9,627 research outputs found

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Spatial epidemiology of a highly transmissible disease in urban neighbourhoods: Using COVID-19 outbreaks in Toronto as a case study

    Get PDF
    The emergence of infectious diseases in an urban area involves a complex interaction between the socioecological processes in the neighbourhood and urbanization. As a result, such an urban environment can be the incubator of new epidemics and spread diseases more rapidly in densely populated areas than elsewhere. Most recently, the Coronavirus-19 (COVID-19) pandemic has brought unprecedented challenges around the world. Toronto, the capital city of Ontario, Canada, has been severely impacted by COVID-19. Understanding the spatiotemporal patterns and the key drivers of such patterns is imperative for designing and implementing an effective public health program to control the spread of the pandemic. This dissertation was designed to contribute to the global research effort on the COVID-19 pandemic by conducting spatial epidemiological studies to enhance our understanding of the disease's epidemiology in a spatial context to guide enhancing the public health strategies in controlling the disease. Comprised of three original research manuscripts, this dissertation focuses on the spatial epidemiology of COVID-19 at a neighbourhood scale in Toronto. Each manuscript makes scientific contributions and enhances our knowledge of how interactions between different socioecological processes in the neighbourhood and urbanization can influence spatial spread and patterns of COVID-19 in Toronto with the application of novel and advanced methodological approaches. The findings of the outcomes of the analyses are intended to contribute to the public health policy that informs neighbourhood-based disease intervention initiatives by the public health authorities, local government, and policymakers. The first manuscript analyzes the globally and locally variable socioeconomic drivers of COVID-19 incidence and examines how these relationships vary across different neighbourhoods. In the global model, lower levels of education and the percentage of immigrants were found to have a positive association with increased risk for COVID-19. This study provides the methodological framework for identifying the local variations in the association between risk for COVID-19 and socioeconomic factors in an urban environment by applying a local multiscale geographically weighted regression (MGWR) modelling approach. The MGWR model is an improvement over the methods used in earlier studies of COVID-19 in identifying local variations of COVID-19 by incorporating a correction factor for the multiple testing problem in the geographically weighted regression models. The second manuscript quantifies the associations between COVID-19 cases and urban socioeconomic and land surface temperature (LST) at the neighbourhood scale in Toronto. Four spatiotemporal Bayesian hierarchical models with spatial, temporal, and varying space-time interaction terms are compared. The results of this study identified the seasonal trends of COVID-19 risk, where the spatiotemporal trends show increasing, decreasing, or stable patterns, and identified area-specific spatial risk for targeted interventions. Educational level and high land surface temperature are shown to have a positive association with the risk for COVID-19. In this study, high spatial and temporal resolution satellite images were used to extract LST, and atmospheric corrections methods were applied to these images by adopting a land surface emissivity (LSE) model, which provided a high estimation accuracy. The methodological approach of this work will help researchers understand how to acquire long time-series data of LST at a spatial scale from satellite images, develop methodological approaches for atmospheric correction and create the environmental data with a high estimation accuracy to fit into modelling disease. Applying to policy, the findings of this study can inform the design and implementation of urban planning strategies and programs to control disease risks. The third manuscript developed a novel approach for visualization of the spread of infectious disease outbreaks by incorporating neighbourhood networks and the time-series data of the disease at the neighbourhood level. The findings of the model provide an understanding of the direction and magnitude of spatial risk for the outbreak and guide for the importance of early intervention in order to stop the spread of the outbreak. The manuscript also identified hotspots using incidence rate and disease persistence, the findings of which may inform public health planners to develop priority-based intervention plans in a resource constraint situation

    Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications

    Get PDF
    This book covers a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration

    Robust estimation in exponential families: from theory to practice

    Get PDF

    Feeding ecology of broadbill swordfish (Xiphias gladius) in the California current

