18 research outputs found

    Church Synthesis Problem for Noisy Input

    Full text link
    Abstract. We study two variants of infinite games with imperfect in-formation. In the first variant, in each round player-1 may decide to hide his move from player-2. This captures situations where the input signal is subject to fluctuations (noises), and every error in the input signal can be detected by the controller. In the second variant, all of player-1 moves are visible to player-2; however, after the game ends, player-1 may change some of his moves. This captures situations where the input signal is subject to fluctuations; however, the controller cannot detect errors in the input signal. We consider several cases, according to the amount of errors allowed in the input signal: a fixed number of errors, finitely many errors and the case where the rate of errors is bounded by a threshold. For each of these cases we consider games with regular and mean-payoff winning conditions. We investigate the decidability of these games. There is a natural reduction for some of these games to (perfect infor-mation) multidimensional mean-payoff games recently considered in [6]. However, the decidability of the winner of multidimensional mean-payoff games was stated as an open question. We prove its decidability and provide tight complexity bounds.

    The Complexity of Nash Equilibria in Limit-Average Games

    Full text link
    We study the computational complexity of Nash equilibria in concurrent games with limit-average objectives. In particular, we prove that the existence of a Nash equilibrium in randomised strategies is undecidable, while the existence of a Nash equilibrium in pure strategies is decidable, even if we put a constraint on the payoff of the equilibrium. Our undecidability result holds even for a restricted class of concurrent games, where nonzero rewards occur only on terminal states. Moreover, we show that the constrained existence problem is undecidable not only for concurrent games but for turn-based games with the same restriction on rewards. Finally, we prove that the constrained existence problem for Nash equilibria in (pure or randomised) stationary strategies is decidable and analyse its complexity.Comment: 34 page

    On the Complexity of Heterogeneous Multidimensional Games

    Get PDF
    We study two-player zero-sum turn-based games played on multidimensional weighted graphs with heterogeneous quantitative objectives. Our objectives are defined starting from the measures Inf, Sup, LimInf, and LimSup of the weights seen along the play, as well as on the window mean-payoff (WMP) measure recently introduced in [Krishnendu,Doyen,Randour,Raskin, Inf. Comput., 2015]. Whereas multidimensional games with Boolean combinations of classical mean-payoff objectives are undecidable [Velner, FOSSACS, 2015], we show that CNF/DNF Boolean combinations for heterogeneous measures taken among {WMP, Inf, Sup, LimInf, LimSup} lead to EXPTIME-completeness with exponential memory strategies for both players. We also identify several interesting fragments with better complexities and memory requirements, and show that some of them are solvable in PTIME

    Robust Multidimensional Mean-Payoff Games are Undecidable

    Full text link
    Mean-payoff games play a central role in quantitative synthesis and verification. In a single-dimensional game a weight is assigned to every transition and the objective of the protagonist is to assure a non-negative limit-average weight. In the multidimensional setting, a weight vector is assigned to every transition and the objective of the protagonist is to satisfy a boolean condition over the limit-average weight of each dimension, e.g., \LimAvg(x_1) \leq 0 \vee \LimAvg(x_2)\geq 0 \wedge \LimAvg(x_3) \geq 0. We recently proved that when one of the players is restricted to finite-memory strategies then the decidability of determining the winner is inter-reducible with Hilbert's Tenth problem over rationals (a fundamental long-standing open problem). In this work we allow arbitrary (infinite-memory) strategies for both players and we show that the problem is undecidable

    Hyperplane Separation Technique for Multidimensional Mean-Payoff Games

    Full text link
    We consider both finite-state game graphs and recursive game graphs (or pushdown game graphs), that can model the control flow of sequential programs with recursion, with multi-dimensional mean-payoff objectives. In pushdown games two types of strategies are relevant: global strategies, that depend on the entire global history; and modular strategies, that have only local memory and thus do not depend on the context of invocation. We present solutions to several fundamental algorithmic questions and our main contributions are as follows: (1) We show that finite-state multi-dimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weight is fixed; whereas if the number of dimensions is arbitrary, then problem is already known to be coNP-complete. (2) We show that pushdown graphs with multi-dimensional mean-payoff objectives can be solved in polynomial time. (3) For pushdown games under global strategies both single and multi-dimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multi-dimensional problem is also undecidable (whereas under modular strategies the single dimensional problem is NP-complete). We show that if the number of modules, the number of exits, and the maximal absolute value of the weight is fixed, then pushdown games under modular strategies with single dimensional mean-payoff objectives can be solved in polynomial time, and if either of the number of exits or the number of modules is not bounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multi-dimensional mean-payoff games or pushdown games under modular strategies with single-dimensional mean-payoff objectives would imply the solution of the long-standing open problem of fixed parameter tractability of parity games.Comment: arXiv admin note: text overlap with arXiv:1201.282

    On the complexity of heterogeneous multidimensional quantitative games

    Get PDF
    In this paper, we study two-player zero-sum turn-based games played on a finite multidimensional weighted graph. In recent papers all dimensions use the same measure, whereas here we allow to combine different measures. Such heterogeneous multidimensional quantitative games provide a general and natural model for the study of reactive system synthesis. We focus on classical measures like the Inf, Sup, LimInf, and LimSup of the weights seen along the play, as well as on the window mean-payoff (WMP) measure. This new measure is a natural strengthening of the mean-payoff measure. We allow objectives defined as Boolean combinations of heterogeneous constraints. While multidimensional games with Boolean combinations of mean-payoff constraints are undecidable, we show that the problem becomes EXPTIME-complete for DNF/CNF Boolean combinations of heterogeneous measures taken among {WMP, Inf, Sup, LimInf, LimSup} and that exponential memory strategies are sufficient for both players to win. We provide a detailed study of the complexity and the memory requirements when the Boolean combination of the measures is replaced by an intersection. EXPTIME-completeness and exponential memory strategies still hold for the intersection of measures in {WMP, Inf, Sup, LimInf, LimSup}, and we get PSPACE-completeness when WMP measure is no longer considered. To avoid EXPTIME-or PSPACE-hardness, we impose at most one occurrence of WMP measure and fix the number of Sup measures, and we propose several refinements (on the number of occurrences of the other measures) for which we get polynomial algorithms and lower memory requirements. For all the considered classes of games, we also study parameterized complexity

    Pareto-Rational Verification

    Get PDF
    corecore