30,845 research outputs found

    Choosing the right loss function for multi-label Emotion Classification

    Full text link
    [EN] Natural Language Processing problems has recently been benefited for the advances in Deep Learning. Many of these problems can be addressed as a multi-label classification problem. Usually, the metrics used to evaluate classification models are different from the loss functions used in the learning process. In this paper, we present a strategy to incorporate evaluation metrics in the learning process in order to increase the performance of the classifier according to the measure we are interested to favor. Concretely, we propose soft versions of the Accuracy, micro-F-1, and macro-F-1 measures that can be used as loss functions in the back-propagation algorithm. In order to experimentally validate our approach, we tested our system in an Emotion Classification task proposed at the International Workshop on Semantic Evaluation, SemEval-2018. Using a Convolutional Neural Network trained with the proposed loss functions we obtained significant improvements both for the English and the Spanish corpora.This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R) and the GiSPRO project (PROMETEU/2018/176). Work of Jose-Angel Gonzalez is also financed by Universitat Politecnica de Valencia under grant PAID-01-17.Hurtado Oliver, LF.; González-Barba, JÁ.; Pla Santamaría, F. (2019). Choosing the right loss function for multi-label Emotion Classification. Journal of Intelligent & Fuzzy Systems. 36(5):4697-4708. https://doi.org/10.3233/JIFS-179019S46974708365Baccianella S. , Esuli A. and Sebastiani F. , Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, In in Proc of LREC, 2010.Bilmes J. , Asanovic K. , Chin C.-W. and Demmel J. , Using phipac to speed error back-propagation learning, In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 5, 1997, pp. 4153–4156.Cruz, F. L., Troyano, J. A., Pontes, B., & Ortega, F. J. (2014). Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Systems with Applications, 41(13), 5984-5994. doi:10.1016/j.eswa.2014.04.005Dembczynski K. , Jachnik A. , Kotlowski W. , Waegeman W. and Huellermeier E. , Optimizing the F-Measure in Multi-Label Classification: Plug-in Rule Approach versus Structured Loss Minimization, In DasguptaS. and McAllester D., editors, Proceedings of the 30th International Conference on Machine Learning volume 28 of Proceedings of Machine Learning Research, Atlanta, Georgia, USA, PMLR, 2013, pp. 1130–1138.Goodfellow I. , Bengio Y. and Courville A. , Deep Learning, MIT Press, http://www.deeplearningbook.org (2016).Hu M. and Liu B. , Mining and summarizing customer reviews, In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, New York, NY, USA, ACM, 2004, pp. 168–177.Ioffe S. and Szegedy C. , Batch normalization: Accelerating deep network training by reducing internal covariate shift, CoRR, abs/1502.03167 (2015).Janocha K. and Czarnecki W.M. , On loss functions for deep neural networks in classification, CoRR, abs/1702.05659 (2017).Krieger M. and Ahn D. , Tweetmotif: Exploratory search and topic summarization for twitter, In Proc of AAAI Conference on Weblogs and Social, 2010.Liu B. , Sentiment Analysis and Opinion Mining, A Comprehensive Introduction and Survey. Morgan & Claypool Publishers, 2012.Mikolov T. , Sutskever I. , Chen K. , Corrado G. and Dean J. , Distributed representations of words and phrases and their compositionality, CoRR, abs/1310.4546 (2013a).Mikolov T. , Chen K. , Corrado G. and Dean J. , Efficient estimation of word representations in vector space, CoRR, abs/1301.3781, 2013b.Mohammad S. , #emotional tweets, In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the Main Conference and the Shared Task and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), Montréal, Canada. Association for Computational Linguistics, 2012, pp. 246–255.Mohammad S. , Kiritchenko S. , Sobhani P. , Zhu X. and Cherry C. , Semeval-task 6: Detecting stance in tweets, In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 2016, pp. 31–41.Mohammad S.M. and Bravo-Marquez F. , WASSA-shared task on emotion intensity, CoRR, abs/1708.03700, 2017.Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.xMohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433Mohammad S.M. , Bravo-Marquez F. , Salameh M. and Kiritchenko S. , Semeval-2018 Task 1: Affect in tweets, In Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA, 2018.Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M.-T., & Perea-Ortega, J. M. (2013). Semantic orientation for polarity classification in Spanish reviews. Expert Systems with Applications, 40(18), 7250-7257. doi:10.1016/j.eswa.2013.06.076Nair V. and Hinton G.E. , Rectified linear units improve restricted boltzmann machines, In Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, USA, 2010, pp. 807–814. Omnipress.NielsenF.Å., AFINN, 2011.Pastor-Pellicer J. , Zamora-Martínez F. , España Boquera S. and Castro Bleda M.J. , F-Measure as the Error Function to Train Neural Networks, In IWANN Proceedings, 2013.Pennebaker J. , Chung C. , Ireland M. , Gonzales A. and Booth R. , The development and psychological properties of liwc2007, 2014.Pla, F., & Hurtado, L.-F. (2016). Language identification of multilingual posts from Twitter: a case study. Knowledge and Information Systems, 51(3), 965-989. doi:10.1007/s10115-016-0997-xRosenthal S. , Farra N. and Nakov P. , SemEval-2017 task 4: Sentiment analysis in Twitter, In Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval ’17, Vancouver, Canada, Association for Computational Linguistics, 2017.Saralegi X. and San I. , Vicente, Elhuyar at tass 2013, In XXIX Congreso de la Sociedad Espaola de Procesamiento de Lenguaje Natural, Workshop on Sentiment Analysis at SEPLN (TASS2013), 2013, pp. 143–150.Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47. doi:10.1145/505282.505283Taulé M. , Martí M. , Rangel F. , Rosso P. , Bosco C. and Patti V. , Overview of the task of Stance and Gender Detection in Tweets on Catalan Independence at IBEREVAL 2017, In Notebook Papers of 2nd SEPLN Workshop on Evaluation of Human Language Technologies for Iberian Languages (IBEREVAL), Murcia (Spain). CEUR Workshop Proceedings. CEUR-WS.org, 2017, 2017.Wiebe J. , Wilson T. and Cardie C. , Annotating expressions of opinions and emotions in language, Language Resources and Evaluation 1(2) (2005).Wilson T. , Wiebe J. and Hoffmann P. , Recognizing contextual polarity in phrase-level sentiment analysis, In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, Stroudsburg, PA, USA, 2005, pp. 347–354. Association for Computational Linguistics.Zhang Y. and Wallace B. , A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2017, pp. 253–263. Asian Federation of Natural Language Processing