    Get PDF
    Funding: Support for our study includes salary funding from the NOAA Fisheries’ Office of Science and Technology and contract funds from the Cooperative Institute for Marine, Earth, and Atmospheric Systems. The National Observer Program within NOAA Fisheries’ Office of Science and Technology carried out sample collection. While the study fits the scope of work under the coauthors’ performance plans, they received no specific funding for this work. The funders had no role in study design, analysis, decision to publish, or preparation of the manuscript. Acknowledgments This work would not have been possible without the assistance and samples provided by the NMFS Southwest Region Fishery Observer Program and the participating drift gillnet fishermen. We thank several assistant volunteers who helped process the stomach samples. Alexandra Stohs provided research assistance. Mark Lowry, Eric Hochberg and John Hyde helped identify some prey specimens. John Field, Chugey Sepulveda and Scott Aalbers offered science feedback. Barbara Muhling helped create the map. Kristen Koch, Annie Yau, Brad Erisman, Heidi Dewar, Stephanie Flores, Crystal Dombrow, Elan Portner and Ruben Bergtraun provided useful comments on the draft. Debra Losey assisted with library research. We also thank Hiroshi Ohizumi and two anonymous reviewers for their careful critiques that helped improve the manuscript.Peer reviewedPublisher PD

    Accretion spin-up and a strong magnetic field in the slow-spinning Be X-ray binary MAXI J0655-013

    Full text link
    We present MAXI and NuSTAR observations of the Be X-ray binary, MAXI J0655-013, in outburst. NuSTAR observed the source once early in the outburst, when spectral analysis yields a bolometric (0.1--100 keV), unabsorbed source luminosity of Lbol=5.6×1036ergs1L_{\mathrm{bol}}=5.6\times10^{36}\mathrm{erg\,s^{-1}}, and a second time 54 days later, by which time the luminosity dropped to Lbol=4×1034ergs1L_{\mathrm{bol}}=4\times10^{34}\,\mathrm{erg\,s^{-1}} after first undergoing a dramatic increase. Timing analysis of the NuSTAR data reveals a neutron star spin period of 1129.09±0.041129.09\pm0.04 s during the first observation, which decreased to 1085±11085\pm1 s by the time of the second observation, indicating spin-up due to accretion throughout the outburst. Furthermore, during the first NuSTAR observation, we observed quasiperiodic oscillations with centroid frequency ν0=89±1\nu_0=89\pm1 mHz, which exhibited a second harmonic feature. By combining the MAXI and NuSTAR data with pulse period measurements reported by Fermi/GBM, we are able to show that apparent flaring behavior in the MAXI light-curve is an artifact introduced by uneven sampling of the pulse profile, which has a large pulsed fraction. Finally, we estimate the magnetic field strength at the neutron star surface via three independent methods, invoking a tentative cyclotron resonance scattering feature at 4444 keV, QPO production at the inner edge of the accretion disk, and spin-up via interaction of the neutron star magnetic field with accreting material. Each of these result in a significantly different value. We discuss the strengths and weaknesses of each method and infer that MAXI J0655-013 is likely to have a high surface magnetic field strength, Bs>1013B_{s}>10^{13} G.Comment: 19 pages, 10 figure, 4 tables; submitted to ApJ on May 24, 202

    Slitless spectrophotometry with forward modelling: principles and application to atmospheric transmission measurement

    Full text link
    In the next decade, many optical surveys will aim to tackle the question of dark energy nature, measuring its equation of state parameter at the permil level. This requires trusting the photometric calibration of the survey with a precision never reached so far, controlling many sources of systematic uncertainties. The measurement of the on-site atmospheric transmission for each exposure, or on average for each season or for the full survey, can help reach the permil precision for magnitudes. This work aims at proving the ability to use slitless spectroscopy for standard star spectrophotometry and its use to monitor on-site atmospheric transmission as needed, for example, by the Vera C. Rubin Observatory Legacy Survey of Space and Time supernova cosmology program. We fully deal with the case of a disperser in the filter wheel, which is the configuration chosen in the Rubin Auxiliary Telescope. The theoretical basis of slitless spectrophotometry is at the heart of our forward model approach to extract spectroscopic information from slitless data. We developed a publicly available software called Spectractor (https://github.com/LSSTDESC/Spectractor) that implements each ingredient of the model and finally performs a fit of a spectrogram model directly on image data to get the spectrum. We show on simulations that our model allows us to understand the structure of spectrophotometric exposures. We also demonstrate its use on real data, solving specific issues and illustrating how our procedure allows the improvement of the model describing the data. Finally, we discuss how this approach can be used to directly extract atmospheric transmission parameters from data and thus provide the base for on-site atmosphere monitoring. We show the efficiency of the procedure on simulations and test it on the limited data set available.Comment: 30 pages, 36 figures, submitted to Astronomy and Astrophysic

