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a b s t r a c t

We study the VC-dimension of the set system on the vertex set of some graph which is
induced by the family of its k-connected subgraphs. In particular, we give tight upper and
lower bounds for the VC-dimension.Moreover, we show that computing the VC-dimension
is NP-complete and that it remains NP-complete for split graphs and for some subclasses
of planar bipartite graphs in the cases k = 1 and k = 2. On the positive side, we observe it
can be decided in linear time for graphs of bounded clique-width.
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1. Introduction

Let H be a set system on a finite set X . A subset Y ⊆ X is shattered by H if {E ∩ Y : E ∈ H} = 2Y and the VC-dimension
of H is defined as the maximum size of a set shattered by H . The VC-dimension of a set system was introduced by Vapnik
and Chervonenkis [19]. The initial interest was in the contexts of empirical process theory and learning theory, where it
proved to be a fundamental concept. It represents a prominentmeasure of the ‘‘complexity’’ of a set system. Onemight think
applying the abstract notion of VC-dimension to some concrete settings. A natural choice is the study of the VC-dimension
associated to graphs. Given a graph, we consider set systems induced by a certain family of subgraphs. In this way we
obtain several different notions of VC-dimension, each one related to a special family of subgraphs. This study was first
initiated in a seminal paper by Haussler and Welzl [10]. They considered the set system induced by closed neighbourhoods
of the vertices. Kranakis et al. [14] investigated the VC-dimensions induced by other families of subgraphs. They adapted
the definition of VC-dimension to the graph theoretic setting as follows.

Definition 1. Let G = (V , E) be a graph and let P be a family of subgraphs of G. A subset A ⊆ V is P -shattered if every
subset of A can be obtained as the intersection of V (H) with A, for H ∈ P . The VC-dimension of Gwith respect to P , denoted
by VCP (G), is defined as the maximum size of a P -shattered subset.

Note that in this paperwe consider only finite undirected simple graphs andweuse standard graph theoretic terminology
from [20], unless stated otherwise. For definitions and examples related to tree-width and clique-width we refer the reader
to [6,11], while for an introduction to monadic second-order logic of graphs see, for example, [4].

According to Definition 1, we denote by VCtree, VCcon, VCk-con, VCnbd, VCpath, VCcycle and VCstar the VC-dimensions with
respect to families of subgraphs which are trees, connected, k-connected, induced by the closed neighbourhoods of the
vertices, paths, cycles and stars, respectively. Note that the VC-dimension with respect to some families of subgraphs is

E-mail address: Andrea.Munaro@grenoble-inp.fr.
1 This work was partly done at Department of Computer Science, University of Bonn.

http://dx.doi.org/10.1016/j.dam.2016.04.016
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.04.016
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.04.016&domain=pdf
mailto:Andrea.Munaro@grenoble-inp.fr
http://dx.doi.org/10.1016/j.dam.2016.04.016


164 A. Munaro / Discrete Applied Mathematics 211 (2016) 163–174

equal to well established quantities in graph theory: ifP is the family of complete subgraphs then VCP is the clique number,
while if P is the family of subgraphs induced by independent sets then VCP is the independence number.

Since a graph of order n has n closed neighbourhoods, its VC-dimension is at most ⌊log2 n⌋ [10]. It is not difficult to show
that this bound is tight [2]. Indeed, consider the graph H built as follows. Take a set S of ⌊log2 n⌋ independent vertices. For
each non-singleton subset R ⊆ S, add a vertex vR adjacent to precisely the vertices of R. The resulting graph H has at most n
vertices andVCnbd(H) = ⌊log2 n⌋. IfG is a graphwithmaximumdegree∆, then it is easy to see that∆ ≤ VCstar ≤ ∆+1 [14].
The VC-dimension with respect to trees is the same as the VC-dimension with respect to connected subgraphs [14]. This is
an immediate consequence of the fact that a connected graph contains a spanning tree.

Kranakis et al. [14] related the VC-dimension of a graph G with respect to connected subgraphs to the number of leaves
ℓ(G) in a maximum leaf spanning tree of G.

Theorem 2 (Kranakis et al. [14]). ℓ(G) ≤ VCcon(G) ≤ ℓ(G) + 1, for any graph G.

Recall that ℓ(G) = |V (G)| − γc(G), where γc(G) is the connected domination number, the minimum size of a connected
dominating set in G. Moreover, given a graph G and an integer k, the problem of deciding whether γc(G) ≤ k is NP-
complete [8]. A natural question is to investigate the computational complexity of computing VCP (G) for a given graph
G and a family of its subgraphs P . The decision problem is formulated as follows:

Graph VCP Dimension

Instance: A graph G and a number s ≥ 1.
Question: Does VCP (G) ≥ s hold?

1.1. Our results

In Section 2 we extend Theorem 2 by giving tight upper and lower bounds on the VC-dimension with respect to
k-connected subgraphs, for k ≥ 2. These are given, similarly to Theorem 2, in terms of the number of leaves in a maximum
leaf spanning tree. In Section 3 we prove that the related decision problem Graph VCk-con Dimension is NP-complete even
for split graphs. On the positive side, we show it can be decided in linear time for graphs of bounded clique-width and
in polynomial time for the subclass of split graphs having Dilworth number at most 2. Finally, we prove that Graph VCcon
Dimension andGraphVC2-con Dimension remainNP-complete for some subclasses of planar bipartite graphswithmaximum
degree at most 4. The following table summarizes the known results about the complexity of Graph VCP Dimension (see
[17,3] for the definitions of the classes LOGNP and Σ

p
3 , respectively).

Family P Graph G Computational complexity Reference

Star Polynomial time Kranakis et al. [14]
Neighbourhood LOGNP-complete Kranakis et al. [14]
Path Σ

p
3 -complete Schaefer [18]

Cycle Σ
p
3 -complete Schaefer [18]

k-connected Split NP-complete Theorem 17
k-connected Bounded clique-width Linear time Corollary 20
k-connected Split, Dilworth number ≤2 Polynomial time Theorem 21
Connected Planar, bipartite, ∆(G) = 3 NP-complete Theorem 25
2-connected Planar, bipartite, ∆(G) = 4 NP-complete Theorem 29

2. Bounds on the VC-dimension

The main result of this section is an extension of Theorem 2 by considering families of k-connected subgraphs, for k ≥ 2.

Theorem 3. VCk-con(G) ≤ ℓ(G) − k + 1, for any connected graph G and k ≥ 2.

