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Abstract 

In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which 
are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes 
is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures 
are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct 
chiral polytopes, while PSL,(Z,[I]) and PSL,(Z,[w]) are used to construct regular polytopes. 

1. Introduction 

Abstract polytopes are combinatorial structures that generalize the classical poly- 

topes. We are particularly interested in those that possess a high degree of symmetry. 

In this section, we briefly outline some definitions and basic results from the theory of 

abstract polytopes. For details we refer to [9,22,25,27]. 

An (abstract) polytope 9 of rank n, or an n-polytope, is a partially ordered set with 

a strictly monotone rank function rank( .) with range { - 1, 0, . . . , n}. The elements of 

9 with rankj are called j-faces of 8. The maximal chains (totally ordered subsets) of 

.P are calledJags. We require that 6P have a smallest (- 1)-face F_ 1, a greatest n-face 

F,, and that each flag contains exactly n+2 faces. Furthermore, we require that .Y be 

strongly flag-connected and that .P have the following homogeneity property: when- 

ever F<G, rank(F)=j- 1 and rank(G)=j+l, then there are exactly two j-faces 

H with FcH-cG. 

If F and G are faces of 9 with F < G, we shall call G/F := {H 1 F < H < G} a section of 

9’. We shall not distinguish between a face F and the section F/F_ 1, which itself is 
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a polytope with the same rank as F. The faces of rank 0, 1 and n- 1 are called vertices, 
edges andfacets, respectively. If F is a face, then the polytope FJF is called the co-face 

of 9 at F, or the vertex-jigure of 9 at F if F is a vertex. 

The dual @ of a polytope 9 is obtained from Y by reversing the partial order, while 

leaving the set of faces unchanged. We call B self-dual if 9 is isomorphic to 8. For 

a more refined notion of self-duality, see Section 3. 

A polytope 9 is said to be regular if its group of automorphisms is transitive on the 

flags. For a regular B, its group A(g) is generated by involutions p,,, . . . , pn_ 1, where 

pj is the unique automorphism keeping fixed all but the j-face of fixed base flag 

@:={F_l,F,,,... , F,} of 8. These distinguished generators satisfy the relations 

(PjPk)““=l (j,k=O ,..., n-l), (1) 

where pjj= 1, pjk=pkj=: pj+ 1 if k =j+ 1, and pjk= 2 otherwise. The generators also 

satisfy the intersection property 

(PjIj~J)n(pjlj~K)=(pjIjEJnK) for all J,KE{O,...,n-1). (2) 

Properties (1) and (2) characterize the groups of regular polytopes. Namely, if A is 

a group generated by involutions pO, . . . , pn_l which satisfy (1) and (2), then A is 

a group of a regular polytope [9,25] and po, . . . , p. _ 1 are the distinguished generators 

for its group. Such a group is called a C-group, and the polytope B is said to be of type 

{P 1, . . ..P”_I}. 
The Coxeter group abstractly defined by relations (1) is denoted by [pI, . . . ,pn- 1]. 

This group is the automorphism group of the universal polytope {pl, . . . ,p._ 1} 
(cf. [25]). 

For a regular n-polytope 8, we define the rotation 

“j:=pj_1pj (j=l,...,n-1). 

Thena,,... , on _ 1 generate the rotation subgroup A + (9) of A(g), which is of index at 

most 2 in A(B). When the index is 2 we shall say that B is directly regular. The 

rotations ~j satisfy the relations 

a?=1 (l<j<n-1); (3) 

(OjOj+ 1 ...e.ak)2=1 (l<j<k<n-1). 

BY [PI,..., pn- 1] ’ we denote the group abstractly defined by (3); this is the rotation 

group of the universal polytope {pl, . . . ,p._ 1}. 
Now let 9 be a polytope of rank n > 3. Then 9 is said to be chirul if 9 is not regular, 

but if for some base jlug YY={F_~,F~,..., F,} of 9 there exist automorphisms 

g1, ... 7 C.J_ 1 of 9 such that ~j fixes all faces in Y \ { Fj_ 1, Fj} and cyclically permutes 

consecutive j-faces of B in the (polygonal) rank 2 section Fj+ ,/Fj- 2 of 8. For a chiral 

polytope the aj’s can be chosen in such a way that, if FJ denotes the j-face of B 

with Fj_1<F3<Fj+l and FJ#Fj, then Oj(FJ)=Fj (and thus oj(Fj-l)=F>-1) for 

j=l , . . . , n - 1. The corresponding automorphisms cl,. . . , CT~_ 1 generate A(B) and 
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satisfy relations (3), with pr, . . . ,P”-~ given by the type {pl, . . . ,pn_i} of 9. The 

elements 0i, . . . , CT- 1 are called the distinguished generators of A(p). 

It is not hard to see that all sections of a chiral polytope 9 must be directly regular 

or chiral polytopes. In particular, the (n-2)-faces and the co-faces at edges are directly 

regular. For a detailed discussion of chiral polytopes, we refer to [27]. 

A group A with distinguished generators pi, . . . , on_ 1 must necessarily satisfy 

a certain intersection property which is stated below for n = 4 (see [27]). Conversely, if 

A is a group generated by ol, . . . , oneI satisfying relations (3) and this intersection 

property, then A is the group of a chiral polytope or the rotation group of a directly 

regular polytope. This polytope is directly regular if and only if there exists an 

involutory group automorphism p: A-+,4 such that p(ai)=o; ‘, p(oz)=a:oz and 

p(fJj)=Oj fOrj=3, . . . . n- 1 [27, Theorem 11. Furthermore, it is properly self-dual (in 

the sense of Section 3) if and only if there exists an involutory automorphism p such 

that PO~R-~=G;~ and pazp-‘=azl. 

This paper deals mostly with rank 4 polytopes. If oi, cz, o3 are the distinguished 

generators of the group of a rank 4 chiral polytope 9, then the intersection property 

takes the form 

(01 >n(fJz > = 1 = (02 )A(03 >? 

(~1,~2M<fJZ,~3)=(~2) 

(see [27, Lemma 111). 

2. Toroidal maps and locally toroidal polytopes of rank 4 

Polytopes of rank 3 are (essentially) maps on surfaces. Note that in [6] the term 

‘regular’ has been used for two kinds of maps: maps which are regular in our sense 

(reflexible maps); and maps which are chiral in our sense (irreflexible maps). The 

regular and chiral toroidal maps (maps on the torus) are all of type (4, 4}(b,Ej, (3, 6ju,,, 

or {6,3),,,,, (cf. [6, pp. 101-1093). 

Consider the regular tessellation {4,4} of the Euclidean plane. Let 

[4,4] = ( pO, pl, pz ) and [4,4] + = (al, 02), in the notation of Section 1. In either of 

these groups the translations X=p,p,p,p,=a;‘~, and Y=poplpzpl =aio;’ gen- 

erate an abelian subgroup. Regarding X and Y as unit translations along the 

Cartesian coordinate axes, Xb Y’ translates the origin (0,O) to the point (b, c). The orbit 

of (0,O) under (X, Y) is the set of vertices of (4, 4) (which is Z[i]). For a given pair of 

integers (b, c) the square 

(b, c), (0, O), (- c, b), (b -c, b + c) 

is a fundamental region for the translation subgroup (X b Y’, X -’ Yb). Identifying 

opposite edges of the square (see Fig. l), we obtain the toroidal map JZ := 14, 4}@,,. 

Note that we made a slight change in the notation of [6] where (4, 4}@,, is denoted 

by (4, 4)b.c. 
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(114) 

(1,2) 

(O,O) 

{4,4)0,2) 
{3.6)(2.1) 

Fig. 1. 

It is easy to see that if b = 0 or c = 0, or if b = c (equivalently, if bc(b - c) = 0), then 

C4,4)@, C, is regular; otherwise, it is chiral. Also note that (4,4),,,,,= {4,4}(_,,bJ; in 

particular, (4, 4)(&o)= (4, 4}(,,,b). If bc(b-c)#O, then {4,4},,,,, and {4, 4}Cc,bJ, although 

isomorphic, are distinct. In a sense the map {4,4},,,,, is a mirror image of {4, 4}@,,. We 

will say that one is the enantiomorphic form of the other, or that the two maps are the 

two enantiomorphic forms of the same underlying isomorphism type of toroidal map. 

Note that conjugation by cr2 maps X to Y -i and Y to X, so that Xb Y”= 1 implies 

X-‘Y’=l. Hence, ,4+(~%‘)=:[4,4]$,,, has the following presentation: 

o;‘=ol:=(aloz)2=(~11~*)b(al(T21)c=1. (4) 

Let us now consider the Euclidean tessellation {3,6). Let [3,6] = ( pO,pl, p2) 

and [3,6]+=(a,,02). The translations X=(pop1p2)2=~16;1~;1a2=~1 -‘erg and 

Y=(p1p2po)2=~2~1~;1~;1=~2~.;1 c2 generate again an abelian subgroup. Now 

regarding X and Y as unit translations along the oblique axes inclined at n/3, the orbit 

of (0,O) under (X, Y) is the set of vertices of {3,6} (which is Z[o]). For a given pair 

of integers (b, c), consider (Xb Y’, X -‘Y b+c) whose fundamental region is the 

parallelogram 

(b, c), (0, 0), ( - c, b + 4, (b -c, b + 2~1, 

with coordinates understood relative to the basis X, Y. Identifying opposite edges of 

this parallelogram (Fig. l), we obtain the map JV := {3,6},,,,,. 

As before, if bc(b -c) =0 then JV is regular; otherwise, JV is chiral. Also 

{3,6) (b,E)={3>6)(-C,b+c) and {3,6}(b,o)= {3,6}(,,b,. When JV is chiral, the maps 

{3,6),b~, and { 3,6},,, bJ are enantiomorphic. 

The conjugation by g2 maps X to Y and Y to YX - ‘. Hence, XbYc= 1 implies 

X-cYb+c=l, hence A+(~V)=:{3,6}$,,,i has the following presentation: 

(T:=~~=(~l~2)2=(~1~;1~;1~2)b(a2~1~21~;l)c= 1. (5) 
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The dual of M={3,6}&) is given by J= (6, 3}Cb,c), where the index (b,c) of 

the latter refers to the same translations X, Y as above. In particular, {6,3},,,,, = 

16,3J(-c,b+c) and (6,3)(b,0)= (6,3f~~). Again, in the chiral case the maps {6,3},,,,, 

and (6,3},,, bJ are enantiomorphic. By dualizing (i.e. by replacing p,,, pi, p2 by 

pz, pi, pO, and CJ~,CJ~ by o;l,o;l) we find that A+(~?)=:[6,3]&, has the following 

presentation: 

Let 9” be either a regular or chiral4-polytope. We say that 9 is locally taroidal if its 

facets and its vertex-figures are maps on the 2-sphere or on the torus, and either its 

facets or its vertex-figures, or both, are actually toroidal. Then locally toroidal rank 

4 polytopes are necessarily of type {4,4,3}, {3,4,4}, {4,4,4}, {3,6,3}, {6,3,p) or 

{p, 3,6} with p = 3,4,5 or 6. In this paper we will construct infinite families of such 

polytopes. 

