862 research outputs found

    Chirality and projective linear groups

    Get PDF
    AbstractIn recent years the term ‘chiral’ has been used for geometric and combinatorial figures which are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures are chiral or regular toroidal maps. In particular, the groups PSL2(Zm) are used to construct chiral polytopes, while PSL2(Zm[i]) and PSL2(Zm[ω]) are used to construct regular polytopes

    Chiral extensions of chiral polytopes

    Full text link
    Given a chiral d-polytope K with regular facets, we describe a construction for a chiral (d + 1)-polytope P with facets isomorphic to K. Furthermore, P is finite whenever K is finite. We provide explicit examples of chiral 4-polytopes constructed in this way from chiral toroidal maps.Comment: 21 pages. [v2] includes several minor revisions for clarit

    Mixing Chiral Polytopes

    Full text link
    An abstract polytope of rank n is said to be chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. Examples of chiral polytopes have been difficult to find. A "mixing" construction lets us combine polytopes to build new regular and chiral polytopes. By using the chirality group of a polytope, we are able to give simple criteria for when the mix of two polytopes is chiral

    Constructing Self-Dual Chiral Polytopes

    Get PDF
    An abstract polytope is chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. There are still few examples of chiral polytopes, and few constructions that can create chiral polytopes with specified properties. In this paper, we show how to build self-dual chiral polytopes using the mixing construction for polytopes.Comment: 16 page

    Hereditary Polytopes

    Full text link
    Every regular polytope has the remarkable property that it inherits all symmetries of each of its facets. This property distinguishes a natural class of polytopes which are called hereditary. Regular polytopes are by definition hereditary, but the other polytopes in this class are interesting, have possible applications in modeling of structures, and have not been previously investigated. This paper establishes the basic theory of hereditary polytopes, focussing on the analysis and construction of hereditary polytopes with highly symmetric faces.Comment: Discrete Geometry and Applications (eds. R.Connelly and A.Ivic Weiss), Fields Institute Communications, (23 pp, to appear

    Problems on Polytopes, Their Groups, and Realizations

    Full text link
    The paper gives a collection of open problems on abstract polytopes that were either presented at the Polytopes Day in Calgary or motivated by discussions at the preceding Workshop on Convex and Abstract Polytopes at the Banff International Research Station in May 2005.Comment: 25 pages (Periodica Mathematica Hungarica, Special Issue on Discrete Geometry, to appear

    Polygonal Complexes and Graphs for Crystallographic Groups

    Full text link
    The paper surveys highlights of the ongoing program to classify discrete polyhedral structures in Euclidean 3-space by distinguished transitivity properties of their symmetry groups, focussing in particular on various aspects of the classification of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit polyhedra.Comment: 21 pages; In: Symmetry and Rigidity, (eds. R.Connelly, A.Ivic Weiss and W.Whiteley), Fields Institute Communications, to appea
    • …
    corecore