The proof of Theorem 3 consists essentially of two parts. First, we show that VCk-con(G) ≤ ℓ(G)−k+2, for any connected
graph G and k ≥ 1 (the case k = 1 thus gives a proof for the upper bound of Theorem 2). The idea is to construct a spanning
tree T with at leastVCk-con(G)+k−2 leaves.We fix a shattered setAofmaximumcardinality and choose an appropriate vertex
r ∈ A as the root. Then we consider some k neighbours of r , say u1, . . . , uk, and we try to ‘‘attach’’ the remaining vertices of
A to the graph ({r, u1, . . . , uk} , {ru1, . . . , ruk}) via appropriate paths. A crucial step is the distinction between two types of
vertices of A that we are going to add as leaves of T : lower leaves and upper leaves (see below for definitions). In the second
part, we provide the actual proof of Theorem 3 by contradiction. In particular, we suppose that ℓ(G) ≤ VCk-con(G) + k − 2
and we show how to modify the tree T constructed in the first part in order to obtain a contradiction.
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Fig. 1. The black square vertices are the upper leaves, while the grey square vertices are the lower leaves. The selected paths are dashed.

Proof of Theorem 3. We begin by showing that VCk-con(G) ≤ ℓ(G) − k + 2, for any connected graph G and k ≥ 1. Let A be
a shattered set of maximum cardinality. Since our aim is to construct a spanning tree with at least |A| + k − 2 leaves, note
that it is enough to construct a tree T ⊆ G with as many leaves. For w ∈ A, we denote by Gw a fixed k-connected subgraph
such that V (Gw) ∩ A = {w}. Similarly, Gww′ denotes a fixed k-connected subgraph such that V (Gww′) ∩ A = {w, w′

}. We
choose a vertex r ∈ A having the minimum number of neighbours in V (G) \ A as the root of T . Clearly, dGr (r) ≥ k. Let
U = {u1, . . . , uk} be a set of k arbitrary vertices in NGr (r). We select the edges u1r, . . . , ukr . By Menger’s Theorem [20],
there exist k independent w − r paths in Gwr . We call w ∈ A \ {r} a lower leaf for T if there exist k independent w − r
paths {P1, . . . , Pk} ⊆ G with no inner vertex in A and such that each of them contains (exactly) one edge in {u1r, . . . , ukr}
(in other words, w is a lower leaf if there exists a w,U-fan in G − (A \ {w})). In particular, no path contains two vertices in
U . Otherwise, we call w an upper leaf for T .

We set L := {u1, . . . , uk} and we view L as the set of potential leaves for T . For any w ∈ A \ {r}, we do the following (see
Fig. 1):

• If w is an upper leaf, select a w − r path P ⊆ Gwr such that V (P) ∩U = ∅. Such a path exists: by Menger’s Theorem [20],
there exist k independent w − r paths in Gwr and, if each of them contained a (different) vertex in U , we would obtain a
w,U-fan in G − (A \ {w}). Finally, add w to L and remove cycles and appropriate edges so that the selected subgraph is
a tree;

• Ifw is a lower leaf, select aw−r path P ⊆ G as in the definition of lower leaf and such that E(P)∩{u1r, . . . , ukr} = {u1r},
add w to L and remove u1 from L. Finally, remove edges from the newly added paths so that the selected subgraph is a
tree.

In this way, we get a tree T , rooted at r and in which the elements of L are leaves. Moreover, |L| ≥ |A| + k − 2. The
construction works for any k, the case k = 1 giving the upper bound in Theorem 2.

From now on, we assume k ≥ 2 and we prove Theorem 3 by contradiction. Therefore, let G be a counterexample and
let A be a shattered set of maximum cardinality. Using the procedure described in the previous part, we can obtain a tree
T ⊆ G, rooted at r and with at least |A|+k−2 leaves. Recall that r is chosen as a vertex of A having theminimum number of
neighbours inV (G)\A. In the following,wededuce some structural properties ofG and showhow they lead to a contradiction.
Each claim is followed by a short proof.

Claim 4. Each leaf in T is adjacent to at most one vertex not in T .

Indeed, if there exists a leaf in T adjacent to at least two vertices not in T , we immediately get a treewith at least |A|+k−1
leaves. �

Claim 5. T contains at least one upper leaf.

Indeed, suppose T has no upper leaves. For any 2 ≤ i ≤ k, select a ui − u1 path in Gr with no inner vertex in
(U \ {u1, ui}) ∪ {r}. Clearly, such a path has no inner vertex in A ∪ U . But then we can obtain a tree, rooted at u1, with
at least |A| + k − 1 leaves (r becomes an additional leaf). �

Claim 6. There exists an upper leaf w with dT (w, r) ≥ 2.

Indeed, suppose this is not the case. By Claim 5, the setW of upper leaves for T is non-empty and each of them is adjacent
to r . Suppose that anyw ∈ W has one neighbour (in G) which is contained in Tu1 −A, where Tu1 denotes the subtree induced
by u1 and its descendants. Then we select the edges joining each upper leaf to Tu1 − A and, for any 2 ≤ i ≤ k, we select a
ui − u1 path in Gr with no inner vertex in A ∪ U . In this way, we obtain a tree rooted at u1 and with at least |A| + k − 1
leaves, a contradiction. Therefore, there exists w ∈ W such that NG(w) ∩ (V (Tu1) \ A) = ∅. By Claim 4, w has at most one
neighbour in V (G) \ V (T ). Therefore, NGw (w) ⊆ NG(w) \ A ⊆ {u2, . . . , uk} ∪ {x}, for some x ∈ V (G) \ V (T ). But since w has
at least k neighbours in Gw , we have NGw (w) = NG(w) \ A = {u2, . . . , uk} ∪ {x}.

Consider noww′
∈ A such thatww′

∉ E(G). There exists aw−w′ path P in Gww′ with no inner vertex in U \{u1}. Clearly,
wx ∈ E(P). Note that P does not contain any vertex in Tu1 − A, or else x could become an additional leaf for T . By selecting
these paths, together with edges connecting vertices in A tow, it is easy to see we can get a new tree T ′ rooted atw andwith
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Fig. 2. (a) Neighbourhood of w′ . (b) and (c) The different constructions of a tree T with at least |A| + k − 1 leaves.

at least |A| + k − 2 leaves. Moreover, if an upper leaf for T has at least two neighbours in the subtree Tu1 − A, then we can
get an additional leaf for T ′. Therefore, each upper leaf for T has at most one neighbour in Tu1 − A.