3. Enantiomorphic forms of chiral polytopes 

It is a well-known phenomenon that certain objects (or more exactly, their isomor- 

phism types) occur in two enantiomorphic (mirror image) geometric forms, Examples 

are the chiral toroidal maps described in Section 2. As we shall see below, each 

isomorphism type of chiral polytope occurs in two enantiomorphic forms. We begin 

with the following observation. 

Let 3 be a regular n-polytope, Y := {G- r, GO, . . . , G,_ 1, G,} its base flag, and 

ae, . . . , a, l the distinguished generators of A( 3). For i = 0, . . . , n - 1 denote by G; the 

i-faceof~withGi_,<G~<Gi+,andG~#G,,andletYi:=(Y\{G,})u{Gf}betheflag 

i-adjacent to Y. For i= 1, . . . , n- 1, let pi := ai_ 1 Cli. Then Bi cyclically permutes 

consecutive i-faces of Y in the (polygonal) 2-section Gi+ l/Gi_2 of 8, and the 

‘orientation’ of /3, is such that pi(G:)= Gi (and Bi(Gr_ 1)= Gi- l). The elements 

pl, . . . ,/$- 1 are the distinguished generators of A ‘(3’) defined with respect to the 

base flag Y. 

Now, consider changing the base flag to Y k for some fixed k. Clearly, c(~(Y) = Y k, so 

that !&fiIak, . . . , a&_ l~k are the distinguished generators of A ‘(3) defined with 

respect to the new base flag Yk. Note that 

I 
Bi if idk-2 or i>k+3, 

&kfiiak= 

BiB?+ 1 if i=k-1, 

K’ if i=k,k+l, 

[/?,Z_llJi if i=k+2. 

(7) 

For example, if k=O, the new generators of A ‘(9) are 
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We are particularly interested in the case when 9 is directly regular. Then A + (3) 

has precisely two orbits on the flags. (Once a base flag has been fixed, these are the set 

of even flags and the set of odd flags; see [27].) Passing from one flag to another flag in 

the same orbit implies that the corresponding sets of distinguished generators of 

A + (9) are related by conjugation in A + (049). However, if we pass from one flag to 

a new flag in the other orbit, then the sets of distinguished generators of A+(9) are 

related by conjugation in A(3) but not in A+(9). The above change from Y to Yk 

illustrates this case; here the change to new generators is realized by an involutory 

group automorphism of A + (9). 

Now let C? be a chiral or directly regular n-polytope of type { pl, . . . ,pn- 1 }, 

@:={F_,,Fo,..., F,} its base flag, and err, . . . , (T,_~ the distinguished generators of 

A+(9) defined with respect to @. Again, the distinguished generators of A+(9) 

belonging to flags in the same orbit of A + (9) are related by conjugation in A + (9). As 

above, the change from Qi to the k-adjacent flag Qik results in a change from 

01, ... 9 on_ 1 to the new generators given on the right-hand side of (7). (Note that in the 

chiral case the left-hand side of (7) makes no sense.) This can be seen either directly, or 

by relating 9 to the universal (directly regular) n-polytope .Z = { pl, . . . , pn_ 1 }. Note 

that for different k’s the corresponding sets of generators are related by conjugation in 

A+(p). It follows that up to conjugation in A+(9) there are precisely two sets of 

distinguished generators of A+ (c?), namely cl, . . . , (T,_ 1 and a; ‘, ofcr,, g3, . . . , G._ 1, 

belonging to @ and @O, respectively. Recall from [27] that the polytope 9 is regular if 

and only if there exists an involutary group automorphism of A+(9) carrying one set 

into the other. 

These considerations motivate the following definition. By an oriented chiral or 

oriented directly regular polytope 8, we mean a chiral or directly regular polytope 

together with a distinguished orbit {@} of flags under the action of A+(9). Here we 

use the notation (9, {CD}), or simply (9, @) with appropriate identifications modulo 

A+(P) understood. Each (isomorphism type of) chiral or directly regular polytope 

S gives rise to two oriented chiral or oriented directly regular polytopes; if 

one of them is (9, @), then the other is (9, @“) (or (9, Qk) for any k). We say that 

these two oriented polytopes are the two enantiomorphic forms of 8. The orbits {@) 

and {@“} are also called the two orientations of 8. In the case of a directly 

regular polytope 9, we shall later identify the two enantiomorphic forms (9, @) 

and (9, Go). For now, note that by the above remarks each oriented chiral or 

oriented regular polytope (9, @) comes along with a distinguished choice of 

generators of A+ (9) (unique up to conjugation in A+ (9’)). If 9’ is directly regular, 

then these sets of generators are equivalent under an involutory group automorphism 

of A+(B). 

Yet another view of enantiomorphism is obtained by relating 9 to the 

universal polytope _Y’={p, ,..., P,_~}. Let /?I ,..., fin_1 be as above, so that 

A+(~)=CP~,...,P~-~I+=(P~,..., /In- 1 ); note that here implicitly we are consider- 

ing 3 as an oriented directly regular polytope. Let (9, @) and (9, @‘) be the two 

enantiomorphic forms of 9 with corresponding generators gl, . . . , an_ 1 and 
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01 -1,d~2,~.3,...,~“-l, respectively. Then BiHbi (i=l,...,n-1) and /Ilt-+~;r, 

PZHc:C2, DiHci (i = 3, . . . , II - 1) define two surjective homomorphisms 

f:A+(_Y)t-+A+(PP) and g:A+(Z)t+A+(P) with kernels Nr and N,, respectively. 

However, g(~)=f(~o/?ao) for each /?EA’(_%‘), with CC,,, . . . ,c~,_r as above. It follows 

that N,=aONfcrO ( =akN,-ctk for each k). Hence, distinguishing the two enantiomor- 

phic forms (9, @) and (9, CD’) of a chiral or directly regular polytope 9 is equivalent 

to distinguishing the groups in a pair (NJ, N,) of normal subgroups of A+ (2) which 

are related by conjugation with c(~ or any other Q). As an example, the two translation 

subgroups of [4,4] defining the two enantiomorphic forms {4,4),,,,, and (4,4}(,,,, are 

conjugates by CI~. In the general situation, if 9 is directly regular, then f is the 

restriction to A+( 2,) of the homomorphism c A( Z)-+A(P) which maps a,, . . . 34-l 
to the distinguished generators of A(B); since 9 is directly regular, its kernel is again 

Nr and thus N, is normal in A(2). It follows that for a directly regular B the two 

subgroups N, and N, coincide. 

Note that, in the above interpretation of enantiomorphism, the universal 

{Pi, f..? pn _ 1 } can be replaced by any directly regular polytope 9 which covers 9J (i.e. 

for which f and g exist). 

Recall that the dual @ of an abstract polytope 9 is obtained by reversing the partial 

order of .9’ while keeping all faces of 9. For an oriented chiral or oriented directly 

regular polytope (9, (@}), the dual is defined as (@‘, {@I), with flags given in reverse 

order. If CJ r, . . . , gn_ 1 are the distinguished generators for A+(P) with respect to 

(P,(Q)), then a;Jl, a;?‘2 ,..., 0;’ are the distinguished generators with respect to 

(@, {G}). Note that the ‘orientation’ of the generators is correct; in fact, in the notation 

of Section 1, we have o,-_‘i(Fb_i_l)=F,_i_1 for i=l,...,n-2. 

Let (Pl, {Q1}) and (p2, {6}) b e t wo oriented chiral or oriented directly regular 

polytopes, and let q : Pl -P2 be an isomorphism of abstract polytopes. Then cp maps 

{Q1) onto {Qz} or {@z}, and thus maps {@y} onto {@i} or {Q2}, respectively; in fact, 

in the notation of [27], cp maps the set of even flags of Pl onto the set of even flags or 

the set of odd flags of Pz. We call cp proper (or an isomorphism of oriented polytopes) if 

it preserves orientations, i.e. {cp(Ql)} = {&}; otherwise, cp is improper. 

Note that for any chiral or directly regular polytope 9’ the identity map is an 

improper isomorphism between the two enantiomorphic forms of 9’. If 9 is directly 

regular, then the automorphism x0 of 97’ with ao(@) = Go is a proper isomorphism of 

(P, @) onto (9, @‘). Hence, since properly isomorphic oriented polytopes can be 

identified, we can identify the two enantiomorphic forms (9, @) and (9, @JO) for any 

directly regular polytope. 

Let { Pl, Ql} and (Pz, CO*} be as above. A duality (incidence reversing bijection) 

cp:P1+Pz is proper or improper if it preserves or changes the orientations, respec- 

tively. A self-dual chiral or directly regular polytope 9 is properly self-dual if P admits 

a duality cp (and thus only dualities) which preserves the two orbits of A+(P); then 

cp must be proper. Note that any self-dual directly regular polytope is indeed properly 

self-dual, since it possesses a polarity (duality of order 2) which fixes the base flag. In 

the general situation, if (9, @) is an oriented chiral or oriented directly regular 
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polytope such that 9 is properly self-dual, then 9 admits a polarity o which fixes 

@ and thus induces an involutory group automorphism A+ (.P+A+ (9) with 

Oi+WOiO=Oi_‘i; note that for (9, @‘) the polarity OCR * ... . rr_ i fixes @O and induces 

a corresponding group automorphism for the generators o; i, ~:a,, rr3, . . . , @n-l. 
Conversely, if for an oriented chiral or oriented directly regular polytope (9, @) there 

exists a group automorphism A+ (9)~ A’ (9) with (Tin o,=‘i, then 9 is properly 

self-dual. 

