Wavelength / nm

20 % (ii)  80 µm

 

(i)  100 µm

20 %

(a)  

(b)  

 

Fig. 1. (a) Schematic illustration of the LPG structure and (b) transmission spectra of uncoated 

LPG fibers with different grating periods: (i) 80 µm, (ii) 100 µm, and (iii) 400 µm. 

In this work, we propose a novel approach for the efficient deposition of a functional 

coating with an optimized thickness on the surface of LPGs. The approach is based on the 

alternate deposition of silica nanoparticles (SiO2 NPs) with a diameter in the range of 40–50 

nm, using an LbL method. This allows the rapid film deposition for the required physical 

thickness [13]. The porous nature of the SiO2 NPs coating results in a low refractive index. 

Increases in the refractive index of the coating, for example in response to the condensation of 

water vapor within the coating, will result in a change in the resonance wavelengths. This has 

been exploited to demonstrate a humidity sensor [14]. An additional advantage of the use of 

the LbL deposition technique to form the mesoporous coating, in comparison with the 

conventional sol-gel technique, lies in the ability to easily control the thickness of the coating 

layer by employing different diameters of SiO2 NPs. In this paper we consider the mesoporous 

SiO2 NPs coating as a base film that may then be modified to provide the coated LPG with 

species specific responsivity. Infusion of a functional material into the mesoporous film will 

has two effects; the first is to induce an increase of the RI and hence the optical thickness of 

the deposited layer, allowing the sensing of the infused material, the second is the provision of 

a species specific sensing capability and optimization of the characteristics of the sensor by 

control of the amount of material infused. This technique also means that the choice of 

functional material is not limited to those that may be deposited by the LB, LbL or dip coating 

techniques, broadening the potential of coated LPG sensors. 
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2. LPG Characteristics 

LPGs of length 30 mm and with a period of 80, 100 and 400 µm were fabricated in a single 

mode optical fiber (Fibercore SM750) with a cut-off wavelength of 670 nm. The 

photosensitivity of the fiber was enhanced by pressurizing it in hydrogen for a period of 2 

weeks at 150 bar at room temperature. The LPGs were fabricated in a point-by-point fashion, 

illuminating the fiber by the output from a frequency-quadrupled Nd:YAG laser, operating at 

266nm. The transmission spectrum of the optical fiber was recorded by coupling the output 

from a tungsten-halogen lamp into the fiber, and by analyzing the transmitted light using a 

fiber coupled CCD spectrometer. 

The response of the resonance bands of an LPG to the deposition of a coating is 

characterized by a coating thickness at which a cladding mode becomes phase-matched to a 

mode of the waveguide formed by the coating [8]. Under these conditions, a mode transition 

occurs whereby the remaining cladding modes are reorganized to fill the gap left by the loss 

of the cladding mode. The mode transition is accompanied by a rapid change in the effective 

index of the modes. This manifests itself as a regime in which the resonance bands show a 

high sensitivity to changes in the optical properties of the deposited film [8], and clearly for 

optimum sensor performance the coating thickness should lie within this regime. 

A recent study showed that, in addition to optimizing the coating thickness, it is possible 

to enhance the sensitivity by appropriate choice of grating period [8]. This is achieved by 

selection of the grating period such that the sensor will operate at the phase matching turning 

point [15], which is observed when coupling to higher order cladding modes. This can be 

understood with reference to Fig. 2, where the phase matching curves for a number of higher 

order cladding modes are plotted. The data plotted in Fig. 2 were obtained using the LP 

approximation to calculate the dispersion of the core and cladding modes [16]. These values 

were used in Eq. (1) to calculate the resonant coupling wavelengths for each cladding mode. 

The curves here are provided to aid the explanation of the phenomenon, rather than to predict 

the actual resonant wavelengths, which is compromised by as a lack of knowledge of the 

exact fiber parameters. As indicated by the dotted line in Fig. 2, the phase matching curves 

exhibit a turning point at a given period where the coupling to a single cladding mode occurs 

at two wavelengths. As the grating period changes, the dual resonance bands move in opposite 

directions on wavelength. Similar effects can be observed from the difference (ncore-nclad) of 

the RI of the core and cladding modes, for example, due to changes in temperature or in the 

RI of films deposited onto the cladding. It has been demonstrated theoretically and 

experimentally that the central wavelength of the LPG resonance bands exhibits the highest 

sensitivity to external perturbations near their phase matching turning points [15]. 

