308 research outputs found

    Asymptotic Limits and Zeros of Chromatic Polynomials and Ground State Entropy of Potts Antiferromagnets

    Full text link
    We study the asymptotic limiting function W(G,q)=limnP(G,q)1/nW({G},q) = \lim_{n \to \infty}P(G,q)^{1/n}, where P(G,q)P(G,q) is the chromatic polynomial for a graph GG with nn vertices. We first discuss a subtlety in the definition of W(G,q)W({G},q) resulting from the fact that at certain special points qsq_s, the following limits do not commute: limnlimqqsP(G,q)1/nlimqqslimnP(G,q)1/n\lim_{n \to \infty} \lim_{q \to q_s} P(G,q)^{1/n} \ne \lim_{q \to q_s} \lim_{n \to \infty} P(G,q)^{1/n}. We then present exact calculations of W(G,q)W({G},q) and determine the corresponding analytic structure in the complex qq plane for a number of families of graphs G{G}, including circuits, wheels, biwheels, bipyramids, and (cyclic and twisted) ladders. We study the zeros of the corresponding chromatic polynomials and prove a theorem that for certain families of graphs, all but a finite number of the zeros lie exactly on a unit circle, whose position depends on the family. Using the connection of P(G,q)P(G,q) with the zero-temperature Potts antiferromagnet, we derive a theorem concerning the maximal finite real point of non-analyticity in W(G,q)W({G},q), denoted qcq_c and apply this theorem to deduce that qc(sq)=3q_c(sq)=3 and qc(hc)=(3+5)/2q_c(hc) = (3+\sqrt{5})/2 for the square and honeycomb lattices. Finally, numerical calculations of W(hc,q)W(hc,q) and W(sq,q)W(sq,q) are presented and compared with series expansions and bounds.Comment: 33 pages, Latex, 5 postscript figures, published version; includes further comments on large-q serie

    Chromatic Polynomials for Families of Strip Graphs and their Asymptotic Limits

    Full text link
    We calculate the chromatic polynomials P((Gs)m,q)P((G_s)_m,q) and, from these, the asymptotic limiting functions W({Gs},q)=limnP(Gs,q)1/nW(\{G_s\},q)=\lim_{n \to \infty}P(G_s,q)^{1/n} for families of nn-vertex graphs (Gs)m(G_s)_m comprised of mm repeated subgraphs HH adjoined to an initial graph II. These calculations of W({Gs},q)W(\{G_s\},q) for infinitely long strips of varying widths yield important insights into properties of W(Λ,q)W(\Lambda,q) for two-dimensional lattices Λ\Lambda. In turn, these results connect with statistical mechanics, since W(Λ,q)W(\Lambda,q) is the ground state degeneracy of the qq-state Potts model on the lattice Λ\Lambda. For our calculations, we develop and use a generating function method, which enables us to determine both the chromatic polynomials of finite strip graphs and the resultant W({Gs},q)W(\{G_s\},q) function in the limit nn \to \infty. From this, we obtain the exact continuous locus of points B{\cal B} where W({Gs},q)W(\{G_s\},q) is nonanalytic in the complex qq plane. This locus is shown to consist of arcs which do not separate the qq plane into disconnected regions. Zeros of chromatic polynomials are computed for finite strips and compared with the exact locus of singularities B{\cal B}. We find that as the width of the infinitely long strips is increased, the arcs comprising B{\cal B} elongate and move toward each other, which enables one to understand the origin of closed regions that result for the (infinite) 2D lattice.Comment: 48 pages, Latex, 12 encapsulated postscript figures, to appear in Physica

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof
    corecore