Let (9, @) be an oriented chiral or oriented directly regular polytope, and let 

@={K1,Fo,..., F,}and -1~i<j-l~n-l.Firstnotethat(Fj/Fi,{Fi,Fi+1,...,Fj}) 

is again an oriented chiral or oriented regular polytope (but is not necessarily chiral if 

9’ is chiral); this is a particular instance of a section of (P, Sp). More generally, if F is an 

i-face of 9, G a j-face of B with F <G, and Y a flag of G/F equivalent to 

{Fi,Fi+i,..., Fj} under an element 9 (say) of A+(P), then (G/F, Y) is an oriented 

chiral or oriented directly regular polytope called a section of (9, @). Note that 

in this situation cp becomes a proper isomorphism between (G/F, Y) and 

(FjIFi, {Fi,Fi+i, ... , Fj}). We also use terms like face, facet, co-face or vertex-figure of 

(9, @) for sections (G/F, Y) of (9, Cp), where G/F is a face, facet, co-face or vertex-figure 

of P’, respectively. 

In the above situation, if i >, 1 or j < it - 2, Fj/Fi and G/F are directly regular polytopes. 

In this case there exists an element TEA+(P) which induces a proper isomorphism 

between (G/F, Y) and (G/F, Y’), with Y” the (O-adjacent) flag of G/F differing from Y in 

an (i + 1)-face of 9. This is in agreement with our identification of the two enantiomor- 

phic forms for directly regular polytopes. In fact, if i+26 jdn-2, then 

Z:=~i+2~i+3 . . . ..o._lmaps~to(~“‘)“-‘andthusmaps(Fj/Fi.{Fi.Fi+l,...,Fjj) 

to (Fj/Fi, {Fi,Fi+l,..., Fj}‘); if j--2&i>l, then r:=~1~2”“*~i+i has a similar 

effect. Note that if i=O or j= n- 1 such an element z cannot exist in A+ (9). 
From now on we often simplify notation and write 9 for an oriented chiral or 

directly regular polytope (9, @), with a specification of the orientation {@} under- 

stood. By @ we denote the oppositely oriented polytope (P’, @‘), with the convention 

that @=P if 9 is directly regular. Then for all 9 we have (z)=P. Note that terms 

like section, face, etc., always refer to the chosen orientation. 

4. Classes of polytopes 

In this section we briefly discuss the problem of amalgamating two rank 

n-polytopes Pl and .9x. In particular, we elaborate on the corresponding discussion in 

[27, Section 61. 

For two regular n-polytopes Pl and g2, we denote by (Pr, Pz) the class of all 

regular (n + I)-polytopes B with facets isomorphic to Pi and vertex-figures isomor- 

phic to P2. Each nonempty class (9i, g2) contains a universal member denoted by 

{Pr, gz}. In particular, the polytope {.P1, P2} is directly regular if and only if both Pi 

and Pz are directly regular. 
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The definition of classes is more subtle for chiral polytopes and does not simply 

carry over from regular polytopes. We need to distinguish the two enantiomorphic 

forms of chiral or directly regular polytopes. This distinction is more or less irrelevant 

if at least one of the polytopes P1, Y2 is directly regular, but is essential if both P1 and 

c?J’* are chiral. 

Let (PI, Q1) and (Pz, Q2) be oriented chiral or oriented directly regular n-polytopes. 

By ((PI, Gil ), (.9$, cD~))~~, or simply ( P1, P2 )Ch, we denote the class of all oriented 

chiral (n + 1)-polytopes (9, @) whose facets and vertex-figures are properly isomor- 

phic to (PI, Q1) and (Pz, Gz), respectively. For this class to be nonempty it is 

necessary that the vertex-figures of (9,, Q1) are properly isomorphic (as oriented 

polytopes) to the facets of (Pz, Qz). However in general this will not be sufficient. 

Now, let (9, @) be in ((9,) Ql), (P2, cP~))‘~. Then the oppositely oriented polytope 

(Y,@“)=(P,@‘) is in ((PI,@:), (Pz,@i))ch, so that both facets and vertex-figures 

get changed to the oppositely oriented polytopes. Hence, in the notation of Section 3 

we have P’(gl, P2)Ch if and only if @E( gfil, @iz)ch. If we adopt the short form 

(9,,~~)“h:=r~(~)E(~I,~P2)Ch 

then this can be written as 

(Y1,.Y~)ch=(@,,&)ch. 

In particular, if .P2 is directly regular, then (Y1, Pz)Ch= (PI, gz)ch. A similar 

equality holds if P1 is directly regular. However, if both P1 and P2 are chiral, we 

cannot in general relate (PI, Pz)Ch and (gl, P?2)ch. 

For further reference we recall [27, Theorem 21, the following result. (Note that 

[27] does not elaborate on the notion of oriented chiral polytopes.) 

Theorem 4.1. Let PI and P2 be oriented chiral or directly regular n-polytopes but not 

both directly regular. Assume that (PI, .P2 )ch #@. Then there exists an oriented chiral 

(n + 1)-polytope in (PI, P2)Ch such that any other 9 in (Y1, P2jch is obtained from it 

by suitable identijkations. This polytope is denoted by {PI,.9’2)Ch and is called the 

universal (oriented) chiral (n+ 1)-polytope with facet type PI and vertex-figure 

type g2. 

To give an example that different enantiomorphic forms indeed matter, consider the 

classes ({4,4},,,,,, {4,4}C1,3j)Ch and <{4,4},,,,,, {4,4}C1,3j)ch. Here the Coxeter- 
Todd coset enumeration algorithm found that the universal { {4,4}(,, 3J, {4,4}(,, 3j}Ch 

and ((4,4),,,l),14,4),,,,,)ch have groups of order 960 and 2000, respectively (cf. [3]). 

Note that for universal polytopes we have { P1, P2}Ch = { gl, @2}“h. If either P1 or 

.P2 is directly regular, then { P1, P2}Ch = {PI, .@2}ch or { P1, L?P~}““= { gl, P2}Ch. Note 

that if both P1 and P2 are directly regular, then (Y1, P2)ch does not contain 

a universal member, since the natural candidate for this member is directly regular. 
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5. Generating special linear groups 

Let R be a commutative ring with identity 1 and G a subgroup of the units R* of R. 

Let L$(R) be the group of 2 x 2 matrices with entries in R and determinants in G, and 

PLt(R) be the quotient of Lf(R) by its centre. Note that the centre C:(R) of L:(R) 

consists of all the matrices II (I being the 2 x 2 identity matrix) with ,I*EG. 

Then Cz(R) := C’,“(R), SL2(R) := L:“(R) and PSL,(R) := PL$“(R). Furthermore, 

G&(R) = Ly(R) and PGLz(R) = PLf*(R). Let FL:(R) denote the quotient of L:(R) 

by { +I); then P^SL,(R)=SL,(R)/(+I) and P^GL,(R)= G&(R)/{ 41). Note that 

since { ) 11 c C:(R), we have a projection FL:(R) = PLT(R). 

Let JcR be an ideal. Then the natural ring epimorphism R-R/J, r-r+ J, 

induces a group homomorphism cp : Lf(R)+Lp(R/J), where GJ = {g + J/gEG}. Note 

that (p(Cf(R)) is a subgroup of Cy’(R/J), and hence for each subgroup H of C$‘(R/J) 

containing cp (C:(R)) the map cp induces a homomorphism (Pi: PLt(R)+Lf’(R/J)/H. 

We will be particularly interested in the following two rings of complex numbers: 

the ring of Gaussian integers Z [i] = {a + bi ) a, bEZ, i2 + 1 =O}, and the ring of 

Eisenstein integers Z [o] = {u + bm ( a, b EZ, w2 + o + 1 = O}. In these rings, (i) = 

{&1,&i} and (I_o)={+l,) o, kti) are the groups of units, respectively, each 

containing (-1)=(&l}. 

For later reference we will need the following lemmas. 

Lemma 5.1. Let 

(a) SL,(Z[i]) is generated by A, B and C. 

(b) L$-‘>(Z[i]) is generated by A, B, C and 

-1 0 

[ 1 0 1 . 

(c) L$‘(Z[i]) is generated by A, B, C and 

-i 0 

[ 1 0 1. 

Proof. Bianchi [l] noticed that 

i 0 c I 0 -i 
=ACAC-‘AC. 
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To complete the proof of (a), see [l 1, p. 751. Then (b) is trivial and (c) follows since 

[ -; ;I’=[-; ;I. 0 

Lemma 5.2. Let 

A=[: -iI, B=[: :] and C=[A 71, 

(a) SL,(Z[w]) is generated by A, B and C. 

(b) L$-“(Z[o]) is generated by A, B, C and 

Proof. Again, Bianchi [l] noticed that 

u2 0 

[ 1 0 w 
=(CAC-‘BA-‘CA)2. 

To complete the proof of (a), see [ll, pp. 75-761. Then (b) follows trivially. 0 

For the sake of completeness we give a proof of the following lemma. 

Lemma 5.3. Let R be a$nite commutative ring with identity. Then SL2(R) is generated 

by the elementary matrices of the form 

C:, ~1 and [L (f] with a,bER. 

Proof. We first note that whenever VER*, then 

v 0 

L I 0 v-l 

has the required from since 

[;; L]=[: -r][V-L :I[: :][v’i I$ 

This settles the case of diagonal matrices. Now, let 

A= 
@ B 

I 1 Y 6 ~SL,(R) 
and ,@#O; then ctb-j?y=l= 1R. 
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Let J(R) be the radical of R. Then by a general fact for finite commutative rings, 

R/J(R) is the direct sum of simple commutative rings (see for example [2, p. 2081) and 

hence 

R/J(R) E F1 @ ... @ Fk, (8) 

where each Fj is a finite field. For each rER, let f=r +J(R), and write Y=(T~, . . . , rk) 

corresponding to (8). Let supp (f):= { j 1 rj#O}. Note that since a6 -By = 1, 

oLjSj-Bjyj=l,j for all j=l,...,k, where T=(lF1,...,lFr). ALSO note that 

Isu~p(@~supp(fl)l=k. 
Assume for the moment that lsupp (Cc)1 = k. Then, since each Fi is a field, E is 

invertible in R/J(R) say 6-i = i+J(R). Then ct;l- 1 EJ(R), and since J(R) consists of 

nilpotent elements, cx~R*. Hence, since 6-a-‘fly =cr-‘, 

and A has the required form. 

