4,379 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 336)

    Get PDF
    This bibliography lists 111 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Knowledge-based vision for space station object motion detection, recognition, and tracking

    Get PDF
    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed

    ON THE LOGIC, METHOD AND SCIENTIFIC DIVERSITY OF TECHNICAL SYSTEMS: AN INQUIRY INTO THE DIAGNOSTIC MEASUREMENT OF HUMAN SKIN

    Get PDF
    This dissertation explores some of the scientific, technical and cultural history of human skin measurement and diagnostics. Through a significant collection of primary texts and case studies, I track the changing technologies and methods used to measure skin, as well as the scientific and sociotechnical applications. I then map these histories onto some of the diverse understandings of the human body, physics, biology, natural philosophy and language that underpinned the scientific enterprise of skin measurement. The main argument of my thesis demonstrates how these diverse histories of science historically and theoretically inform the succeeding methods and applications for skin measurement from early Greek medicine, to beginnings of Anthropology as scientific discipline, to the emergence of scientific racism, to the age of digital imaging analysis, remote sensing, algorithms, massive databases and biometric technologies; further, these new digital applications go beyond just health diagnostics and are creating new technical categorizations of human skin divorced from the established ethical mechanisms of modern science. Based on this research, I inquire how communication practices within the scientific enterprise address the ethical and historical implications for a growing set of digital biometric applications with industrial, military, sociopolitical and public functions

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Design of a Trichromatic Cone Array

    Get PDF
    Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative

    The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST

    Get PDF
    The focus of this report is on the opportunities enabled by the combination of LSST, Euclid and WFIRST, the optical surveys that will be an essential part of the next decade's astronomy. The sum of these surveys has the potential to be significantly greater than the contributions of the individual parts. As is detailed in this report, the combination of these surveys should give us multi-wavelength high-resolution images of galaxies and broadband data covering much of the stellar energy spectrum. These stellar and galactic data have the potential of yielding new insights into topics ranging from the formation history of the Milky Way to the mass of the neutrino. However, enabling the astronomy community to fully exploit this multi-instrument data set is a challenging technical task: for much of the science, we will need to combine the photometry across multiple wavelengths with varying spectral and spatial resolution. We identify some of the key science enabled by the combined surveys and the key technical challenges in achieving the synergies.Comment: Whitepaper developed at June 2014 U. Penn Workshop; 28 pages, 3 figure
    • …
    corecore