Now letw′
≠ w be an upper leaf for T .We claim thatw′ is adjacent to u2. Indeed, supposew′u2 ∉ E(G). By Claim 4,w′ has

at most one neighbour in G− V (T ) and by the paragraph above it has at most one neighbour in Tu1 − A. Since dGw′ (w
′) ≥ k,

then NGw′ (w
′) = (U \ {u1, u2}) ∪ {y, z}, for some y ∈ V (G) \ V (T ) and z ∈ V (Tu1) \ A. Moreover, u2 ∉ V (Gw′). Otherwise,

there exists a w′
− u2 path P in Gw′ with no inner vertex in (U \ {u1, u2}) ∪ {z}. Clearly, w′y ∈ E(P) and P does not contain

vertices in Tu1 − A, or else y would become an additional leaf for T . But then there exists a w′,U-fan in G − (A \ {w′
}),

contradicting the fact that w′ is an upper leaf. Therefore, since u2 ∉ V (Gw′), there exists a y − z path in Gw′ with no inner
vertex in A ∪ (U \ {u1}). Again, by adding this path to the initial tree T , we get a new tree with at least |A| + k − 1 leaves,
a contradiction. This means that w′u2 ∈ E(G), for any upper leaf w′. On the other hand, for any lower leaf w′′, there exists
a w′′

− u2 path with no inner vertex in A ∪ U . Finally, for any ui ∈ U \ {u2}, there exists a ui − u2 path in Gr with no inner
vertex in A ∪ U . But then it is easy to construct a new tree rooted at u2 and with at least |A| + k − 1 leaves. �

Claim 7. r has at most one neighbour in V (T ) \ (A ∪ U).

Indeed, suppose r has at least two neighbours in V (T ) \ (A∪U). The subtree T − ({u2, . . . , uk} ∪ (A \ {r})) contains a leaf
q and let Q = NT (q) ∩ (A \ {r}). Let w ∈ Q and consider Gw . Clearly, w has at least k− 1 ≥ 1 neighbours in V (G) \ (A∪ {q}).
If for any w ∈ Q , one of these neighbours is contained in V (T ) \ ({u2, . . . , uk} ∪ {q}), then we get a tree rooted at r and in
which q is an additional leaf. Therefore, there exists w ∈ Q with no neighbours in V (T ) \ ({u2, . . . , uk} ∪ {q}). By Claim 4, w
has at most one neighbour in V (G)\V (T ). But thenw has at most k+1 neighbours in V (G)\A, contradicting theminimality
of r . �

By Claims 6 and 7, r has exactly k+1 neighbours in V (T )\A. Therefore, let NT (r)\ (A∪U) = {z} and let Tz be the subtree
induced by z and its descendants.

Claim 8. V (Tu1) ∩ V (Tz) = ∅.

Indeed, suppose there exists x ∈ V (Tu1) ∩ V (Tz) and let P(x) be the unique x − r path in T . By definition, P(x) contains
both z and u1 and so a cycle arises in T . �

Claim 9. No leaf of Tz is a lower leaf for T .

Indeed, suppose there exists a lower leafw for T which is a leaf of Tz . Thismeans that thew−u1 subpath P in the definition
of w intersects Tz . Then, select the u1 − x subpath of P , where x is the first intersection of P with Tz , when traversed from
u1. Moreover, for any ui ∈ U \ {u1}, select a ui − u1 path in Gr with no inner vertex in A ∪ U and remove the edge set
{u2r, . . . , ukr, rz}. After removing cycles and appropriate edges from the selected subgraph, we get a tree T ′ rooted at u1
andwith at least |A|+k−2 leaves. Finally, by Claim 4 andminimality of r , any upper leaf for T adjacent to r has a neighbour
in V (T ′) \ (U \ {u1} ∪ A) and so r could become an additional leaf for T ′. �

Clearly, Tz − A contains a leaf q and let Q = NT (q) ∩ A. By Claim 9, Q is a set of upper leaves. By an argument similar
to the one in the proof of Claim 7, there exists w′

∈ Q such that NGw′ (w
′) ⊆ NG(w

′) \ A ⊆ (U \ {u1}) ∪ {q, x}, for some
x ∈ V (G) \ V (T ), and w′ is adjacent to at least k − 2 vertices in U \ {u1} (see Fig. 2(a)). Moreover, U \ {u1} ⊆ V (Gw′), or else
{q, x} ⊆ V (Gw′) and there would exists an x − q path in Gw′ with no inner vertex in A ∪ (U \ {u1}), thus turning x into an
additional leaf for T .

Claim 10. There is no path P from w′ to v ∈ V (Tu1) \ A with no inner vertex in A ∪ (U \ {u1}).
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Suppose such a path P exists. Then w′x ∉ E(P), or else x becomes an additional leaf. Therefore, w′q ∈ E(P). By the
paragraph above, w′ is adjacent to at least k − 2 vertices in U \ {u1}, say {w′u3, w

′u4, . . . , w
′uk} ⊆ E(G), and there exists a

w′
−u2 path P ′

⊆ Gw′ with no inner vertex in (U\{u1, u2})∪{q}. Ifw′u2 ∈ E(G), then there exists aw′,U-fan inG−(A\{w′
}),

contradicting the fact that w′ is an upper leaf. Therefore, w′u2 ∉ E(G) and w′x ∈ E(P ′). But then P + P(v), where P(v) is the
unique v − u1 path in T , and P ′ do not intersect in an inner vertex, or else x becomes an additional leaf, and once again we
obtain a w′,U-fan in G − (A \ {w′

}), a contradiction. �

Claim 11. Each w ∈ A has at most one neighbour in Tu1 − A.

Consider w ∈ A \ {w′
} such that w′w ∉ E(G). There exists a w′

− w path P in Gw′w with no inner vertex in A∪ (U \ {u1}).
Moreover, by Claim 10, P does not contain any vertex of Tu1 −A. For anyw ∈ A \ {w′

} such that w′w ∉ E(G), we select these
paths. For any w ∈ A \ {w′

} such that w′w ∈ E(G), we select the corresponding edges. Moreover, recall that w′ is adjacent
to at least k − 2 vertices in U \ {u1}, say {u3, . . . , uk}, and U \ {u1} ⊆ V (Gw′). But then there exists a w′

− u2 path in Gw′

with no inner vertex in A ∪ U and so, by Claim 10, with no inner vertex in Tu1 − A as well. Therefore, we can obtain a new
tree T ′ rooted at w′ and with at least |A| + k − 2 leaves. But then each w ∈ A has at most one neighbour in Tu1 − A, or else
we could get an additional leaf for T ′. �

Claim 12. If w is an upper leaf, then ((U \ {u1}) ∪ {v}) ⊈ V (Gw), for any v ∈ V (Tu1).