Now let lsupp (cl)1 = m < k and, without loss of generality, assume Z=(ar , . . . , a,,,, 

0 ,..., O)whereaj#Oforj=l ,..., m.Thenp=(P,+r ,... , /?,J is an invertible element of 

F R1+l 673 ... @ Fk, and let (pk+l,...,/?;) be its inverse. Let PER such that 

p=(O ,..., O,/?h+r ,..., pi). Then 

Here c~+Bp=(a~ ,... ,c(,, 1F,+I ,..., lFk) and hence Isupp(a+/?p)(=k. We now 

complete the proof by the above argument applied to the matrix on the right- 

hand side. 0 

Let R be a finite local ring (every element of R is either a unit or nilpotent) with 

4 elements s of which are units. In subsequent sections we will make use of the 

following formula )S&(R)J =qs(2q-s). 
For each integer m 3 2, let Z, = Z/mZ denote the ring of integers mod m. Let 

.Z,[i]:=.Z[i]/mZ[i], Z,[o] :=Z[o]/mZ[o]. 

Note that here we are not requiring the equations x2 + 1 = 0 or x2 +x + 1 = 0, respec- 

tively, to be irreducible over Z,. Instead, we use the notation H,[i] and Z,[w] (in any 

case) to mean the quotient rings of Z[i] and Z[w] by the ideals mZ,[i] and mZ,[o], 

respectively. 

Under the projections Z [i]-+Z,[i] and Z[w] -Z,[o] units are mapped onto 

units. In particular, if m 3 3 then Z [i] * = (i) E (i + mZ [i] ) c Z,[i] * and similarly 

z[w]*=(+o)~(+o+ma[o])Cam[o]*. If m=2 then Z,[i] is a ring with four 

elements two of which are units, 1+2Z[i] and i+2Z[i]; it is not the field GF(22), 
since 22 [i] is not a maximal ideal. On the other hand, Z2 [o] is indeed the field with 

four elements. If m=p is a prime with p- -(mod 4), then - 1 is a quadratic 
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non-residue mod p and thus x2 + 1 = 0 is irreducible over Z,. It follows that in this case 

Z,[i] z GF(p’). Similarly, if m =p is a prime with p 3 2 (mod 3), then - 3 is a quadratic 

non-residue mod p, and x2 +x + I=0 is irreducible over Z, and thus Z,[o] 2 GF(p’). 

Below we shall slightly abuse notation and write r for a unit r + mZ [i] of Z, [i] or 

r+ mZ[o] of Z,[o]. This is mainly used with r = i or Y = - 1. For example, (i) will 

denote the subgroup (i+mZ[i]) of Z,[i]. Also we write (P~:L$)(Z[~])-, 

L$)(Z,[i]) and ~,:L:-‘)(Z[o])-tL:-‘)(h,[u]) for the induced homomorphisms. 

Lemma 5.4. The canonical homomorphisms 

(a) %,H : PL:“(Z [i])-+L$‘(Z,[i])/H with (2) <H < C:“(Z,[i]); and 

(b) &,,K :PL~-“(Z[w])-*L~-“(Zm[~])/K with {&Z}<K<C$-‘)(Z,[o]), are 

epimorphisms. 

Proof. To prove that (Pm,H is an epimorphism it is sufficient to show that the 

restriction SL2(Z[i])+SL2(Z,[i]) of qrn is surjective. By the previous lemma this is 

true since 

and 

1 0 

-a 1 l- 
A similar proof applies to $m,K. 0 

For the rings Z,[i] and Z,[w] the conjugation a+Pi+a-pi and a+po+a+/k~‘, 

respectively, define involutory ring automorphisms. As usual we write X for the 

conjugate of an element x. A subgroup H of Lf)(Z,[i]) or K of L$-l’(Z,[o]) is 

called conjugation inuariant if for each matrix A in H or K the conjugate matrix (with 

entries conjugate to those of A) is again in H or K, respectively. 

Now let us assume that - 1 is a quadratic residue mod m; i.e., there exists an 

element FEZ,,, such that 7’~ -1. Then the ring homomorphism Z,[i]-+Z,, 

a+Pit-+a+Pi; induces the homomorphism @ m: L’,‘)(Z,[i])+L$)(Z,). Similarly, if 

the polynomial x2+x + 1 =0 is reducible in Z,, we have the homomorphism 

Ym: L<Z-‘>(Z,[O])-~L:‘~)(~~) induced by cc+~wt-+a+~~5,, where &Z, with 

d2+c5+ 1~0. As before let us abuse the notation by omitting tilde. 

The following is a consequence of Lemmas 5.3 and 5.4. 

Lemma 5.5. (a) Assuming that x2 + 1~0 (mod m) is solvable, the canonical homomor- 

phism @,,,n: PLy’(Z[i])-+L:‘)(Z,)/H induced by @,,,q,,, is an epimorphism whenever 

(iZ),<H<C”‘(Z ) 2 ltl. 

(b) Assuming that x2+x+ 1~0 (modm) is solvable, the canonical homomorphism 

Y m,K: PLI-“(Z[w])jLI-l)(Z,)/K induced by Y,$,,, is an epimorphism whenever 

{+Z}<K<C$-“(Z,). 
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6. Hyperbolic honeycombs and the inversive plane 

The regular and chiral polytopes which we construct in this paper are all finite and 

locally toroidal. They can be derived from the universal polytopes which are isomor- 

phic to regular honeycombs in the three-dimensional hyperbolic space W3; see 

Section 2. 

The absolute of the hyperbolic space W3 is an inversive plane as can be seen from 

Poincart’s half-space model for W 3. The absolute is then an extension of the Euclidean 

plane by the point at infinity. The reflection in a hyperbolic plane induces the 

inversion in the circle which is the intersection of that plane by the absolute. 

Conversely, the inversion in a circle of the inversive plane induces the corresponding 

hyperbolic reflection in W 3. This then implies that a group of displacements in W 3 is 

isomorphic to a group of Miibius transformations over @. 

The symmetry group [p, 4, r] of a honeycomb {p, q, rj is generated by reflections pV 

in four planes R, (say) which form an orthoscheme [S, p. 1881, a simplex with dihedral 

angles X(Ro, Rl)=x/p, <(RI, R,)=n/q, X(R,, R3)=rc/r, and the remaining three 

angles KC/~. By the above-mentioned isomorphism, [p,q,r] can be represented by 

a group of Mgbius transformations generated by the inversions in four circles cutting 

one another at the same angles as the corresponding reflection planes. For the 

complete list of generating inversions one is referred to [3 11. Here we only require five 

of the ten possible groups. 

As before, let i denote a fourth root of unity in C, so that i2 + 1 =O, and o a cube 

root of unity, i.e. o2 + w + 1 = 0. Then 

c4,4,31= (PO(Z) = K pl(z)=iZ, pz(z)= 1 -z, P3(4=w), 

C6,3,31=(p,,(z)=% p1(4= --z, pz(z)= l-2, LJ3(4=l/%. 

In terms of its generators (T~ =pOpl, CJ~=P~P~ and c3=p2p3 the corresponding 

rotation subgroups are given by 

[4,4,3]+ = (gl(z)= -iz, cJz(z) = - iz + i, 03(z) = 1 - l/z), 

[6,3,3] + = (a, (z) = - oz, 02 (z) = (z - 1)/Q 63(z)= 1 -l/z). 

By simplex dissection, we know that the group [4,4,4] of {4,4,4} is a subgroup of 

index 3 in [4,4,3]. In terms of the generators p: (say) of [4,4,3], the generating 

reflections py for [4,4,4] are 

PO’Lfl> Pl’PbY Pz=P;P;P;, P3=P;. 

Hence. 

[4,4,4] = (pa(z) = iZ, PI(z)=% p,(z)=-iZ+l+i, P3(4 = l/F), 

[4,4,4]+=(a,(z)=iz, 02(z) = iz + 1 -i, OS(z)= 1 +i-i/z). 
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Similarly, [3,6,3] and [6,3,6] are subgroups of index 4 and 6, respectively, in 

[6,3,3]. In terms of generators p: (say) of [6,3,3], the generating reflections for 

[3,6,3] and [6,3,6] are 

PO=Pb? Pl=dlPbP;> PZ’P;, P3=P;, 

and 

Po=P;? Pl=Pb, Pz=P;P;PbP;P;T P3=P;, 

respectively. Hence, 

[73,6,31=(~0(4=~, Pl(4 = 0% pz(z)= l--z, Pd4 = l/T)> 

[3,6,3] + = (01(z)=02z, az(z)=o(l -z), es(z) = 1 - l/z), 

[6,3,6] = (p,,(z) = -0~2, P1(4=Z, pz(z)= 1 -02+02i; p&)= l/f)> 

[6,3,6]+ =(c~r(z)= --o’z, 02(z)= 1 -cJ++z, 

Below we will represent the Mobius transformations gi 

pondence 

az+b a b 

-++ c d cz+d [ 1 
being one-to-one up to scalar multiplication. 

7. The type (4,4,3} 

rT3(2)= 1 -co2+co2/z). 

by matrices, the corres- 

In matrix notation the generators g1 ,rr2 and g3 of [4,4,3] + can be expressed as 

(9) 

Theorem 7.1. [4,4,3]+~PpL~~(Z[i])~~pSL,(Z[i])rxC,. 

Proof. We first note that the matrices (9) as elements of Lf)(Z[i]) generate that 

group, using Lemma 5.1(c) with ol, cr; ‘a2c3, CT~CT~CT~ and 0~0;‘. The centre of the 

group is CF)(Z[i])= (2). However, the correspondence of Mobius transformations 

and matrices gives us 

[4,4,3]+~C.L:“(Z[i])/CrL:“(Z[i])/CI”(Z[i])=PL:”(Z[i]), 

where C= {AL 1 kc*} is the centre of GL2(@); here the second isomorphism holds 

because of CnL$)(Z[i])=CY’(Z[i]). Similarly, since Cf)(Z[i])nSL2(Z[~)=C2(Z[i]), 

we have 

PSL2(Z[i])=SL,(Z[i])/C2(Z[i])rC~)(Z[i]).SL2(Z[i])/C:‘)(Z[i])=: U. 
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Now, the subgroup C$)(Z[i]). SL,(Z[i]) consists precisely of all matrices in 

L’,“(Z[i]) with determinant f 1, i.e. equals I,$-“(Z[i]). It follows that U together 

with the involution 

o,o,C’,‘)(Z[i])= 

generate PL:“(Z[i]), which then must be isomorphic to UrxCz. 0 

Lemma 7.2. For each integer m 3 3 and for each subgroup H of C~‘(Z,[i]) containing 
(il), there is a chiral or a directly regular polytope of type {4,4,3} with the rotation 

group isomorphic to Ly’(Z,[i])/H. 

