20 research outputs found

    Circular chosen-ciphertext security with compact ciphertexts

    Get PDF
    A key-dependent message (KDM) secure encryption scheme is secure even if an adversary obtains encryptions of messages that depend on the secret key. Such key-dependent encryptions naturally occur in scenarios such as harddisk encryption, formal cryptography, or in specific protocols. However, there are not many provably secure constructions of KDM-secure encryption schemes. Moreover, only one construction, due to Camenisch, Chandran, and Shoup (Eurocrypt 2009) is known to be secure against active (i.e., CCA) attacks. In this work, we construct the first public-key encryption scheme that is KDM-secure against active adversaries and has compact ciphertexts. As usual, we allow only circular key dependencies, meaning that encryptions of arbitrary *entire* secret keys under arbitrary public keys are considered in a multi-user setting. Technically, we follow the approach of Boneh, Halevi, Hamburg, and Ostrovsky (Crypto 2008) to KDM security, which however only achieves security against passive adversaries. We explain an inherent problem in adapting their techniques to active security, and resolve this problem using a new technical tool called ``lossy algebraic filters\u27\u27 (LAFs). We stress that we significantly deviate from the approach of Camenisch, Chandran, and Shoup to obtain KDM security against active adversaries. This allows us to develop a scheme with compact ciphertexts that consist only of a constant number of group elements

    Note on the RKA security of Continuously Non-Malleable Key-Derivation Function from PKC 2015

    Get PDF
    Qin, Liu, Yuen, Deng, and Chen (PKC 2015) gave a new security notion of key-derivation function (KDF), continuous non-malleability with respect to Φ\Phi-related-key attacks (Φ\Phi-CNM), and its application to RKA-secure public-key cryptographic primitives. They constructed a KDF from cryptographic primitives and showed that the obtained KDF is Φhoe&iocr\Phi_{hoe\&iocr}-CNM, where Φhoe&iocr\Phi_{hoe\&iocr} contains the identity function, the constant functions, and functions that have high output-entropy (HOE) and input-output collision-resistance (IOCR) simultaneously. This short note disproves the security of their KDF by giving Φhoe&iocr\Phi_{hoe\&iocr}-RKAs by exploiting the components of their KDF. We note that their proof is still correct for Φ\Phi-CNM for a subset of Φhoe&iocr\Phi_{hoe\&iocr}; for example the KDF satisfies Φpoly(d)\Phi_{poly(d)}-CNM, in which an adversary can tamper with a secret by using polynomials of degree at most dd

    Naor-Yung paradigm with shared randomness and applications

    Get PDF
    The Naor-Yung paradigm (Naor and Yung, STOC’90) allows to generically boost security under chosen-plaintext attacks (CPA) to security against chosen-ciphertext attacks (CCA) for public-key encryption (PKE) schemes. The main idea is to encrypt the plaintext twice (under independent public keys), and to append a non-interactive zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt the same message. Later work by Camenisch, Chandran, and Shoup (Eurocrypt’09) and Naor and Segev (Crypto’09 and SIAM J. Comput.’12) established that the very same techniques can also be used in the settings of key-dependent message (KDM) and key-leakage attacks (respectively). In this paper we study the conditions under which the two ciphertexts in the Naor-Yung construction can share the same random coins. We find that this is possible, provided that the underlying PKE scheme meets an additional simple property. The motivation for re-using the same random coins is that this allows to design much more efficient NIZK proofs. We showcase such an improvement in the random oracle model, under standard complexity assumptions including Decisional Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of the resulting ciphertexts is reduced by 50%, yielding truly efficient PKE schemes achieving CCA security under KDM and key-leakage attacks. As an additional contribution, we design the first PKE scheme whose CPA security under KDM attacks can be directly reduced to (low-density instances of) the Subset Sum assumption. The scheme supports keydependent messages computed via any affine function of the secret ke

    Leakage-Flexible CCA-secure Public-Key Encryption: Simple Construction and Free of Pairing