By selecting a combination of LPG period and optical thickness such that the LPG is 

operating at the phase matching turning point within the mode transition region, mode 

transition region, it is possible to ensure optimal sensitivity [8,17], the sensitivity of the 

central wavelength of the dual resonance bands could be maximized by optimal choice of 

LPG properties (grating period and optical thickness of the deposited film). Initially, a single 

broad resonance band appears in the spectrum, when the LPG couples light to the cladding 

mode at the phase matching turning point (indicated by the dashed line in Fig. 2). 

Subsequently, the amplitude of the resonance band is enhanced by the changes in nclad; 

however, the central wavelength is fixed and this band is split into dual resonance bands with 

further changes in nclad [8,16,17]. 
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Fig. 2. (a) The relationship between the grating period and the wavelength at which coupling 

occurs to a set of symmetric cladding modes (LP0,20–LP0,25), where numbers refer to the order 

of the cladding mode, LP0x, assuming that the LPG was fabricated in an optical fiber of a cut 

off wavelength of 670 nm. (b) The influence of an increase in the surrounding refractive index, 

analogous to the deposition of a coating onto the cladding, on the phase matching curve for 

LP0,21. The surrounding refractive index is assumed to change from 1 to 1.4. The arrow 

indicates the direction of increasing refractive index. The dashed line is a guide to the eye to 

enable the reader to see the influence of different grating periods on the LPG transmission 

spectrum. 

3. Sensor fabrication 

Figure 3 shows a schematic illustration of the LbL deposition of SiO2 NPs. Firstly, the region 

of the optical fiber containing the LPG is rinsed with deionized water and immersed into 1 

wt% ethanolic KOH (ethanol/water = 3:2, v/v) for 20 min, leading to a negatively charged 

surface. The optical fiber is then sequentially immersed into an aqueous solution of positively 

charged polymer, poly(diallyldimethylammonium chloride) (PDDA, Mw: 200000–350000, 

20% w/w in H2O) and into an aqueous solution containing negatively charged SiO2 NPs 

(SNOWTEX 20L, Nissan chemical industries) for 20 min, so that an alternate layer of PDDA 

and SiO2 was deposited onto the fiber surface. The fiber is rinsed with distilled water, and 

dried by flushing with nitrogen gas after each deposition step. In the following text, films are 

expressed as (PDDA/SiO2)x, where x is the number of PDDA/SiO2 deposition cycles. 
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Fig. 3. Schematic illustration of the alternate deposition of SiO2 NPs and PDDA onto the 

surface of an LPG. The inset shows an SEM image of the cross-section of a 10-cycle 

PDDA/SiO2 film. 

4. Results and discussion 

4.1 Deposition of SiO2 NPs 

The inset in Fig. 3 shows the cross-section of a 10-cycle PDDA/SiO2 ((PDDA/SiO2)10) film 

deposited onto an optical fiber and demonstrates that a uniform and highly porous film with a 

well-controlled thickness was deposited on the LPG. The porosity of the deposited film was 

measured using a Sorptomatic 1990 (Thermo Scientific) instrument operating on the static 

volumetric principle, due to porosity characterization via gas adsorption. The pore size 

distribution of the PDDA/SiO2 film indicates a well developed mesoporous structure with a 

mean pore radius of 12.5 nm and specific surface area of 50 m
2
 g

−1
 [Figs. 4(a) and 4(b)]. In 

order to determine the thickness and RI of the PDDA/SiO2 layer, a 1-cycle film was also 

assembled, using the same process as described for the LPG, on an activated quartz substrate 

and characterized using a SopraGES5 ellipsometer (Tarn Electronics SARL, France). The 

thickness and RI of the 1 layer-thick film were estimated to be 46 ± 3 nm and 1.2000 (at a 

wavelength of 633 nm), respectively. The measured RI is in good agreement with a previously 

reported result [18]. When the coating deposited onto the quartz substrate was viewed under 

the SEM and compared with the coating deposited on the LPG, there were no apparent 

differences in the morphology. 
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Fig. 4. (a) Adsorption isotherm of the PDDA/SiO2 film: squares, adsorption part of the 

adsorption isotherm; circles, desorption part of the adsorption isotherm. (b) Pore size 

distribution in the PDDA/SiO2 film. 
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Fig. 5. (a) Changes in the transmission spectrum of the 100 µm period LPG of SiO2 NPs and 

PDDA (each spectrum was recorded in the colloidal SiO2 solution in water) and (b) wavelength 

shifts and changes in transmission as a function of the number of deposition cycles for the 

LP0,20 and LP0,21 resonance bands, respectively; the curve is a guide to the eye only. 