Proof. By Lemma 5.4 we have an epimorphism 

The images of the generators under (P~,~ satisfy the same relations as oV (but now the 

relations do not suffice to define the group). There is little possibility of confusion if we 

denote by cr, the image of cV under (P,,,~ (since we can think of the ‘new’ 0,‘s as the ‘old 

(J~‘s mod m). Since m > 3, the elements crl, c2, c3 have again orders 4,4,3, respectively. 

Then, subject to the intersection property, L<,“(Z,[i])/H z (ol, 02, 03) is the rotation 

group of a chiral or a directly regular polytope of type {4,4,3}; see Section 1. 

For the intersection property we need to check (r~~)n(~~)={l} =(az)n(a3) 
and U := (al, 02)n(a,, 03) c ((TV). The former equalities are trivial. For the latter, 

note first that (o~,o~)z[~,~]+zS~. In fact, since (gz,cr3) is a quotient of [4,3]’ 

and rs2, o3 have orders 4, 3, respectively, we must have 1 (az, c3) I= 12 or 24; but the 

first case is impossible, since S4 has no normal subgroup of order 2. Now, to find 

U note that 1 U 1 must divide 24, and must be divisible by 4 = ) oz 1. The orders 8, 12 and 

24 are easily disproved, so that 1 U I=4 and hence U = (cr2). This completes the 

proof. Cl 

We now proceed to identify the facets of the polytopes from Lemma 7.2. Since the 

facet type is {4,4} and each facet is either chiral or regular, we see that the facets must 

be isomorphic to toroidal maps {4,4ju,,,. From [4,4] + 2 (or, cr2 ) we obtain [4,4],‘a,,, 

(see the presentation (4)) by the addition of 

to the defining relations for [4,4] +. To find the possible values for b and c we consider 

(o;‘02)b(alcT;‘)‘= [i --:lb[i -:]‘= [i -@;ci)], 

This matrix is the identity in Z,y)(Z,[i])/H if and only if b+ci=O in Z,[i]. 
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Theorem 7.3. For each integer m 3 3 and for each conjugation invariant subgroup H of 
C~‘(Z,[i]) containing (il ) there is a directly regular polytope 9’ in ( {4,4}(,,,, Oj, {4,3} ) 

such that the rotation group of 9 is isomorphic to L?)(Z,[i])/H. 

Proof. From Lemma 7.2 we know that there exists a polytope of type {4,4,3} with the 

rotation group (gi, c2, as) z LF)(Z,[i])/H. As remarked in Section 1, the polytope 

is regular if and only if there exists an involutory automorphism p of the group such 

that ~(ai)=o;‘, ~(a,) = o:02 and ~(a,) = Do. Or, using the corresponding matrices, 

p: [-; ;I+; ;I,[-: ;I-[; --;I, 

[: -:I-[: -:I. 

Clearly, p is induced by conjugation of Z,[i]. Note for this that H is conjugation 

invariant. 

To identify the facets we note that b + ic = 0 in Z, [i] if and only if either b = c = m 
or b = m, c = 0 (or the other way around). We can rule out the possibility b = c = m since 

the order of 

Cr;‘Crz= 
1 -1 

[ 1 0 1 

is m, whereas in [4,4](f,,,, it should be 2m. 

Remark. In Theorem 7.3, if H is not conjugation invariant, then in general 9 will only 

be chiral. In fact, the right and left Petrie polygons will generally have different 

lengths; see Section 12. 

To recognize the groups explicitly we use the following lemma. 

Lemma 7.4. Let m=2’p;‘...: pT( > 2) be the prime decomposition of m in Z. 

(a) The equation x2 =i is solvable in Z,[i] if and only if e=O and pjf -3 (mod 8) 

for each j. 

(b) Let xEZ,[i] be such that x’=i. Then (x)=(*1, +i, +x, 
invariant in Z,[i] if and only if either pj- + 1 (mod 8) for all j 

for all j. 

&xi} is conjugation 
or pj= 1, 3 (mod8) 

Proof. The equation x2 = i has a solution in Z,[i] if and only if 

(u +u)(u -v) =O(mod m), 2uu = 1 (mod m) has a solution. Here the second equation 

forces m to be odd. Now, these equations are solvable mod m if and only if they are 

solvable mod py for each j; i.e. if and only if u = u, u2 = 2- ’ (mod py) or u E -v, 
u2=-2-‘(modp”‘) ,J are solvable. Hence, we have a solution mod m if and only if 2 or 

- 2 is a quadratic residue mod pj for each j, i.e. if and only if pj $ - 3 (mod 8) for each j. 
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This proves (a). Note for part (b) that for conjugation invariance we must have 

X=-ix or ~=ix, that is, x=u+ui or x=u-ui for some UEZ,,,, but then 2 or -2 is 

a quadratic residue modm, respectively. Cl 

Corollary 7.5. Let m = 2”~;‘) . . . . . prk be the prime decomposition of m, m>2. There 

exist directly regular polytopes in ((4,4} (m, 0), {4,3) ) whose rotation groups are isomor- 
phic to 

(a) PS&(Z,,,[i]) ife=O and pj$ -3(modS)for each j; 

(b) ~SL2(Z,[i])ife=Oandeitherpj= fl(mod8)foreach j orpj=1,3(mod8)for 

each j; 

(c) PSLz(Z,[i])rxCz and pISLz(Z,[i])~Cz, fe#O or pj= -3 (mod 8)for at least 

one j. 

Proof. Let C<C,(Z,[i]), (U)6H<C<,“(Z,[i]), CfH, and x:SL,(Z,[i])/C-+ 

L:“(B,[i])/H be the canonical homomorphism. We choose C and H such that 

SL,(Z,[i])nH = C, so that x is injective. Note that x is surjective if and only if there 

exists an element in H with determinant i; in particular, x2=i must be solvable in 

z, Gil, 
Let C= C2(H,[i]) and H= Cf)(Z,[i]). Then H is conjugation invariant. By 

Theorem 7.3 and Lemma 7.4, if e =0 and pj$ - 3 (mod 8) for each j, we have 

a polytope with rotation group PSL,(Z,[i]). If e # 0 of pj E - 3 (mod 8) for some j, 

then x is not surjective and has image L$-“(H,[i])/H. The element 

0 i 

[ 1 1 o .H(=ozo3H) 

is an involution in Lf’(Z,[i])/H not in this image. It follows that the rotation group 

Lr)(Z, [i])/H of the polytope is isomorphic to PSL2 (Z,[i]) rxCz . 

Let C= { _+I}. If e=O and either PjE +_ 1 (mod 8) for each j or pj” 1,3 (mod 8) for 

each j, let xEiZ,[i] be such that x2 =i and (x) is conjugation invariant. Then 

H= (xl) = { +_I, + il, *xl, +_xil) is conjugation invariant, and the rotation group of 

the polytope is P^SL2(Z,[i]). If e #O or pj3 - 3 (mod 8) for some j, choose H= (il). 
Again, 2 is not surjective, and the rotation group of the polytope becomes 

F%!&Ji])!XC,. cl 

Remarks. (a) The groups PSL,(Z,[i]) and Z%L,(Z,[i]) occurring in Corollary 7.5 

coincide precisely for m= 2”~” where e =O, 1 and p E - 1 (mod 4), or m =4. In fact, 

precisely for these m the equation x2 = 1 has only two solutions in Z,[i], namely _+ 1. 

(b) If m=pz -1(mod4), then Z,[i]rGF(p2) and thus PSL2(Z,[i])zPSL2(p2). 

Theorem 7.6. Let m = 2”p’, - .‘. - pt” (> 2) be the prime decomposition of m, and assume 

that e=O, 1 and pjs 1 (mod4) for each j= 1, . . . , k. Let iEiZ, be such that 

i2 E - 1 (mod m), and let b, c be the unique pair ofpositive integers such that m = b2 + c2, 

(b, c) = 1 and b 3 - ic (mod m). Then for each subgroup H of C~)(H,) containing (il) 
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there exists a chiral polytope in ( {4,4}(b,Cj, {4,3}) with the group isomorphic to 

L:“(Z,)/H. 

Proof. First note that our conditions on m are precisely those that guarantee the 

existence of i (cf. [ 1.5, p. 501). Also note that our assumptions on m imply the existence 

and uniqueness of b, c (cf. [ 14, p. 1171). 

By Lemma 5.5(a) there is the canonical epimorphism 

@ ,,,:PL(i)(Z[i])-+L(i)(Z )/H 2 2 m . 

As in the proof of Lemma 7.2 we have the existence of a chiral or a directly regular 

polytope of type {4,4,3} with cubical vertex-figures and with the rotation group 

isomorphic to L$‘(Z,)/H % (cl, 02, 03), where cV is the image of the matrix oV in (9) 

under @,,,(P,,,. 

To identify the facets as {4,4}(,,,, note that, by the remarks preceding Theorem 7.3 

and by our choice of b, c, the required relation (cr; ir~~)~(a~ a; ‘)c = 1 holds in (ai, o2 ). 

However, the ‘translation’ a; ’ rr2 (and ala; ‘) is easily seen to have order m, so that 

the facets must in fact be {4,4},,,,,. Finally, since the facets are chiral, the polytope 

must also be chiral. This completes the proof. 0 

Note that the integers b and c in Theorem 7.6 depend on the choice of i. The number 

of solutions of x2= - 1 (modm) is exactly 2k (cf. [14, p. 1161). It follows that the 

number of solutions of m= b2+c2 with b, c>O and (b, c)= 1 is exactly 2k. Here the 

pairs b, c and c, b are counted as distinct solutions, corresponding to i and -i. 

Hence, Theorem 7.6 gives us (at least) 2k polytopes with groups L$‘(Z,)/H, 

(iI)<H<C$)(Z,). As we shall see below, the groups for different choices of i are 

isomorphic. However, the polytopes are isomorphic (as abstract polytopes) only if i is 

replaced by -i, corresponding to switching b and c. In fact, the polytopes for i and -i 

are the two enantiomorphic forms of the same underlying chiral polytope. To see this, 

note that changing the generators ol, a2, a3 of (9) to a; I, a:a2, a3 gives precisely the 

generators of (9) for -i. 

For example, if m = 65 = 5.13, then m = 1 2 + 82 = 4’ + 72, while the pair 1, 8 belongs 

to i= 8, the pair 4, 7 belongs to i = 18 ( f - 8). Hence, one gets different kinds of facets 

{4,4)W3, and (4, 4}C4, 7j for the same m. If i is replaced by -i, we can also obtain facets 

14?4),& 1) and (4, 4}t7,4J, respectively. 