Indeed, suppose this is not the case and let v ∈ V (Tu1) be a vertex with minimum dT (v, u1) among those satisfying
((U \ {u1}) ∪ {v}) ⊆ V (Gw). Since the set U ′

= (U \ {u1}) ∪ {v} is contained in V (Gw) then, by the Fan Lemma [20], there
exists a w,U ′-fan in Gw . But then no path in the fan intersects the unique v − u1 path in T in an inner vertex and so we can
obtain a w,U-fan in G − (A \ {w}), contradicting the fact that w is an upper leaf. �

Claim 13. V (Gw) ∩ V (Tu1) = ∅, for any w ∈ Q .

Indeed, suppose there exists w ∈ Q such that z ∈ V (Gw) ∩ V (Tu1). By Claim 12, we have U \ {u1} ⊈ V (Gw). By Claim 11,
w has at most one neighbour in Tu1 − A and, by Claim 4, w has at most one neighbour in V (G) \ V (T ). But then there exists
v ∈ V (Gw) ∩ V (Tz), or else NGw (w) = (U \ {u1, ui}) ∪ {x, y}, for some x ∈ V (G) \ V (T ), y ∈ V (Tu1) \ A and 2 ≤ i ≤ k, and
we could find an x − y path in Gw with no inner vertex in A ∪ U . Therefore, there exists a v − z path P ⊆ Gw with no inner
vertex in A ∪ (U \ {u1}), contradicting Claim 10. �

We now show how to build a tree rooted at u2 and with at least |A| + k− 1 leaves. This will provide a contradiction, thus
concluding the proof.

Consider w ∈ Q . By Claims 13 and 4, if V (Gw) ∩ (V (Tz) \ {q}) = ∅, then NGw (w) ⊆ (U \ {u1}) ∪ {q, x}, for some
x ∈ V (G) \ V (T ). Moreover, as we have seen before, we have that U \ {u1} ⊆ V (Gw), or else x could become an additional
leaf for T .

We start by removing V (Tu1) ∪ U from T . Suppose now that, for every lower leaf w′′, the w′′
− u2 subpath P in the

definition of w′′ contains no vertices in Tz and, for every ui ∈ U \ {u2}, each ui − u2 path P ′ in Gr with no inner vertex in
A ∪ U contains no vertices in Tz . In particular, these paths do not contain q and we select them (see Fig. 2(b)). Moreover, for
any w ∈ Q , we do the following. If there exists v ∈ V (Gw) ∩ (V (Tz) \ {q}), then we select a w − v path in Gw with no inner
vertex in A∪ (U \ {u2})∪{q} (such a path exists by Claim 13). Otherwise, by the paragraph above, we select a w −u2 path in
Gw with no inner vertex in A ∪ U ∪ {q} (again, the existence follows from Claim 13). After removing cycles and appropriate
edges we get a new tree T , rooted at u2 and with at least |A| + k − 1 leaves (q becomes an additional leaf), a contradiction.

Therefore, there exists either a lower leaf w such that the w − u2 subpath P in the definition of w contains vertices in Tz ,
or a ui ∈ U \ {u2} such that a ui − u2 path P ′ in Gr with no inner vertex in A∪U contains vertices in Tz . Then we select either
the w − x subpath and the y− u2 subpath of P , where x and y are, respectively, the first and the last intersection of P with Tz
when traversed from w, or the ui − x′ subpath and the y′

− u2 subpath of P ′, where x′ and y′ are, respectively, the first and
the last intersection of P ′ with Tz when traversed from ui (see Fig. 2(c)). In this way, we get a new tree T ′ and we grow it as
follows. Let w′′ be a lower leaf and Pw′′ be the w′′

− u2 subpath in the definition of w′′. For any lower leaf w′′, we select the
w′′

− xw′′ subpath of Pw′′ , where xw′′ is the first intersection of Pw′′ with the tree constructed so far and in whichw′′ becomes
a leaf. Similarly, we add the remaining vertices of U as leaves. Finally, consider an upper leaf w′′ for the original T such that
dT (w′′, r) = 1. By minimality of r and by an argument similar to Claim 4, w′′ is adjacent to a vertex in V (T ′) \ (A∪U \ {u2}).
But then we can add these edges to the tree T ′ rooted at u2 in order to obtain a new tree with at least |A| + k − 1 leaves (r
becomes an additional leaf), a contradiction. This concludes the proof. �

Our bound is tight in the sense of the following.

Proposition 14. For any k ≥ 2 and x ≥ 2k, there exists a graph G with ℓ(G) = x and VCk-con(G) = ℓ(G) − k + 1.

For the proof we need the following elementary result which will be used in the upcoming sections as well.

Lemma 15 (Expansion Lemma [20]). If G is a k-connected graph and G′ is obtained from G by adding a new vertex with at least
k neighbours in G, then G′ is k-connected.
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Proof of Proposition 14. For a fixed k ≥ 2 and x = 2k, consider the graph Gk constructed as follows. Start with a clique Hk
of size k + 1. For each subset S ⊂ Hk of size k, add a vertex adjacent to precisely the vertices of S, and let A be the set of the
added vertices. Clearly, |V (Gk)| = 2k+2 and ℓ(Gk) = 2k. Moreover, by the Expansion Lemma, A is shattered. For x ≥ 2k, let
G be the graph obtained from Gk by adding x− 2k vertices adjacent to exactly k vertices of Hk. It is easy to see that ℓ(G) = x
and VCk-con(G) = ℓ(G) − k + 1. �

As for a lower bound, we use the fact that having a sufficiently large complete subgraph guarantees shattering by
k-connected subgraphs.

Theorem 16. Let G be a connected graph of order n, size m, and maximum degree ∆. For k ≥ 2,

VCk-con(G) ≥ ℓ(G) − k + 1 −


n + 2 −


n − 2
∆ − 1


−

n2

n2 − 2m


.

Proof. By Turán’s Theorem [20], ifm >

1 −

1
r

 n2
2 , then G contains Kr+1 as a subgraph. Therefore, by the Expansion Lemma,

a set of size r + 1− (k+ 1) can be shattered by k-connected subgraphs. The condition above is equivalent to r < n2

n2−2m
and

so, taking r =


n2

n2−2m
− 1


, we get

VCk-con(G) ≥


n2

n2 − 2m
− 1


+ 1 − (k + 1).