    Nearest Labelset Using Double Distances for Multi-label Classification

    Full text link
    Multi-label classification is a type of supervised learning where an instance may belong to multiple labels simultaneously. Predicting each label independently has been criticized for not exploiting any correlation between labels. In this paper we propose a novel approach, Nearest Labelset using Double Distances (NLDD), that predicts the labelset observed in the training data that minimizes a weighted sum of the distances in both the feature space and the label space to the new instance. The weights specify the relative tradeoff between the two distances. The weights are estimated from a binomial regression of the number of misclassified labels as a function of the two distances. Model parameters are estimated by maximum likelihood. NLDD only considers labelsets observed in the training data, thus implicitly taking into account label dependencies. Experiments on benchmark multi-label data sets show that the proposed method on average outperforms other well-known approaches in terms of Hamming loss, 0/1 loss, and multi-label accuracy and ranks second after ECC on the F-measure

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa

    Learning Grimaces by Watching TV

    Full text link
    Differently from computer vision systems which require explicit supervision, humans can learn facial expressions by observing people in their environment. In this paper, we look at how similar capabilities could be developed in machine vision. As a starting point, we consider the problem of relating facial expressions to objectively measurable events occurring in videos. In particular, we consider a gameshow in which contestants play to win significant sums of money. We extract events affecting the game and corresponding facial expressions objectively and automatically from the videos, obtaining large quantities of labelled data for our study. We also develop, using benchmarks such as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recognition, showing that pre-training on face verification data can be highly beneficial for this task. Then, we extend these models to use facial expressions to predict events in videos and learn nameable expressions from them. The dataset and emotion recognition models are available at http://www.robots.ox.ac.uk/~vgg/data/facevalueComment: British Machine Vision Conference (BMVC) 201
    corecore