Corollary 7.7. Let m = 2=p;* - . .- - pp be the prime decomposition of m > 2, and let e = 0,l 

and pj E 1 (mod 4) for each j = 1, . . . , k. Let b, c be positive integers such that m = b2 + c2 

and (b,c)= 1. There exist chiral polytopes in ({4,4}Cb,cj, {4,3}) whose groups are 

isomorphic to 

(a) PSL,(Z,) and &L,(Z,) ifpjz 1 (mod 8) for each j; 

(b) PSL2(7,)rxC2 and PSL2(H,)rxC2, ifpjE -3(mod8)for at least one j. 
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Proof. By our assumptions on b, c there exists a unique iEZ,,, with the property that 

i2= -l(modm) and bs -ic (modm). Let C<C,(Z,), (iZ)6H<C’,‘)(Z,), C<H, 

and x: SL,(Z,)/C+Lf’ (&J/H. Again we choose C and H such that x becomes 

injective, i.e. SL,(Z,)nH = C. As in Corollary 7.5, for x to be surjective we need an 

element in H of determinant i. 

Now, x2 s i(mod m) has a solution if and only if x2 5 i (mod pj’l) has a solution for 

each j. This is satisfied if and only if x8 E 1 (modpj”) has exactly eight distinct 

solutions. On the other hand, this congruence has exactly (8, pj- 1) solutions (cf. [ 14, 

p. 47]), SO that we must have pj~ 1 (mod 8) for each j. 

Let C= C,(H,) and H = Cr)(Z,). By Theorem 7.6, if pj~ 1 (mod 8) for each j, we 

have a polytope with group PSL,(Z,). If PjZ -3(modS) for some j, then x is not 

surjective and has image L$-‘)(&J/H. Again, 

0 i 

[ 1 1 0 
.H 

is an involution not in this image, so that the group of the polytope is PSL2(Z,)rxC2. 

Let C = { f I}. If pj- 1 (mod 8) for each j, choose x such that x2 = i (mod m), and let 

H = (xl). Then the group of the polytope is PSL2(Z,). If pj- - 3 (mod 8) for some j, 

let H = (ix). Then the group of the polytope is PSL2(Z,)rxC2. 0 

Remark. The groups PSL,(Z,) and PSL,(Z,) coincide if and only if m = 2ep” where 

e = 0, 1 and ,J 2 1, or m = 4. Hence, when m > 2, they coincide if and only if there exist 

primitive roots modm. Furthermore, the image of the canonical homomorphism 

PSL,(Z,)-rPGL,(Z,) is a subgroup in PGL2(Z,) with elements represented by 

matrices whose determinants are quadratic residues modm. The index of this sub- 

group is 2 if there exist primitive roots and mod m. Hence, when m = 4 or m = 2”~” with 

e=O, 1 and 121, then PSL2(H,)~C2~PSL2(H,)~C~~PGL2(Z,). 

To summarize the above construction of polytopes, for every positive integer m b 3 

we have an epimorphism 

PL:“(Z [i]) =L$)(Z!,,,[i])/H, (10) 

with (il) = rp,,H(C$)(Z[i])) < H < CF)(Z,[i]), Furthermore, whenever x2 + 15 

0 (mod m) is solvable in Z,, we have a commutative diagram of homomorphisms 

L$‘(Z [i]) --f=+Lf)(Z,[i]) (11) 
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This induces an epimorphism 

PL:‘>(Z[i]) 2 LI”(Z,)/H, (12) 

with (iZ)=~,,,(C:‘)(7[i]))dHdC:“(Z,). 

The above epimorphisms and an appropriate choice of generators were used to 

construct chiral and directly regular polytopes of type (4,4,3} whose rotation groups 

are precisely the groups in the diagrams (10) and (12). More precisely, the chiral 

polytopes 9 of Theorem 7.6 in the class ({4,4}(b,C), {4,3}) are covered by suitable 

directly regular polytopes 9 (say) of Theorem 7.3 in the class ({4,4}(,, ,,), {4,3} ), with 

m= 6’ +c2 (provided that H is conjugation invariant). For example, since @, is 

surjective and @,(C:“(Z,[i]))c Cy)(Z,), the map am induces an epimorphism 

PL~‘(Z,[i])+PL~)(Z,) and thus a corresponding projection of 9 onto 9. 

8. The type {4,4,4) 

In matrix notation the generators aj of [4,4,4] + are represented by 

gl=[; y], 02=[;, ‘ri], 03c[l;i ii]. (13) 

Considered as elements in Lf’(Z[i]) the matrices in (13) generate a subgroup L (say). 

The centre of L is (il). Then the correspondence of Mobius transformations and 

matrices gives us 

whereC={AZIIEC**). Weusethenotationai, cr2, c3 for both the generators of L and 

their images in A. As explained in Section 6, A= (ai, 02, a3) is a subgroup of index 

3 in [4,4,3] + 2 PL$‘(Z [i]). Using the methods of Section 7 we construct polytopes, 

directly regular and chiral, in this case by considering the restrictions of the maps in 

(10) and (12) to this subgroup. Let &,,H:A+Lf)(Z,[i])/H and 6~,,:A+Lf’(Z,)/H 

be the restrictions of (P,,,~ and @m,H, respectively, to /i. Note that H in &,,H and H in 

kI,H represent different subgroups. We shall abuse notation and use the same letter, 

but this should cause no confusion. 

Lemma 8.1. Let R=Z,[i], x=&,,~, or R=&,,,x=&,,,~. 

(a) If m is odd, then x is an epimorphism. 

(b) 1f m is even, then x(A) is a subgroup of index 3 in LF)(R)/H. 

Proof. Consider the r~.j)s as elements of Lf)(R). Since 
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it follows that 

(7201 02 1 
-1 -la = 

1 2 

[ 1 0 1’ 

If m is odd, 2 is invertible in 77, and hence 

Also 

Furthermore, 

B!(r203 = 
0 -1 

[ 1 1 0 ’ 

and as in the proof of Lemma 5.4, we use Lemma 5.3 to show that the natural 

homomorphism L-L<,‘)(R) is surjective. Then x is surjective. 

Let m be even. To prove that x(n) is a subgroup of L f)(R)/H of index 3, consider 

the ring homomorphism f:R-+Z, given by u+iu~u+v or U+U if R=Z,[i] or 

R=Z,, respectively. This induces a homomorphism f”: L:“(R)/H+SL,(Z,). By argu- 

ments similar to those used in the proof of Lemma 5.4, f”is surjective. Now, j maps 

<al, g2, g3 > onto 

which has index 3 in SL2(Z2). It follows that ((T~,o~,cT~) and Lf)(R)/H cannot 

coincide, and hence the index is 3. This completes the proof. 0 

There is little possibility of confusion if we denote by 6, the image of (T, under 

c$,,,~ or 6,,,H (as we did in the above proof). 

Theorem 8.2. Let m > 2 be an integer and let H be a conjugation invariant subgroup of 

C$‘(Z,[i]) containing (U). Then there exists a directly regular polytope 9 such that 

(a) $ m is odd, 9 is self-dual, 9’ is in ({4,4},,,,,,{4,4}(,,o,) and A+(B)E 

L$‘(Z,[i])/H; 

(b) $ m iS even, 9 is in ({4,4}~m~2,mjZ~,{4,4}~m,o~) and A+(p) is a subgroup of 

Ly)(H,[i])/H of index 3. 



E. Schulte. A.I. Weiss/ Discrete Mathematics 131 (1994) 221-261 243 

Proof. Modulo the intersection property (which we prove later) the subgroup 

(or,~~, aJ) of L’,‘)(Z,[i])/H (of index 1 or 3) is the rotation group of a chiral or 

a directly regular polytope 9. Define the group automorphism p of (o~,cJ~,c~) by 

([; iI)= [ _Fi g=al.[; ;].a?. 
Then p(ar)=o;‘, p(az)= ~:cr~ and p(c3)=a3 and hence 9 must be regular. 

To identify the facets we consider 

(a;l~2)b(a,~;‘)c= (--b+T)(l+i) 1 (14) 

Hence, we must consider (-h + ci)( 1 + i) = 0 in Z,[i]. 

If m is odd, 1 + i is invertible since (1 + i)(l -i) = 2 and 2 is invertible. Then the 

equation is equivalent to -b + ci = 0 in Z, [i], and the facets are either {4,4},,,,, or 

14*41,,0,. We can rule out the possibility of {4,4},,,,,, since the order of 

a;‘a2= [:, -‘:+i’] 

is m, and so the facets must be {4,4}(,,-,,. Note that conjugation by the element 

1 -i 

[ 1 1 -1 

interchanges c1 with ai1 and aZ with a;‘, and hence the polytope is self-dual. To 

complete the proof of (a) we use Lemma 8.1. 

Let m be even. Since ( -b + ci)(l + i) = 0 implies 2(-b + ci) = 0, the facets could be 

(47 41 (mi2,mi2)~ C4,4)(,,,,, {4,4)~,,2,0~ or {4,4j,,,,,. However, the order of a, ‘a2 is m, so 

that we are left only with {4,4}~m,2,m,2~ or {4,4}(,,e). To rule out the possibility of 

{4,41(?%0,, we consider the transformation 

aIa;‘a;‘az= 
1 -2 

[ 1 0 1 

of order m/2. This transformation shifts a Petrie polygon of a facet two steps along 

itself. Here a Petrie polygon is a zig-zag along the edges of the map such that each two 

consecutive edges, but no three, belong to a face (cf. [6]). Hence, the length of the 

Petrie pOlygOn iS m, so that the facets are maps {4,4}(,,2,,12~. 