Let T be a spanning tree of G and di = |{v ∈ V (T ) : dT (v) = i}|. We want to find an upper bound for ℓ(G). We have that
∆
i=1

di = n and 2(n − 1) =


v∈V (T )

dT (v) =

∆
i=1

idi.

Using the two relations above, it is easy to see that

n − d1 =

∆
i=2

di ≥

∆
i=2

i − 1
∆ − 1

di =
1

∆ − 1

∆
i=2

(i − 1)di =
n − 2
∆ − 1

.

Since ℓ(G) is the maximum of d1 taken over all spanning trees of G, then

ℓ(G) ≤ n −


n − 2
∆ − 1


.

Summarizing, we get

VCk-con(G) ≥


n2

n2 − 2m
− 1


− k

≥
n2

n2 − 2m
− 1 − k +


ℓ(G) − n +


n − 2
∆ − 1


≥ ℓ(G) − k + 1 −


n + 2 −


n − 2
∆ − 1


−

n2

n2 − 2m


. �

Note that, in Theorem 16, equality is attained by complete graphs.

3. The decision problem

In this sectionwe investigate the computational complexity ofGraph VCk-con Dimension. Consider the following decision
problem, usually called Set Multicover:

Set Multicover

Instance: A set S = {a1, . . . , an}, a collection of subsets S1, . . . , Sm ⊆ S, and integers k and t .
Question: Is there an index set I ⊆ {1, . . . ,m} such that


i∈I Si = S, each ai is covered by at least k

distinct subsets, and |I| ≤ t?

Being a generalization of the well-known Set Cover (also known asMinimum Cover [8]), it is NP-complete. We use it in
the proof of the following Theorem 17. Recall that a split graph is a graph in which the vertex set can be partitioned into a



A. Munaro / Discrete Applied Mathematics 211 (2016) 163–174 169

Fig. 3. The graph G for the reduction. The grey ovals are cliques. A thick edge joining a vertex v ∈ D to C means that v is adjacent to all the vertices of C .
Similarly, the thick edge between the ovals means that B ∪ C is a clique.

clique and an independent set. Each complete graph is clearly a split graph and the class of split graphs coincides with that
of (2K2, C4, C5)-free graphs (see [9]).

Theorem 17. Graph VCk-con Dimension is NP-complete even for split graphs.

Proof. First we show that the problem is in NP. Our proof is based on the following elementary Lemma 18. Since we could
not find it in the literature, we give its short proof.

Lemma 18. Let G and G′ be two k-connected graphs such that
V (G) ∩ V (G′)

 ≥ k. Then G ∪ G′ is k-connected as well.

Proof of Lemma 18. Let S ⊂ V (G ∪ G′) be a subset such that |S| < k. Let v and w be two distinct vertices in (G ∪ G′) − S. If
both v andw are in G or in G′, then there is a v −w path in (G∪G′)− S by assumption. Otherwise, since

V (G) ∩ V (G′)
 ≥ k,

there exists u ∈ V (G) ∩ V (G′) ∩ V ((G ∪ G′) − S). Moreover, since G − S and G′
− S are connected, there exist a v − u path

in G − S and a u − w path in G′
− S. But then there is a v − w walk in (G ∪ G′) − S and so a v − w path as well. �

Let G = (V , E) and s ≥ 1 be an instance ofGraph VCk-con Dimension. We claimwe can check in polynomial timewhether
a subset V ′

⊆ V with
V ′

 ≥ s is shattered. Indeed, by Lemma 18, it is enough to check all the O(|V |
k+1) subsets of V ′ of

size at most k + 1. Recall that finding a minimum separating set of a graph G is polynomial in the order of G. Moreover, if
S ⊆ V (G) is a minimum separating set and A ∪ B = V (G − S) is a partition into two non-empty sets such that any path
from a vertex in A to a vertex in B contains a vertex in S then, for k > |S|, the vertices of any k-connected subgraph of G are
entirely contained in either A ∪ S or B ∪ S. These observations, as shown in [12, Theorem 1], allow to test whether G has a
k-connected subgraph in polynomial time. Therefore, for any B ⊆ V ′ of size at most k+ 1, we can check in polynomial time
if there exists a k-connected subgraph contained in G − (V ′

\ B) and containing B.
Now we prove NP-hardness by a reduction from Set Multicover. Given an instance of Set Multicover, we construct a

graph G = (V , E) as follows (see Fig. 3). The set of vertices V is formed by four pairwise disjoint sets A, B, C and D. A is an
independent set of n · (t + k+ 1) vertices arranged in n columns of t + k+ 1 vertices each (every element in the jth column
corresponds to a copy of aj), B = {v1, . . . , vm} is a clique (vi corresponds to the set Si), C is a clique of size k and D is an
independent set of t + m + 1 vertices. Each vertex in C is connected to all vertices in B (therefore, B ∪ C is a clique of size
m + k) and D. Finally, vi ∈ B is connected to every copy of aj ∈ A if and only if aj ∈ Si.

Since B ∪ C is a clique and A ∪ D is an independent set, then G is a split graph. We claim that there is an index
set I ⊆ {1, . . . ,m} such that


i∈I Si = S, each ai is covered by at least k distinct subsets and |I| ≤ t if and only if

VCk-con(G) ≥ |V | − (t + k).
Suppose first such an index set I exists. We claim that the set

V ′
= A ∪ D ∪ {vi ∈ B : i ∉ I}

is shattered. Indeed, the subgraph G′
= G[C ∪ {vi ∈ B : i ∈ I}] is a clique of size at least k + 1 and each vertex in V ′ has at

least k neighbours in G′. Therefore, V ′ is shattered by the Expansion Lemma. Finally, |I| ≤ t implies that
V ′

 ≥ |V | − t − k.
Conversely, let V ′ be a shattered set of maximum cardinality. Then

V ′
 ≥ |V | − (t + k). Suppose there exists c ∈ V ′

∩ C .
Then no vertex in D can be shattered, and so

V ′
 ≤ |V | − (t + m + 1) < |V | − (t + k). Therefore, no vertex of C is in V ′

and D ⊆ V ′. Moreover, at least one vertex v ∈ A for each column is in V ′ and so v has at least k neighbours in the clique
B \ V ′. By the Expansion Lemma and since all the vertices in the column of v have identical neighbourhoods, then each
vertex in the column of v belongs to V ′ and so A ⊆ V ′. Therefore, the number of vertices in B which are in V ′ is at least
|V | − (t + k) − |A| − |D| = m − t . We claim that I =


i : vi ∈ B \ V ′


is a yes-instance of Set Multicover. Indeed, any

vertex of A has at least k neighbours in B\V ′. In other words, each aj ∈ S is contained in at least k of the subsets Si with i ∈ I .
Moreover, |I| ≤ m − (m − t) = t . �



