44 research outputs found

    System f2lp – computing answer sets of first-order formulas

    Get PDF
    Abstract. We present an implementation of the general language of stable models proposed by Ferraris, Lee and Lifschitz. Under certain conditions, system f2lp turns a first-order theory under the stable model semantics into an answer set program, so that existing answer set solvers can be used for computing the general language. Quantifiers are first eliminated and then the resulting quantifier-free formulas are turned into rules. Based on the relationship between stable models and circumscription, f2lp can also serve as a reasoning engine for general circumscriptive theories. We illustrate how to use f2lp to compute the circumscriptive event calculus.

    Reasoning about Action: An Argumentation - Theoretic Approach

    Full text link
    We present a uniform non-monotonic solution to the problems of reasoning about action on the basis of an argumentation-theoretic approach. Our theory is provably correct relative to a sensible minimisation policy introduced on top of a temporal propositional logic. Sophisticated problem domains can be formalised in our framework. As much attention of researchers in the field has been paid to the traditional and basic problems in reasoning about actions such as the frame, the qualification and the ramification problems, approaches to these problems within our formalisation lie at heart of the expositions presented in this paper

    Modelling causal reasoning

    Get PDF
    PhDAlthough human causal reasoning is widely acknowledged as an object of scientific enquiry, there is little consensus on an appropriate measure of progress. Up-to-date evidence of the standard method of research in the field shows that this method has been rejected at the birth of modern science. We describe an instance of the standard scientific method for modelling causal reasoning (causal calculators). The method allows for uniform proofs of three relevant computational properties: correctness of the model with respect to the intended model, full abstraction of the model (function) with respect to the equivalence of reasoning scenarios (input), and formal relations of equivalence and subsumption between models. The method extends and exploits the systematic paradigm [Handbook of Logic in Artificial Intelligence and Logic Programming, volume IV, p. 439-498, Oxford 1995] to fit with our interpretation of it. Using the described method, we present results for some major models, with an updated summary spanning seventy-two years of research in the field

    Indexing the Event Calculus with Kd-trees to Monitor Diabetes

    Get PDF
    Personal Health Systems (PHS) are mobile solutions tailored to monitoring patients affected by chronic non communicable diseases. A patient affected by a chronic disease can generate large amounts of events. Type 1 Diabetic patients generate several glucose events per day, ranging from at least 6 events per day (under normal monitoring) to 288 per day when wearing a continuous glucose monitor (CGM) that samples the blood every 5 minutes for several days. This is a large number of events to monitor for medical doctors, in particular when considering that they may have to take decisions concerning adjusting the treatment, which may impact the life of the patients for a long time. Given the need to analyse such a large stream of data, doctors need a simple approach towards physiological time series that allows them to promptly transfer their knowledge into queries to identify interesting patterns in the data. Achieving this with current technology is not an easy task, as on one hand it cannot be expected that medical doctors have the technical knowledge to query databases and on the other hand these time series include thousands of events, which requires to re-think the way data is indexed. In order to tackle the knowledge representation and efficiency problem, this contribution presents the kd-tree cached event calculus (\ceckd) an event calculus extension for knowledge engineering of temporal rules capable to handle many thousands events produced by a diabetic patient. \ceckd\ is built as a support to a graphical interface to represent monitoring rules for diabetes type 1. In addition, the paper evaluates the \ceckd\ with respect to the cached event calculus (CEC) to show how indexing events using kd-trees improves scalability with respect to the current state of the art.Comment: 24 pages, preliminary results calculated on an implementation of CECKD, precursor to Journal paper being submitted in 2017, with further indexing and results possibilities, put here for reference and chronological purposes to remember how the idea evolve

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    On specifying database updates

    Get PDF
    AbstractWe address the problem of formalizing the evolution of a database under the effect of an arbitrary sequence of update transactions. We do so by appealing to a first-order representation language called the situation calculus, which is a standard approach in artificial intelligence to the formalization of planning problems. We formalize database transactions in exactly the same way as actions in the artificial intelligence planning domain. This leads to a database version of the frame problem in artificial intelligence. We provide a solution to the frame problem for a special, but substantial, class of update transactions. Using the axioms corresponding to this solution, we provide procedures for determining whether a given sequence of update transactions is legal, and for query evaluation in an updated database. These procedures have the desirable property that they appeal to theorem-proving only with respect to the initial database state.We next address the problem of proving properties true in all states of the database. It turns out that mathematical induction is required for this task, and we formulate a number of suitable induction principles. Among those properties of database states that we wish to prove are the standard database notions of static and dynamic integrity constraints. In our setting, these emerge as inductive entailments of the database.Finally, we discuss various possible extensions of the approach of this paper, including transaction logs and historical queries, the complexity of query evaluation, actualized transactions, logic programming approaches to updates, database views, and state constraints
    corecore