Note that for even m the above argument for self-duality does not extend, since 

1 -i 

[ 1 1 -1 



244 E. Schulte, A.I. Weiss/ Discrete Mathematics 131 (1994) 221-261 

is not invertible over Z,[i]. To identify the vertex-figures we must consider 

(a;1a.3)d(a2a;1)o= [; q[y I_iiJ 

=[ lid ;_ddl[ l-+T ;?J 
1 +(d+ai) -(d+ai) 

= 
d+ai I I-(d+ai) ’ 

(15) 

It follows that the vertex-figures are {4,4},,,,, or {4,4},,,,,, but a;‘as is of order m, 

and hence the vertex figures are maps (4,4}(,, e). To complete the proof of(b) we use 
Lemma 8.1, 

Concluding we need to check the intersection property. It suffices to prove 
(al,a,)n(az,a3)=(a2). First note that 

and 

are the ‘translation subgroups’ of (ai, oz ) and (az, a3 >, respectively. Also, 
(a1,a2)=(a2). T, and <az,a3)=(a2). T,. Now, let aE(a1,a,)n(a,,a3), say 
a=aJzz~=alzzwithzlET~,tzET,.Thenz,z;’=aj,-k,butforsomecc,BinZ,[i] we 
have 

-I_ l+P 
T2Tl - 

[ 

x(l+i)(l+P)-P I p &(l+i)+l--p ’ 

so that a comparison with the elements in (a2) shows that j?=O. It follows that z2 = 1, 
and hence a= a\E<a*). This completes the proof of the theorem. U 

The proof of Corollary 7.5 implies the following consequence of Theorem 8.2. See 
also the remark following Corollary 7.5. 

Corollary 8.3. Let m =py - ..- - pp be the prime decomposition of m such that pi+2 for 

each j. There exist self-dual directly regular polytopes in ( (4,4}t,,0,, {4,4},,,,,) whose 

rotation groups are isomorphic to 

(a) PSL,(Z,[i]) if pj + - 3 (mod 8) for each j ; 
(b) PS&(Z,[i]) if either pjs + 1 (mod 8)for etch j or pi-’ -3 (mod 8)for each j. 
(c) PSL,(Z,[i])rxC, and l%L,(Z,[i])txC,, Zfpj E -3 (mod 8)for at leut one j. 

Theorem 8.4. Let m = 2ep;’ - ... -pF be the prime decomposition of m > 2, and assume 

e=0,1andpj=1(mod4)foreach j=1,...,k.Leti~Z,besuchthati2~-l(modm), 

and let 6, c be the unique pair ofpositive integers b, c such that m= b2 +c2, (b, c)= 1 and 
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b = - ic (mod m). Let H be a subgroup of C~)(Z,) containing (il). Then there exists 

a chiral polytope 9 such that 

(a) ifm is odd, 9 is self-dual, 9 is in ((4, 4}(E,bj, {4,4)(,,,,), and A(9)? L$)(Z,)/H; 

(b) ifm is even, 9 is in ((4, 4}(a,dJ, {4,4),,,,,) with a=(~-_)/2 ’ and d=(c+b)/2, and 

A(P) is a subgroup of L:‘)(Z,)/H of index 3. 

Proof. Let CL: n +L:i)(Z,)/H be the restriction of @m,H in (12) to A. Again we write 

oil, g2, rr3 for the images of the generators of /i under p. Modulo the intersection 

property, the subgroup (~~,rr~,cr~) of L~)(Z,)/H (of index 1 or 3) is the rotation 

group of a chiral or directly regular polytope 9. As we shall see below, the facets of 

9 are chiral, so 9’ must also be chiral. 

To identify the facets consider (as in (14)) 

(a;lo2)k(alo;1)L= (-k+;)(l+i) 1 
This leads to the equation (1+ ik)( - 1 + i) = ( -k + li)( 1 + i) = 0 over Z,. By our choice 

of b and c, 1= b and k=c is one possible solution. 

If m is odd, then the ‘translation’ 

o;lc2= [:, -,:+i’] 

has order m, so that the facets must in fact be isomorphic to {4,4}(,,,,. As in the proof 

of the previous theorem, the matrix 

1 -i 

[ 1 1 -1 

can be used to show that 9 is self-dual. Note that conjugation by this matrix leads to 

the relation (c~;~o~)~(a~a;‘)‘= 1, implying that the vertex-figures are maps (4,4),,,,,. 

Finally, A(P)=A+(P)EL~‘(Z,)/H, by Lemma 8.1. 

Let m be even. First note that d + ia =O(mod m). It follows that 

(a;‘az)a(al~;‘)d= 1. This time a;l g2 has order m/2 = a2 + d2, so that the facets are 

maps i4, 4)(o,d). To find the vertex-figures we can use (15) to show that 

(0;rCJ$(cr CJ 2 ;l)‘= 1. Again the order of ai’ cr3 is m, so that the vertex-figures are 

maps {4,4)(,,,,. By Lemma 8.1 A+(P) is of index 3 in L$)(Z,)/H. 

Finally, the proof of the intersection property carries over from the proof of 

Theorem 8.2, but now with c(,/IEZ,. This completes the proof. 0 

Corollary 8.5. Let m = p;' - ‘.. .pp be the prime decomposition of m such that pj= 1 

(mod4)for each j=l,..., k. Let b,c be positive integers such that m= b2 +c2 and 

‘Note that if a<0 then {4,4}c0,,,={4,4},d, -,,,. 
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(b, c) = 1. There exist self-dual chiral polytopes in ( (4, 4}(,,bJ, {4,4}(,,,,) whose groups 

are isomorphic to 

(a) I’S&@,) and l%L,(Z,), if pj= 1 (mod 8)for each j; 

(b) PSL,(Z,)rxC2 and P^SL,(Z,)rxC2, ifpjr -3(mod8)for at least one j. 

Proof. Follows from Corollaries 7.7 and 8.3. 0 

Concluding we remark that the results of this section could also be derived from the 

results of the previous section by employing suitable mixing operations in the sense of 

[20, Section 61 to the (rotation) groups. However, this does not lead to shorter proofs. 

9. The type {6,3,3} 

The generators cl, g2 and o3 of [6,3,3] + can be represented by the following 

matrices in GL2(Z Co]): 

Theorem 9.1. [6,3,3]‘~PpL:-“(Z[o])=PSL,(Z[o])rxC,. 

Proof. Use Lemma 5.2(b) with A=~.203~~, B=o;‘a:, C=a2a~a, and 

CT:= 
1 0 

[ I 0 -1 

to show that the matrices in (16) considered as elements of L $- “(Z [o]) generate that 

group. The centres of SL,(Z[o]) and L$-‘)(Z[o]) are { +I}. Then 

with 

PL$ 

[6,3,3]+~C.L:-1’(;2[o])/CrL~-“(Z[o])/~~Z~=P~~-”(Z[o]), 

C={AI(AEQI*}; note for this that CnL$-‘)(Z[o])={ &I}. Furthermore, 

‘)(Z[o])~PSL,(Z[o])~C, with C,=(a:{+I}). 0 

For later reference we need the following number theoretical lemmas. From now 

on, in prime decompositions we distinguish the primes 2 and 3. 

Lemma 9.2. Let m = 2d3ep:’ - . ‘. - p: be the prime decomposition of m. Then 

x2 +x + 1~ 0 (mod m) is solvable if and only if d = 0, e = 0, 1 and pj = 1 (mod 3)for each 

j=l > ... , k. 

Proof. We first notice that for solvability m must be odd, for x2 +x + 1 is odd and 

hence is not congruent to 0 (modm) if m is even. Then, 4 is invertible, and hence 

x2 + x + 1 E 0 (mod m) is solvable if and only if y2 =(2x + 1)2 = - 3 (mod m) is solvable. 
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Now, yz G -3 (mod m) is equivalent to the system y2 = - 3 (mod3”), y2 = - 3 

(modp;l), . . . , yz z - 3 (mod ~2). However, y2 = - 3 (mod 3”) is solvable if and only if 

e = 0,l. Also y2 = - 3 (mod p”) is solvable if and only if y2 = - 3 (mod p) is solvable 

whenever p > 3 is prime. However, - 3 is a quadratic residue mod p if and only if p = 1 

(mod 3). 0 

Since - 1 is a quadratic residue mod m if and only if m = 2’~;’ - . . . -pT with e = 0,l 

and pj=l (mod4)for eachj=l,..., k, the following lemma is obvious. 

Lemma 9.3. Let m=3’p;l - ... .pp be the prime decomposition of m such that e=O, 

1 atidpjsl (mod3)foreach j=l,..., k. Then - 1 is a quadratic residue mod m if and 

only ife=O and pj=l (mod12)for each j=l,...,k. 

Lemma 9.4. Let m = 2d3”p’,’ - ... . pp be the prime decomposition of m. 

(a) Then x2= -1 has a solution in Z,[o] if and only if d=O,l, e=O and 

pjf--5(mod12)for each j=l,...,k. 

(b) Let x~Z,,,[o] be such that x2 = - 1. Then (x) = {) 1, kx} is conjugation incari- 

ant in Z,[w] ifand only ifeither pj- 1,5 (mod 12)Jor each j or pj= f 1 (mod 12)for 

each j. 

Proof. Let x = u + uo. Then x2 = - 1 in Z,[o] if and only if u2 - u2 E - 1 (mod m), 

u(2u-0)-O (mod m); i.e. if and only if u2 -u2 = - 1 (mod q), u(2u-u)-0 (mod q) for 

q = 2d, 3”, pj” for all j. Note that ~(224 -u) = 0 (mod q) implies u 3 0 or u = 2~4 (mod q) if 

q # 2d; then there exists a solution u, u modulo q if e = 0 or pj f - 5 (mod 12). For q = 2’ 

there exists a solution only if d = 0, 1. This proves (a). Note for (b) that for conjugation 

invariance we must have X=x or X= -x, i.e. X=U or x=u(l+20) for some UEZ,. 

However, then - 1 or 3 is a quadratic residue mod m, respectively. 0 

Lemma 9.5. Let m> 1 be an integer such that 

x2+x+1=O(modm) (17) 

is solvable. Let o be a solution. Then there exists a unique pair b, c of positive integers 

satisfying 

m=b2+bc+c2,(b,c)=1, cz:ob(modm). (18) 

Proof. The proof is analogous to that of [14, p. 1171 for the equation x2+ 1~0 

(mod m). As we do not know of any explicit reference, we give a proof here. Only for 

the purpose of this proof we change the notation of the ring Z[o] of Eisenstein 

integers to Z[p] where p =e2ni’3. 

First note that in H[p] we have 
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IfzisaunitofiZ[p]andz(x-yp)=I-_y”p,thenx2+xy+y2=12+I~+y”2.Hence,by 

multiplying x - yp by a unit if need be, we can achieve x, y 2 0. 

By (17) and Lemma 9.2 we have m = 3”~;’ *.e..p;I”withe=0,1andpj=1(mod3)for 

each j. We proceed by induction on m. The case m = 3 is trivial. 