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Geoarchaeological Investigations of Late Pleistocene Physical Environments and Impacts of Prehistoric Foragers on the Ecosystem in Northern Malawi and Austria

    Get PDF
    A growing body of research shows that not only did environmental changes play an important role in human evolution, but humans in turn have impacted ecosystems and landscape evolution since the Late Pleistocene. This thesis presents collaborative work on Late Pleistocene open-air sites in the Karonga District of northern Malawi, in which new aspects of forager behavior came to light through the reconstruction of physical environments. My work has helped recognize that late Middle Stone Age (MSA) activity and tool production occurred in locally more open riparian environments within evergreen gallery forest, surrounded by a regional vegetation dominated by miombo woodlands and savanna. Additionally, MSA hunter-gatherers exploited the confluence of river and wetland areas along the shores of Lake Malawi, which likely served as important corridors for the dispersal of biota. By comparing data from the archaeological investigations with lake core records, we were able to identify effects of anthropogenic burning on vegetation structures and sedimentation in the region as early as 80 thousand years ago. These findings not only proved it possible to uncover early impacts of human activity on the ecosystem, but also emphasize the importance of fire in the lives of early foragers. Publications contained within this dissertation: A. Wright, D.K., Thompson, J.C., Schilt, F.C., Cohen, A., Choi, J-H., Mercader, J., Nightingale, S., Miller, C.E., Mentzer, S.M., Walde, D., Welling, M., and Gomani-Chindebvu, E. “Approaches to Middle Stone Age landscape archaeology in tropical Africa”. Special issue Geoarchaeology of the Tropics of Journal of Archaeological Science 77:64-77. http://dx.doi.org/10.1016/j.jas.2016.01.014 B. Schilt, F.C., Verpoorte, A., Antl, W. “Micromorphology of an Upper Paleolithic cultural layer at Grub-Kranawetberg, Austria”. Journal of Archaeological Science: Reports 14:152-162. http://dx.doi.org/10.1016/j.jasrep.2017.05.041 C. Nightingale, S., Schilt, F.C., Thompson, J.C., Wright, D.K., Forman, S., Mercader, J., Moss, P., Clarke, S. Itambu, M., Gomani-Chindebvu, E., Welling, M. Late Middle Stone Age Behavior and Environments at Chaminade I (Karonga, Malawi). Journal of Paleolithic Archaeology 2-3:258-397. https://doi.org/10.1007/s41982-019-00035-3 D. Thompson, J.C.*, Wright, D.K.*, Ivory, S.J.*, Choi, J-H., Nightingale, S., Mackay, A., Schilt, F.C., Otárola-Castillo, E., Mercader, J., Forman, S.L., Pietsch, T., Cohen, A.S., Arrowsmith, J.R., Welling, M., Davis, J., Schiery, B., Kaliba, P., Malijani, O., Blome, M.W., O’Driscoll, C., Mentzer, S.M., Miller, C., Heo, S., Choi, J., Tembo, J., Mapemba, F., Simengwa, D., and Gomani-Chindebvu, E. “Early human impacts and ecosystem reorganization in southern-central Africa”. Science Advances 7(19): eabf9776. *equal contribution https://doi.org/10.1126/sciadv.abf9776 E. Schilt, F.C., Miller, C.M., Wright, D.K., Mentzer, S.M., Mercader, J., Moss, Choi, J.-H., Siljedal, G., Clarke, S., Mwambwiga, A., Thomas, K., Barbieri, A., Kaliba, P., Gomani-Chindebvu, E., Thompson, J.C. “Hunter-gatherer environments at the Late Pleistocene sites of Bruce and Mwanganda´s Village, northern Malawi”. Quaternary Science Reviews 292: 107638. https://www.sciencedirect.com/science/article/pii/S0277379122002694 [untranslated
    corecore