Figure 5(a) shows the changes in the transmission spectrum of the 100 µm period LPG due 

to the alternate deposition of SiO2 NPs and PDDA. The spectra were recorded with the LPG 

immersed in the silica colloidal solution. The resonance feature at 640 nm (corresponding to 

the coupling from the core mode to the LP0,20 cladding mode) exhibited a small blue 

wavelength shift of ca. 8 nm with increasing the film thickness [see the inset in Fig. 5(a)]. The 

same deposition of the (PDDA/SiO2)10 film was conducted on LPGs with 80 and 400 µm 

periods and similar effects, the shifts of the resonance features, in each case was observed 

(Fig. 6 and 7, respectively). The wavelength shifts of the resonance band for LPGs with 80 

and 400 µm periods induced by the film deposition were 12 nm and 5.5 nm, respectively  

[Fig. 6(b) and 7(b)]. 
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Fig. 6. (a) Changes in the transmission spectrum due to the alternate deposition of PDDA and 

SiO2 NPs on the 80 µm period LPG recorded in the colloidal SiO2 solution; the inset shows 

enlarged view of the resonance band at 626 nm. (b) Wavelength shifts of the three resonance 

bands at 608, 726, and 926 nm. 
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Fig. 7. (a) Changes in the transmission spectrum due to the alternate deposition of PDDA and 

SiO2 NPs on the 400 µm period LPG, recorded in the colloidal SiO2 solution; the inset shows 

an enlarged view of the resonance band at 798 nm. (b) Wavelength shifts at 798 nm. 

On the other hand, the 100 µm period LPG has an additional resonance band centered at 

800 nm. The development of the resonance band at around 800 nm, corresponding to the 

coupling to the LP0,21 mode, is a result of the change in the nclad induced by the presence of the 

deposited layer, which makes coupling to this cladding mode at the phase matching turning 

point possible. Before film deposition, there is no band in the wavelength range at around 800 

nm. As the number of the deposition cycles increases, the resonance band becomes more 

pronounced. However, because of the low RI (ca. 1.200) of the deposited SiO2 NP layer, this 

resonance feature is not well developed for this film thickness. As previous studies have 

indicated the benefits of operating at the phase matching turning point [8,17], the 

demonstration of the sensing principles of the LPGs coated with mesoporous films infused 

with functional materials were carried out using the 100 µm period LPG. 

4.2 Effect of the coating on the LPG transmission spectrum 

When the uncoated 100 µm period LPG was immersed into water (RI = 1.323), a blue shift of 

the LP0,20 resonance band of 3 nm is observed. However, the sensitivity of the LP0,20 

resonance band was much improved by the coating with a (PDDA/SiO2)10 film, showing a 

blue shift of 7 nm when the LPG was immersed in water, along with the appearance of the 

resonance band corresponding to coupling to the LP0,21 cladding mode at the phase matching 

turning point [Fig. 8(a)]. This indicates an increase in sensitivity of the LPG to the 

surrounding RI, being of interest when measuring the RI of low concentration aqueous 
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solutions, and has been observed previously for LPGs coated using the LB technique [19]. 

The response to the RI changes is fast (< 2 s, measurement limited by the integration time for 

the CCD spectrometer) and stable, as indicated by the response of the transmitted power at the 

centre of the LP0,21 resonance band to repeated immersions in water [Fig. 8(b)]. 
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Fig. 8. (Media 1) (a) Transmission spectra of the 100 µm LPG fiber under different conditions: 

black line, in air without coating; red line, in water without coating; green line, in water after 

deposition of the (PDDA/SiO2)10 film. (b) Kinetic changes of the transmission spectrum of the 

SiO2 NP coated LPG fiber measured at 800 nm in different phases from air to water. 

4.3 Chemical infusion into the mesoporous SiO2 NP film 

The resonance bands (LP0,20 and LP0,21) could be used for the detection of chemical 

components that can be bound through an electrostatic interaction with the cationic groups of 

PDDA in the mesopores of the film. Figure 9(a) shows the transmission spectra recorded 

when the (PDDA/SiO2)10 film coated LPG was immersed in a solution of tetrakis-(4-

sulfophenyl)porphine (TSPP, 1 mM in water). As the TSPP is infused into the film, the RI of 

the film increases (from 1.200 to ca. 1.540, measured using ellipsometry) and the phase 

matching condition for coupling to LP0,21 is satisfied. A broad single attenuation band 

develops rapidly (within 60 s from the start of the infusion process) and then splits in two 

bands. This is consistent with previous observations of the response of the LPG resonance 

bands to increases in coating thickness at constant RI, but here is seen for changes in 

refractive index at constant thickness. The time required to complete the binding between the 

TSPP and PDDA moieties is less than 600 s [Fig. 9(b)]. It should be noted that transmission 

spectra in Fig. 9(a) corresponds to the time elapsed from the start of the TSPP infusion 

process rather than from the time at which the monitoring of the spectrum commenced. The 

observed response indicates a large increase in the optical thickness of the film, which is a 

result of the increase in the RI of the film that occurs, as the TSPP infuses into the 

mesoporous structure and is adsorbed to the PDDA moiety between the SiO2 NPs. 