170 A. Munaro / Discrete Applied Mathematics 211 (2016) 163–174

4. Graphs of bounded clique-width

Graphs of bounded tree-width are particularly interesting from an algorithmic point of view: a lot of NP-complete
problems can be solved in linear time for them. For example, all graph properties which are expressible in monadic second-
order logic with edge-set quantification are decidable in linear time on graphs of bounded tree-width. This is the content
of the celebrated algorithmic meta-theorem of Courcelle [4]. Let us briefly recall that monadic second-order logic is an
extension of first-order logic by quantification over sets. The language of monadic second-order logic of graphs (MSO1 in
short) contains the expressions built from the following elements:
• variables x, y, . . . for vertices and X, Y , . . . for sets of vertices;
• predicates x ∈ X and adj(x, y);
• equality for variables, standard Boolean connectives and the quantifiers ∀ and ∃.

By considering edges and sets of edges as other sorts of variables and the incidence predicate inc(v, e), we obtain monadic
second-order logic of graphs with edge-set quantification (MSO2 in short).

If a graph property is expressible in the more restricted MSO1, then Courcelle et al. [5] showed that it is decidable in
linear time even on graphs of bounded clique-width, assuming a k-expression of the graph is explicitly given. The following
observation shows that, for any graph, being shattered by its k-connected subgraphs is a property that makes no exception
to this framework.

Lemma 19. Being shattered by k-connected subgraphs is expressible inMSO1.

Proof. Let G = (V , E) be a graph. The following MSO2 sentence says that the subgraph induced by X ⊆ V is connected:

conn(X) = ∀Y⊆V [(∃u∈X u ∈ Y ∧ ∃v∈X v ∉ Y ) → (∃e∈E∃u∈X∃v∈X inc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v ∉ Y )].

It is easy to see that the quantification over single edges can be expressed by a MSO1 sentence as follows:

∃a∈V∃b∈V∃u∈X∃v∈X adj(a, b) ∧ (u = a ∨ u = b) ∧ (v = a ∨ v = b) ∧ u ∈ Y ∧ v ∉ Y .

The following MSO1 sentence says that the subgraph induced by X ⊆ V is k-connected:

k-conn(X) = ∃v1∈X . . . ∃vk+1∈X (∀u1∈V . . . ∀uk−1∈V conn(X \ {u1, . . . , uk−1})).

Finally, the following MSO1 sentence says that the set A ⊆ V is shattered by k-connected subgraphs:

shatt(A) = ∀B⊆A∃X⊆V k-conn(X) ∧ X ∩ A = B. �

Therefore, as an immediate consequence of the meta-theorem stated above, we have the following.

Corollary 20. Graph VCk-con Dimension is decidable in linear time for graphs of bounded clique-width.

As shown by Courcelle and Olariu [6], every graph of bounded tree-width has bounded clique-width but there are graphs
of bounded clique-width having unbounded treewidth (for example, complete graphs). Therefore, clique-width can be
viewed as a more general concept than tree-width. Moreover, P4-free graphs, also known as cographs, are exactly those
graphs having clique-width at most 2 [6]. See [11] for other classes of graphs of bounded clique-width.

We have seen that Graph VCk-con Dimension is NP-hard even for split graphs. Are there some subclasses of split graphs
on which the problem becomes easy? Recall that the Dilworth number of a graph G is the size of a largest antichain (or,
equivalently, the size of aminimumchain partition)with respect to the quasi-order≼ defined on the vertices ofG as follows:
x ≼ y if and only if NG(x) ⊆ NG[y]. Graphs with Dilworth number 1 are precisely the well-known threshold graphs, which
are the P4-free split graphs. Therefore, they have clique-width at most 2 and we have seen we can decide the VC-dimension
in linear time. On the other hand, already a small jump for the Dilworth number of a split graph, from 1 to 2, changes the
clique-width from bounded to unbounded [13]. Nevertheless, deciding the VC-dimension remains easy.

Theorem 21. Graph VCk-con Dimension is decidable in polynomial time for split graphs with Dilworth number at most 2.

Proof. Let G = (V , E) be the input graph.We assume the unique partition of V into a clique of sizeω(G) and an independent
set I of sizeα(G) is given. It is well-known that the problem of finding aminimum chain partition of a poset can be translated
into a maximum bipartite matching problem [16]. Therefore, we can find in polynomial time a chain partition I1 ∪ I2 of I . For
j ∈ {1, 2}, let Ij,≥k = {u ∈ Ij : d(u) ≥ k} and Ij,≽u = {v ∈ Ij : v ≽ u}. Note that, if ω(G) ≤ k, then G contains no k-connected
subgraph. Therefore, we may assume ω(G) > k. But then, a maximum size shattered set containing vertices from at most
one between I1 and I2 has size

max{ω(G) − (k + 1) + |I1,≥k|, ω(G) − (k + 1) + |I2,≥k|}.

On the other hand, it is not difficult to see that, for any pair x ∈ I1,≥k and y ∈ I2,≥k, a maximum size shattered set containing
x as the minimal element from I1,≥k and y as the minimal element from I2,≥k has size

ω(G) − max{k + 1, 2k − |N(x) ∩ N(y)|} + |I1,≽x| + |I2,≽y|. �
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Fig. 4. Construction of the graph G′ . The vertex u is replaced by a gadget containing 7 vertices.

It is not difficult to see that outerplanar graphs have tree-width at most 2, and so bounded clique-width as well. On the
other hand, planar graphs, in general, do not have bounded clique-width, even if restricted to be bipartite andwithmaximum
degree 3 (see [11, Lemma 1]). In the next sectionwe investigate the complexity ofGraph VCk-con Dimensionwhen restricted
to planar bipartite graphs with maximum degree at most 4.

5. Subclasses of planar graphs

For our reductionswe need a series of auxiliary results. The following variant ofHamiltonian Circuit Through Specified
Edgewas shown to be NP-complete in a comment on [15].

Hamiltonian Circuit Through Specified Edge

Instance: A planar cubic bipartite graph G = (V , E) and e ∈ E.
Question: Does G contain a Hamiltonian circuit through e?

For completeness, we give the details of the reduction from the following variant of Hamiltonian Circuit, shown to be
NP-complete by Akiyama et al. [1].