    Get PDF
    In AsiaCrypt~2013, Qin and Liu proposed a new approach to CCA-security of Public-Key Encryption (PKE) in the presence of bounded key-leakage, from any universal hash proof system (due to Cramer and Shoup) and any one-time lossy filter (a simplified version of lossy algebraic filters, due to Hofheinz). They presented two instantiations under the DDH and DCR assumptions, which result in leakage rate (defined as the ratio of leakage amount to the secret-key length) of 1/2o(1)1/2-o(1). In this paper, we extend their work to broader assumptions and to flexible leakage rate, more specifically to leakage rate of 1o(1)1-o(1). \begin{itemize} \item We introduce the Refined Subgroup Indistinguishability (RSI) assumption, which is a subclass of subgroup indistinguishability assumptions, including many standard number-theoretical assumptions, like the quadratic residuosity assumption, the decisional composite residuosity assumption and the subgroup decision assumption over a group of known order defined by Boneh et al. \item We show that universal hash proof (UHP) system and one-time lossy filter (OT-LF) can be simply and efficiently constructed from the RSI assumption. Applying Qin and Liu\u27s paradigm gives simple and efficient PKE schemes under the RSI assumption. \item With the RSI assumption over a specific group (free of pairing), public parameters of UHP and OT-LF can be chosen in a flexible way, resulting in a leakage-flexible CCA-secure PKE scheme. More specifically, we get the first CCA-secure PKE with leakage rate of 1o(1)1-o(1) without pairing. \end{itemize

    KDM-Secure Public-Key Encryption from Constant-Noise LPN

    Get PDF
    The Learning Parity with Noise (LPN) problem has found many applications in cryptography due to its conjectured post-quantum hardness and simple algebraic structure. Over the years, constructions of different public-key primitives were proposed from LPN, but most of them are based on the LPN assumption with _low noise_ rate rather than _constant noise_ rate. A recent breakthrough was made by Yu and Zhang (Crypto\u2716), who constructed the first Public-Key Encryption (PKE) from constant-noise LPN. However, the problem of designing a PKE with _Key-Dependent Message_ (KDM) security from constant-noise LPN is still open. In this paper, we present the first PKE with KDM-security assuming certain sub-exponential hardness of constant-noise LPN, where the number of users is predefined. The technical tool is two types of _multi-fold LPN on squared-log entropy_, one having _independent secrets_ and the other _independent sample subspaces_. We establish the hardness of the multi-fold LPN variants on constant-noise LPN. Two squared-logarithmic entropy sources for multi-fold LPN are carefully chosen, so that our PKE is able to achieve correctness and KDM-security simultaneously

    Cumulatively All-Lossy-But-One Trapdoor Functions from Standard Assumptions

    Get PDF
    International audienceChakraborty, Prabhakaran, and Wichs (PKC'20) recently introduced a new tag-based variant of lossy trapdoor functions, termed cumulatively all-lossy-but-one trapdoor functions (CALBO-TDFs). Informally, CALBO-TDFs allow defining a public tag-based function with a (computationally hidden) special tag, such that the function is lossy for all tags except when the special secret tag is used. In the latter case, the function becomes injective and efficiently invertible using a secret trapdoor. This notion has been used to obtain advanced constructions of signatures with strong guarantees against leakage and tampering, and also by Dodis, Vaikunthanathan, and Wichs (EUROCRYPT'20) to obtain constructions of randomness extractors with extractor-dependent sources. While these applications are motivated by practical considerations, the only known instantiation of CALBO-TDFs so far relies on the existence of indistinguishability obfuscation. In this paper, we propose the first two instantiations of CALBO-TDFs based on standard assumptions. Our constructions are based on the LWE assumption with a sub-exponential approximation factor and on the DCR assumption, respectively, and circumvent the use of indistinguishability obfuscation by relying on lossy modes and trapdoor mechanisms enabled by these assumptions