The evolution of the transmission spectrum of the SiO2 NPs coated LPG when immersed 

in the TSPP solution is shown in the grey scale plot shown in Fig. 10, where the transmission 

is represented by white and black, corresponding to 100% and 0%, respectively. The dark line 

at around 635 nm, which originates at a wavelength of 640 nm in the uncoated LPG, 

represents the resonance band that corresponds to the first order coupling to the LP0,20 

cladding mode. 
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Fig. 9. (a) Transmission spectra of the SiO2 NP coated LPG and (b) the dynamic transmission 

change recorded at 800 nm when the SiO2 NP coated LPG was immersed in a TSPP solution (1 

mM in water). 

 

Fig. 10. The evolution of the transmission spectrum of the SiO2 NP coated LPG (period 100 

µm), when immersed in an aqueous solution of TSPP (1 mM). The grey scale represents the 

measured transmission, with white corresponding to 100%, and black to 0%. 

In order to assess the sensitivity of the optical device, the (PDDA/SiO2)10 coated LPG was 

exposed to different concentrations of TSPP, and the results are shown in Figs. 11(a) and 

11(b). The increase of the TSPP concentration from 10 to 1000 µM results in a decrease of the 

transmission measured at 800 nm, corresponding to the development of the LP0,21 cladding 

mode resonance. This is also accompanied by a blue shift of the LP0,20 resonance band, 

indicating the increase of the RI of the film. The response time of the sensor is observed to be 

slower at lower TSPP concentrations. For 1 mM TSPP, the increase in transmission at 800 nm 

shown in Fig. 11(b) is attributed to the splitting of the fully developed LP0,21 cladding mode 

resonance into dual resonance bands. Additionally, the infusion process can be observed in the 

multimedia file (Media 1). 

The ability to reuse the device was tested by removing the infused TSPP molecules from 

the film using an ammonia solution (ca. 1000 ppm). The spectrum reverted to that observed 

for the (PDDA/SiO2)10 coated LPG before TSPP infusion. Subsequent immersion of the 

(PDDA/SiO2)10 LPG into the TSPP solutions showed that the performance was repeatable, as 

shown in Fig. 11(c). Note that this could also be used as a means for detecting ammonia, with 

the TSPP acting as the functional material. 
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Fig. 11. (a) Transmission spectra of the (PDDA/SiO2)10 coated LPG; (b) transmission change 

recorded at 800 nm in response to different concentrations of TSPP (from 10 µM to 1 mM in 

water) and (c) dynamic response to the three infusions of TSPP into the PDDA/SiO2 porous 

film recorded at 800 nm; the infusion was conducted after complete removal of TSPP from the 

PDDA/SiO2 using NH3 of 1000 ppm. 

5. Conclusions 

To date there have been a number of reports of chemical sensing based upon thin film 

coatings deposited onto LPGs. The approach adopted here, where mesoporous films were 

built from SiO2 NPs, allows more rapid deposition of a base coating of required physical 

thickness. The mesoporous films were subsequently used for chemical adsorption, either of 

materials to be sensed, or of functional materials to facilitate sensing, potentially extending 

the functionality of this class of sensor. The results demonstrate the ability to use this 

approach to obtain quantitative measurements for the detection of organic compounds that can 

be infused into the porous film and that change the RI of the film. There is the potential for 

highly selective measurements by choosing the appropriate functional compound for infusion 

into the porous film preparation to interact specifically with the chemical analyte. The porous 

nature of the film may also allow the development of sensors with more rapid response time, 

and the analyte may penetrate deeper into the coating, even for small concentrations. The 

approach also offers different approach to providing optimal sensitivity, whereby to ensure 

that the LPG sensor operates with optimal sensitivity, i.e. at the phase matching turning point, 

the LPG period and the infusion time and concentration of the functional material may be 

controlled. This effect will be further explored for optical sensing of a variety of important 

chemical and biological compounds. 

The TSPP compound used in this work is able to function as a sensitive element because 

of its extraordinary optical properties. In general, optical properties of porphyrins can be 

varied by metallation of the pyrrole ring, which in turn will lead to a higher sensitivity and 

selectivity to a wider class of chemical compounds [20]. Recently, we have used TSPP with a 
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cationic polymer for ammonia sensing [21,22] and the operation of the proposed device was 

based on the optical change due to the deprotonation from the J-aggregated TSPP to 

ammonia. 
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