Hamiltonian Circuit

Instance: A planar cubic bipartite graph G = (V , E).
Question: Does G contain a Hamiltonian circuit?

Theorem 22 (Labarre [15]). Hamiltonian Circuit Through Specified Edge is NP-complete even for planar cubic bipartite
graphs.

Proof. Given a planar cubic bipartite graph G = (V , E), we construct a graph G′
= (V ′, E ′) by replacing a vertex u with the

gadget depicted in Fig. 4 and we set e = u′

2z. Clearly, G
′ is a planar cubic bipartite graph. It is easy to see that G′ contains a

Hamiltonian circuit through e if and only if G contains a Hamiltonian circuit. �

Now we strengthen some hardness results obtained by Douglas [7] and related to the problems Hamiltonian Path and
Connected Dominating Set. We think they might be of independent interest.

Theorem 23. Hamiltonian Path is NP-complete even for planar bipartite graphs where all the vertices have degree 3, except
two, which have degree 1.

Proof. Let G = (V , E) and uv ∈ E be an instance ofHamiltonian Circuit Through Specified Edge, where G is a planar cubic
bipartite graph. Our reduction constructs a graph G′

= (V ′, E ′) as follows. Let V ′
= V ∪ {a, b}, where a, b are new vertices,

and E ′
= (E \ {uv}) ∪ {au, bv}. Clearly, G′ is a planar bipartite graph where all the vertices have degree 3, except a and b

of degree 1. It is easy to see that G has a Hamiltonian circuit through uv if and only if G′ has a Hamiltonian path (between a
and b). �

By Theorem 23 and using the same reduction as in [7, Theorem 1] (if the graph G in [7, Theorem 1] is bipartite, then G′ is
bipartite too), we have the following.

Theorem 24. Given a planar bipartite graph G = (V , E) with ∆(G) = 3, it is NP-complete to decide if there exists a spanning
tree T for G such that dT (v) is either 1 or 3, for any v ∈ V .
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Moreover, by the Proofs of [7, Corollary 1 and Corollary 2], we have that the following variant of Connected Dominating
Set is NP-complete.

Connected Dominating Set

Instance: A planar bipartite graph G = (V , E) with maximum degree 3.
Question: Does there exist D ⊆ V such that G[D] is connected, every vertex in V \ D is adjacent to at

least one vertex in D and |D| ≤
|V |

2 − 1?

Now we are ready to prove the NP-hardness of Graph VCcon Dimension for the class of planar bipartite graphs with
maximum degree 3. Given the connection between VCcon and the connected domination number, hidden in Theorem 2, it is
no surprise we are going to reduce from the problem stated above.

Theorem 25. Graph VCcon Dimension is NP-complete even for planar bipartite graphs with maximum degree 3.

Proof. We prove NP-hardness by a reduction from the variant of Connected Dominating Set introduced above. Let
G = (V , E) be an instance of Connected Dominating Set where G is a planar bipartite graph, ∆(G) = 3 and |V | = n.
We claim G has a connected dominating set D with |D| ≤

n
2 − 1 if and only if VCcon(G) ≥

n
2 + 1. Clearly, we may assume

n ≥ 46.
Suppose first G has a connected dominating set D with |D| ≤

n
2 − 1. Then each vertex in V \ D can be joined to G[D]

independently of one another, and so V \D can be shattered by connected subgraphs. Therefore, VCcon(G) ≥ |V \D| ≥
n
2 +1.

Conversely, suppose VCcon(G) ≥
n
2 + 1 and let A be a shattered set of maximum size. Recall that, by assumption, we

have |A| ≥ 24. The idea is to show there exists a connected component C of G − A such that each vertex of A is joined to C .
Claim 26 would then imply that |C | ≥ |A| − 2 ≥

n
2 − 1 and so C would be a connected dominating set of size n

2 − 1. We
now elaborate on this idea in a series of claims, each one followed by a short proof.

Claim 26. Each connected component C of G − A has at most |C | + 2 neighbours in A.

Indeed, if C contains at most two 1-vertices, then the claim clearly holds. Therefore, let {u1, . . . , uk}, with k ≥ 3, be the
set of 1-vertices in C . Since C is connected, there exists a u1 − u2 path P in C . Moreover, any u3 − u1 path intersects P in a
3-vertex. Applying this reasoning again, we have that d1(C) − 2 ≤ d3(C), where di = |{v ∈ C : dC (v) = i}|. But then C has
at most 2d1(C) + d2(C) = |C | + d1(C) − d3(C) ≤ |C | + 2 neighbours in A. �

Since ∆(G) = 3, then each vertex u ∈ A has at least one neighbour in G−A, otherwise it would not be possible to shatter
u and a vertex in A \ N(u). Let C1, . . . , Ck be the connected components of G − A.

Claim 27. There exists a vertex in A joined to less than three connected components.

Indeed, suppose each vertex in A is joined to exactly three connected components. By Claim 26 and double counting the
size of the edge cut [A, A], we have 3|A| ≤


(|Ci| + 2). Therefore,

k ≥
3|A| −


|Ci|

2
=

3|A| − (n − |A|)

2
≥

n
2

+ 2,

contradicting the fact that |V \ A| ≤
n
2 − 1. �

Claim 28. No vertex in A is joined to exactly two connected components.

Suppose, to the contrary, there exists u ∈ A joined to exactly two connected components, say C1 and C2. Then, every
vertex in A \N(u) is joined to either C1 or C2. By Claim 26, we have |C1|+ |C2|+ 3 ≥ |A|− 1, fromwhich |C1|+ |C2| ≥

n
2 − 3

and so
k

i=3 |Ci| ≤ 2.
We now claim that the (at least |A|−1) vertices in A\N(u) are all joined to C1 or all joined to C2. Suppose, to the contrary,

there exist v and w in A \ N[u] such that v is joined to C1, w is joined to C2 but none of them is joined to both C1 and C2.
Let B ⊆ A be the subset of vertices which are joined to both C1 and C2. Since |C1| + 2 ≥ |B| and |C2| + 2 ≥ |B|, then
|B| ≤

|C1|+|C2|
2 + 2 ≤

n+6
4 . Therefore, at least n

2 + 1 −
n+6
4 =

n−2
4 vertices of A are not joined to both C1 and C2. But then the

set B′ of vertices of A \ (N[v] ∪ N[w]) which are not joined to both C1 and C2 has size at least n−2
4 − 6 ≥ 5. Since {x, v} and

{x, w} are shattered, for any x ∈ B′, then each vertex in B′ is joined to some connected component different from C1 and C2,
contradicting the fact that the remaining connected components can be joined to at most four vertices in A.

