9,742 research outputs found

    The hardness of decoding linear codes with preprocessing

    Get PDF
    The problem of maximum-likelihood decoding of linear block codes is known to be hard. The fact that the problem remains hard even if the code is known in advance, and can be preprocessed for as long as desired in order to device a decoding algorithm, is shown. The hardness is based on the fact that existence of a polynomial-time algorithm implies that the polynomial hierarchy collapses. Thus, some linear block codes probably do not have an efficient decoder. The proof is based on results in complexity theory that relate uniform and nonuniform complexity classes

    On the Complexity of Existential Positive Queries

    Full text link
    We systematically investigate the complexity of model checking the existential positive fragment of first-order logic. In particular, for a set of existential positive sentences, we consider model checking where the sentence is restricted to fall into the set; a natural question is then to classify which sentence sets are tractable and which are intractable. With respect to fixed-parameter tractability, we give a general theorem that reduces this classification question to the corresponding question for primitive positive logic, for a variety of representations of structures. This general theorem allows us to deduce that an existential positive sentence set having bounded arity is fixed-parameter tractable if and only if each sentence is equivalent to one in bounded-variable logic. We then use the lens of classical complexity to study these fixed-parameter tractable sentence sets. We show that such a set can be NP-complete, and consider the length needed by a translation from sentences in such a set to bounded-variable logic; we prove superpolynomial lower bounds on this length using the theory of compilability, obtaining an interesting type of formula size lower bound. Overall, the tools, concepts, and results of this article set the stage for the future consideration of the complexity of model checking on more expressive logics

    The VC-Dimension of Graphs with Respect to k-Connected Subgraphs

    Get PDF
    We study the VC-dimension of the set system on the vertex set of some graph which is induced by the family of its kk-connected subgraphs. In particular, we give tight upper and lower bounds for the VC-dimension. Moreover, we show that computing the VC-dimension is NP\mathsf{NP}-complete and that it remains NP\mathsf{NP}-complete for split graphs and for some subclasses of planar bipartite graphs in the cases k=1k = 1 and k=2k = 2. On the positive side, we observe it can be decided in linear time for graphs of bounded clique-width
    • …
    corecore