    Master-Key KDM-Secure IBE from Pairings

    Get PDF
    Identity-based encryption (IBE) is a generalization of public-key encryption (PKE) by allowing encryptions to be made to user identities. In this work, we seek to obtain IBE schemes that achieve key-dependent-message (KDM) security with respect to messages that depend on the master secret key. Previous KDM-secure schemes only achieved KDM security in simpler settings, in which messages may only depend on user secret keys. An important motivation behind studying master-KDM security is the application of this notion in obtaining generic constructions of KDM-CCA secure PKE, a primitive notoriously difficult to realize. We give the first IBE that achieves master-KDM security from standard assumptions in pairing groups. Our construction is modular and combines techniques from KDM-secure PKE based from hash-proof systems, together with IBE that admits a tight security proof in the multi-challenge setting, which happens to be unexpectedly relevant in the context of KDM security. In fact, to the best of our knowledge, this is the first setting where techniques developed in the context of realizing tightly secure cryptosystems have led to a new feasibility result. As a byproduct, our KDM-secure IBE, and thus the resulting KDM-CCA-secure PKE both enjoy a tight security reduction, independent of the number of challenge ciphertexts, which was not achieved before

    A Framework for Achieving KDM-CCA Secure Public-Key Encryption

    Get PDF
    We propose a framework for achieving a public-key encryption (PKE) scheme that satisfies key dependent message security against chosen ciphertext attacks (KDM-CCA security) based on projective hash function. Our framework can be instantiated under the decisional diffie-hellman (DDH), quadratic residuosity (QR), and decisional composite residuosity (DCR) assumptions. The constructed schemes are KDM-CCA secure with respect to affine functions and compatible with the amplification method shown by Applebaum (EUROCRYPT 2011). Thus, they lead to PKE schemes satisfying KDM-CCA security for all functions computable by a-priori bounded size circuits. They are the first PKE schemes satisfying such a security notion in the standard model using neither non-interactive zero knowledge proof nor bilinear pairing. The above framework based on projective hash function captures only KDM-CCA security in the single user setting. However, we can prove the KDM-CCA security in the multi user setting of our concrete instantiations by using their algebraic structures explicitly. Especially, we prove that our DDH based scheme satisfies KDM-CCA security in the multi user setting with the same parameter setting as in the single user setting

    Generic Constructions of Robustly Reusable Fuzzy Extractor

    Get PDF
    Robustly reusable Fuzzy Extractor (rrFE) considers reusability and robustness simultaneously. We present two approaches to the generic construction of rrFE. Both of approaches make use of a secure sketch and universal hash functions. The first approach also employs a special pseudo-random function (PRF), namely unique-input key-shift (ui-ks) secure PRF, and the second uses a key-shift secure auxiliary-input authenticated encryption (AIAE). The ui-ks security of PRF (resp. key-shift security of AIAE), together with the homomorphic properties of secure sketch and universal hash function, guarantees the reusability and robustness of rrFE. Meanwhile, we show two instantiations of the two approaches respectively. The first instantiation results in the first rrFE from the LWE assumption, while the second instantiation results in the first rrFE from the DDH assumption over non-pairing groups

    On the Key Dependent Message Security of the Fujisaki-Okamoto Constructions

    Get PDF
    In PKC 1999, Fujisaki and Okamoto showed how to convert any public key encryption (PKE) scheme secure against chosen plaintext attacks (CPA) to a PKE scheme which is secure against chosen ciphertext attacks (CCA) in the random oracle model. Surprisingly, the resulting CCA secure scheme has almost the same efficiency as the underlying CPA secure scheme. Moreover, in J. Cryptology 2013, they proposed the more efficient conversion by using the hybrid encryption framework. In this work, we clarify whether these two constructions are also secure in the sense of key dependent message security against chosen ciphertext attacks (KDM-CCA security), under exactly the same assumptions on the building blocks as those used by Fujisaki and Okamoto. Specifically, we show two results: Firstly, we show that the construction proposed in PKC 1999 does not satisfy KDM-CCA security generally. Secondly, on the other hand, we show that the construction proposed in J. Cryptology 2013 satisfies KDM-CCA security
    corecore