Therefore, the (at least |A|−1) vertices in A \N(u) are all joined to the same connected component, say C1. Suppose now
there exists u′

∈ N(u) not joined to C1. By Claim 26, we have |C1| ≥
n
2 − 2. Moreover, the set {u′, w} is shattered, for any

w ∈ A \ {u, u′
}, contradicting the fact that the remaining component has at most 3 neighbours in A. Therefore, each v ∈ A

is joined to C1. Since |C1| ≥ |A| − 2 ≥
n
2 − 1, then C2 = ∅, a contradiction. �
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Fig. 5. Construction of the graph G′ . The vertex u is replaced by a gadget containing 9 vertices.

By Claims 27 and 28, there exists v ∈ A joined to exactly one connected component C of G − A. Then v has at most two
neighbours in A. Moreover, each of the (at least |A| − 3) nonneighbours of v in A is joined to C , otherwise it would not be
possible to shatter the set {v, w}, for somew ∈ A\N[v]. Suppose there exists v′

∈ N(v)∩A not joined to C . By Claim 26, we
have |C | + 2 ≥ |A| − 2, from which |C | ≥

n
2 − 3 and so the remaining connected components contain at most two vertices.

Since the set {v′, w} is shattered, for any w ∈ A \ N[v′
], and there are at least |A| − 3 ≥ 21 such nonneighbours, we get

a contradiction to the fact that a component in G − A − C can have at most four neighbours in A. Therefore, each v ∈ A is
joined to C and |C | ≥ |A| − 2 ≥

n
2 − 1. But then |C | =

n
2 − 1 and C is a connected dominating set for G. �

Clearly, Graph VCcon Dimension becomes easy for graphs G with ∆(G) ≤ 2. Indeed, VCcon(Pn) = 2, for n ≥ 3, and
VCcon(C3) = 2 and VCcon(Cn) = 3, for n ≥ 4. Note that, if ∆(G) ≤ 2, then G has tree-width at most 2. Therefore, the
conclusion follows from Corollary 20 as well.

We conclude by showing the NP-hardness of Graph VC2-con Dimension for planar bipartite graphs with ∆(G) = 4. We
leave as an open problem to determine what happens if we further impose ∆(G) = 3.

Theorem 29. Graph VC2-con Dimension is NP-complete even for planar bipartite graphs with maximum degree 4.

Proof. Our reduction is from Hamiltonian Circuit, which remains NP-complete even for planar cubic bipartite graphs [1].
Given an instance G = (V , E) of Hamiltonian Circuit, where G is a planar cubic bipartite graph with |V | = n, we construct
a graph G′ by replacing each vertex u of Gwith the gadget depicted in Fig. 5.

For 0 ≤ i ≤ 2, the vertices ui are the gates and the vertices u′

i are the connectors. Finally, each pair u′

iu
′

i+1 (indices modulo
3) of connectors in the gadget is connected by a path of length 2 with inner vertex u′′

i+2, called a crossing vertex. Clearly, the
construction can be done in polynomial time and the resulting graph G′

= (V ′, E ′) is planar, bipartite and ∆(G′) = 4. We
claim that VC2-con(G′) ≥ |V ′

| − 5n if and only if G contains a Hamiltonian circuit.
Suppose first G contains a Hamiltonian circuit C . Without loss of generality, u ∈ V is incident to the edges 1 and 2 in C .

Then we augment the subgraph induced by E(C) in G′ with the path u1u′

0u2. Repeating this procedure for every vertex of G,
we get a circuit in G′ containing three vertices from every gadget. The vertices in {u0, u′′

0, u
′′

1, u
′′

2} can be joined to this circuit,
independently of one another, via paths through the connectors u′

0, u
′

1 and u′

2. In all cases, the resulting subgraph is clearly
2-connected. Repeating this process for every gadget, we have that a set of size |V ′

| − 5n can be shattered.
Suppose now VC2-con(G′) ≥ |V ′

| − 5n and let A be a shattered set of maximum cardinality.

Claim 30. For any gadget H ⊆ G′, exactly one gate and the three crossing vertices are in A.

We show first that at most four vertices of H are in A. Suppose, to the contrary, H contains at least five vertices of A. Then
at least one crossing vertex is in A, otherwise at least two gates would be in A, contradicting the fact that the set consisting
of a connector in H and a vertex not in H is shattered. Therefore, at least one crossing vertex is in A, say without loss of
generality u′′

1 . Then the connectors u′

0 and u′

2 are not in A. If another crossing vertex is in A, then u′

1 ∉ A and at least two gates
are in A, a contradiction. Therefore, u′′

1 is the only crossing vertex in A. But then all the gates are in A, a contradiction again.
SinceVC2-con(G′) ≥ |V ′

|−5n, then exactly four vertices per gadget are in A.We have seen that atmost one gate per gadget
is in A. Moreover, exactly one gate per gadget is in A, otherwise a crossing vertex and one of its neighbouring connectors
would both be in A. Let u0 be the gate of gadgetH in A. Suppose one of its neighbouring connectors is in A (clearly, there exists
atmost one such connector). But then, again, a crossing vertex and at least one of its neighbouring connectors would both be
in A, a contradiction. Therefore, both u′

1 and u′

2 are not in A and it is easy to see that itmust be A∩V (H) = {u0, u′′

0, u
′′

1, u
′′

2}. �

By Claim 30, there exists a 2-connected subgraph of G′ containing crossing vertices in every gadget and avoiding exactly
one gate per gadget. Therefore, for any gadget, this subgraph contains exactly two of the edges incident to its gates and
originally in G. This means that, contracting each gadget to a single vertex, we obtain a 2-regular connected spanning
subgraph. Therefore, G contains a Hamiltonian circuit. �
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6. Conclusion

This work represents a continuation of the systematic study of the VC-dimensions of graphs initiated by Kranakis
et al. [14].We have concentrated on the VC-dimensionwith respect to k-connected subgraphs. In particular, we have proved
the NP-completeness of the associated decision problem and observed its decidability in linear time for graphs of bounded
clique-width. In this context, we believe two interesting open problems arise: determine the complexity for unit interval
graphs and for planar graphs in the remaining cases 3 ≤ k ≤ 5. We conjecture that the first problem is in P. Finally, it would
be interesting to focus on the study of the VC-dimension with respect to other classes of subgraphs.
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