373 research outputs found

    Characterizing the Delaunay decompositions of compact hyperbolic surfaces

    Full text link
    Given a Delaunay decomposition of a compact hyperbolic surface, one may record the topological data of the decomposition, together with the intersection angles between the `empty disks' circumscribing the regions of the decomposition. The main result of this paper is a characterization of when a given topological decomposition and angle assignment can be realized as the data of an actual Delaunay decomposition of a hyperbolic surface.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol6/paper12.abs.htm

    On Chaotic Dynamics in Rational Polygonal Billiards

    Full text link
    We discuss the interplay between the piece-line regular and vertex-angle singular boundary effects, related to integrability and chaotic features in rational polygonal billiards. The approach to controversial issue of regular and irregular motion in polygons is taken within the alternative deterministic and stochastic frameworks. The analysis is developed in terms of the billiard-wall collision distribution and the particle survival probability, simulated in closed and weakly open polygons, respectively. In the multi-vertex polygons, the late-time wall-collision events result in the circular-like regular periodic trajectories (sliding orbits), which, in the open billiard case are likely transformed into the surviving collective excitations (vortices). Having no topological analogy with the regular orbits in the geometrically corresponding circular billiard, sliding orbits and vortices are well distinguished in the weakly open polygons via the universal and non-universal relaxation dynamics.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    The Caterpillar Gallery: Quadric Surface Theorems, Parametric Design and Digital Fabrication

    Get PDF
    The use of certain quadratic surface theorems has mainly been associated in architecture with the design of classical vaults, domes and piping. The work presented by the authors is intended to explore the potential of these theorems to be used in the generation law for more complex shapes in contemporary architecture. The paper shows the case study of a built full-scale prototype, The Caterpillar gallery, a project stemming from the combination of geometric research and teaching innovation. Formal and structural experimentation take place in this project where, by starting from geometrical considerations, an efficient way of generating longitudinal spaces is proposed. One of the mentioned theorems applied to rotational cones provides the starting point for the generation of a set of concatenated surfaces that, once assembled, constitute a very stable self-supporting structure with a variety of possible applications

    Slow relaxation in weakly open vertex-splitting rational polygons

    Get PDF
    The problem of splitting effects by vertex angles is discussed for nonintegrable rational polygonal billiards. A statistical analysis of the decay dynamics in weakly open polygons is given through the orbit survival probability. Two distinct channels for the late-time relaxation of type 1/t^delta are established. The primary channel, associated with the universal relaxation of ''regular'' orbits, with delta = 1, is common for both the closed and open, chaotic and nonchaotic billiards. The secondary relaxation channel, with delta > 1, is originated from ''irregular'' orbits and is due to the rationality of vertices.Comment: Key words: Dynamics of systems of particles, control of chaos, channels of relaxation. 21 pages, 4 figure

    A stiffness-based quality measure for compliant grasps and fixtures

    Get PDF
    This paper presents a systematic approach to quantifying the effectiveness of compliant grasps and fixtures of an object. The approach is physically motivated and applies to the grasping of two- and three-dimensional objects by any number of fingers. The approach is based on a characterization of the frame-invariant features of a grasp or fixture stiffness matrix. In particular, we define a set of frame-invariant characteristic stiffness parameters, and provide physical and geometric interpretation for these parameters. Using a physically meaningful scheme to make the rotational and translational stiffness parameters comparable, we define a frame-invariant quality measure, which we call the stiffness quality measure. An example of a frictional grasp illustrates the effectiveness of the quality measure. We then consider the optimal grasping of frictionless polygonal objects by three and four fingers. Such frictionless grasps are useful in high-load fixturing applications, and their relative simplicity allows an efficient computation of the globally optimal finger arrangement. We compute the optimal finger arrangement in several examples, and use these examples to discuss properties that characterize the stiffness quality measure

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented

    Hyperelliptic Jacobians as Billiard Algebra of Pencils of Quadrics: Beyond Poncelet Porisms

    Get PDF
    The thirty years old programme of Griffiths and Harris of understanding higher-dimensional analogues of Poncelet-type problems and synthetic approach to higher genera addition theorems has been settled and completed in this paper. Starting with the observation of the billiard nature of some classical constructions and configurations, we construct the billiard algebra, that is a group structure on the set T of lines in RdR^d simultaneously tangent to d-1 quadrics from a given confocal family. Using this tool, the related results of Reid, Donagi and Knoerrer are further developed, realized and simplified. We derive a fundamental property of T: any two lines from this set can be obtained from each other by at most d-1 billiard reflections at some quadrics from the confocal family. We introduce two hierarchies of notions: s-skew lines in T and s-weak Poncelet trajectories, s = -1,0,...,d-2. The interrelations between billiard dynamics, linear subspaces of intersections of quadrics and hyperelliptic Jacobians developed in this paper enabled us to obtain higher-dimensional and higher-genera generalizations of several classical genus 1 results: the Cayley's theorem, the Weyr's theorem, the Griffiths-Harris theorem and the Darboux theorem.Comment: 36 pages, 11 figures; to be published in Advances in Mathematic

    Relative Convex Hull Determination from Convex Hulls in the Plane

    Full text link
    A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.Comment: 15 pages, 4 figures, Conference paper published. We corrected two typing errors in Definition 2: ISI_S has to be defined based on OSO_S, and IEI_E has to be defined based on OEO_E (not just using OO). These errors appeared in the text of the original conference paper, which also contained the pseudocode of an algorithm where ISI_S and IEI_E appeared as correctly define
    corecore