It is well-known that if m = p is a prime with p G 1 (mod 3) there exists a unique pair 

of positive integers u, u such that 

p=u2+uu+u2, (u,u)=l, u=:ou(modp) 

(cf. [ 15, p. 951). This proves the lemma for m =p. Assume (18) holds for m =p*. Let 
m=p”+’ and p # 3; then of + 1 (mod p). Since w2 + o+ 1~0 (mod p”), there 

exist x,y such that pi=x2+xy+y2, (x,y)=l and y-ox (modp”). Then 

P 1+1=(x2+xy+y2)(u2+uu+u2)=r2+rs+s2 where r=xu-yu and s=xu+yu+yu. 

First we show that (u, s)= 1, and that we can assume s = or (mod p”+ ‘). However, 

(r, s) # 1 implies p ) (Y, s) and hence 0 = r = xu - yu = xu( 1 - 02) + 0 (mod p); hence, 

(r, s) = 1. Further, since (r, p) = 1 there exists y such that r-y s s (mod pa+‘). It follows 

that O-r2+rs+s2Er2(1+y+y2)(modp”+‘). Hence, y=o,02(modpa+‘). If 

y=o(modp”+‘), we are done. If y E w2 (mod pAtl), we can exchange r and s. Finally, 

it was remarked above that by changing s - rp in p “+‘=r2+rs+s2=(s-rp)(s-rp2) 

by a unit of Z [ p] to I- Yp (if need be), we can also achieve r, s > 0. Note for this that we 

still have (?,S)= 1 and Sw?(modpA+’ ); the latter can be easily seen by employing the 

ring homomorphism Z [ p] +Z, given by a + bp --+a + bo. This completes the existence 

proof for prime powers. 

Now let m=a.b, a,b>l, (a,b)=l. Assume 

a=u2+uu+u2, u,u>o, (u,u)=l, u z ou (mod a), 

b=x2+xy+y2, x,y>O, (x,y)=l, y-wx(modb). 

Then m=ab=r2 +rs+s2 with r=xu-yu, s=xu+yu+yu. Again, if we can prove 

(r, s) = 1 and s E or (mod m), then a similar argument to that above shows that we can 

also achieve r, s > 0. 
If (r, s) # 1, then p 1 (r, s) for some prime p, and we write xu-yo=pa and 

xv + yu + yu = p/l with positive integers CI, fi. Then xuu = pclu + yu2 = pj?u - yu2 - yuu 

and hence y(u2 + uu + u’) = p(fiu - c(u). Hence, p ) y or p 1 u2 + uu + u2 = a. However, p ( y 

implies p 1 xu = r + yu and p 1 xu = s - yu - yu, and hence p ( u, u; note here that p ,j’ x. It 

follows that necessarily p] a. In a similar fashion, one proves p 1 b, contradicting 

(a, b) = 1. Hence, (r, s) = 1. Further, since s = xu + yu + yu, we have 

s = xwu + yu + ywu = wxu - 02yu = o(xu - yu) = or (mod a), 

s = xu + oxu + oxu E oxu - w2xu z o(xu - yu) E or (mod b). 

However, (a, b)= 1, so that s=or(mod m). This completes the existence proof. 

Finally, to prove uniqueness assume there are two pairs b, c and 6, E satisfying (18). 

Then m2=(b2+bc+cZ)(g2+k+C1’)=r2+rs+s2 with r=bc”--&, s=b8+cE+ch, 
but s E bg(02 +o+ 1)~O(mod m) and s is positive. It follows that s=m and r =O. Let 
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t:=b/b”=c/c”. Then m=b2+bc+c2=t2(82+&+C”2)=t2m, so that t=l. Hence, b=6 

and c = 2. This completes the proof. 0 

For every positive integer m we have an epimorphism (Lemma 5.4) 

PL$-“(z[o]) ++ Ly(Z,[o])/K, (19) 

with (fl} < K <C(,-“(Z,[o]). Furthermore, whenever m=3ep;1. ....pT where 

e=O, 1 and pj=l(mod3) for eachj=l,... , k, we have a commutative diagram of 

epimorphisms 

This induces an epimorphism 

PL’_“(Z[i]) *m.H 2 -2 L,-“(Z )/K m ) (20) 

with {+Z}<K<Ci-“(Z,). 

We will use the images of the generators (16) under the epimorphisms tj,,K and 

Y m,K to construct chiral and regular polytopes of type {6,3,3}. 

Again let us denote by oV the image of CJ” under I,G~,~ or Y,,,.. Using the homomor- 

phisms (19) and (20) and a proof similar to the proof of Lemma 7.2 we have the 

following lemma. 

Lemma 9.6. Let R be Z, [co] with m 2 2 or Z, with m > 3 and m as in Lemma 9.2. Then 

for each subgroup K of C$- ‘j(R) containing { f Z}, there is a chiral or a directly regular 

abstract polytope of type {6,3,3} with the rotation group isomorphic to 

(al,az,a3)rL:-“(R)/K. 

Proof. The conditions on m imply that CJ~, 02, cr3 are of order 6, 3,3, respectively. The 

intersection property for the group is easily checked; see [19, p. 911. 

We proceed to identify the facets of the polytopes of Lemma 9.6. Since each facet is 

either chiral or regular of type {6,3}, it must be isomorphic to a toroidal map 

{6,3},,,,,. Recall from Section 2 that {6,3}(,,,, is regular if and only if bc(b - c) = 0. We 

obtain {6,3}&, (see the presentation (6)) by the addition of 

(a;‘a102~;l)b(0;1621ala2)E= 1 

to the defining relations for [6,3] +. In terms of the matrices (16) the left-hand side 

becomes 
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Let R and K be as in Lemma 9.6. Since o is invertible in R, the above matrix is the 

identity in L$- ‘)(R)/K if and only if c-ho = 0 in R. 0 

Theorem 9.7. For each integer m>2 and each conjugation invariant subgroup K of 

C$-‘)(Z,[o]) containing { fl}, there is a directly regular polytope 9 in ( {6,3}(,,0,, 

{3,3}) such that the rotation group of 9 is isomorphic to L$-‘)(Z,[o])/K. 

Proof. From Lemma 9.6 we have the existence of the polytope B with rotation 

group generated by the matrices (16) taken modulo m. The polytope is regular, since 

here exists an involutory automorphism p such that p(ol)=o; ‘, P(oz)=afaz 

and p(g3)= c3. In fact, p is induced by conjugation in Z,[o], i.e. by 

cx + /?w H E + /Iti = a + PO”. Note that K is conjugation invariant. 

To identify the facets note that c - bw = 0 n Z, [o] is and only if either b = c = m or 

b = m, c = 0 (or vice versa). We can rule out the possibility of b = c = m since the order of 

a;‘orazo;’ is m, and not 3m as it is for {6,3}+,). 0 

Corollary 9.8. Let m=2d3’p”,1 - ... wpp be the prime decomposition of m. There 

exist directly regular polytopes in ((6, 3}c,,0), {3,3}) whose rotation groups are 

isomorphic to 

(a) PSL,(Z,[w]) ifd=O, 1, e=O and pj~ -5 (mod 12)for each j; 

(b) PSL,(Z,[o]) if d=O,l, e=O and either pj-1, S(mod 12) for each j or 

pj= + 1 (mod 12)for each j; 

(c) PSL2(Z,[o])rxC2 and PSL,(Z,[o])rxC,, if d32, or e31, or pj- 

- 5 (mod 12) for at least one j. 

Proof. Let C<C,(Z,[w]), {kI}<K<C$-‘)(Z,[o]), C6K and 

be the canonical homomorphism. Again, C and K will be such that 

SL,(Z,[w])nK = C, implying that x is injective. Note that x is surjective if and only if 

there exists an element in K with determinant - 1. 

Let C=C,(Z,[w]) and K =C$-‘)(Z,[w]). Then K is conjugation invariant. By 

Theorem 9.7 and Lemma 9.4 if d = 0, 1, e = 0 and pjf - 5 (mod 12) for each j, we have 

a polytope with rotation group PSL,(Z,[o]). Otherwis x is not surjective and the 

rotation group of the polytope is PSL,(Z,[w])p<Cz, with C,=(a:K). 

Let C = { + I}. Under the conditions of (b) for m, let x be a solution of x2 = - 1 in 

Z, [o] such that (x) is conjugation invariant, and let K = (xl ). Then the rotation 

group is PSL,(Z,[w]). If m is as in (c), choose K = { f I}, so that the rotation group is 

PSL2(z,[o])rxc2. 

Remarks. (a) The groups PSL,(Z,[w]) and PSL,(Z,[w]) of Corollary 9.8 

coincide precisely for m= 2d3e with d =O, 1, or m =2dp” with d =O, 1, A 3 1, and 

pj~5, - 1 (mod 12). 

(b) If m=p= -1 (mod3), then Z,[o]~GF(p*) and PSL2(Z,[o])rPSL2(p2). 
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Theorem 9.9. Let m = 3’~;’ - ... - pp be the prime decomposition of m, and assume e = 0,l 

andpj-1 (mod3)foreach j=l,...,k. Leto~Z,besuchthato.?+o+l-O(modm), 

and let b, c be the unique pair of positive integers such that m = b2 + bc + c2, (b, c) = 1 and 

c~wb(mod m). Then for each subgroup K of C$P1>(Z,) containing { f I} there exists 

a chiral polytope in ({6, 3}(b,E,, {3,3} ) with group isomorphic to L$-“(Z&,)/K. 

Proof. First recall Lemma 9.5. Since, by Lemma 9.2, the equation x2+x+ 1s 

O(mod m) is solvable, we have (see Lemma 55(b)) the canonical epimorphism 

YJ m,K: PL:-‘)(Z[o])~L:-“(Z,)/K. We use Lemma 9.6 to construct a polytope B of 

type {6,3,3} from (ai, 02, ~3 >. 
To identify the facets as {6,3}(,,,, we use the remarks preceding Theorem 9.7. With 

our choice of b,c the required relation (~;1a,020;1)b(o;‘a;‘alcr2)C=1 holds in 

(crl, c2). Since the ‘translation’ cr;’ alrr2a; ’ has order m, the facets must be maps 

{6,3},,,,,. Since the facets are chiral, the polytope must be chiral as well. 0 

Corollary 9.10. Let m = 3’~;’ - . . . .pp be the prime decomposition of m, and assume that 

e=O,l and pj~l (mod3) for each j=l, . . . , k. Let b, c be positive integers such that 

m = b2 + bc + c2, (b, c)= 1. There exist chiral polytopes in ( (6, 3}(b,$), {3,3) ) whose 

groups are isomorphic to 

(a) PSLz(Z,) and L%L2(Z,), ife=O and pjr 1 (mod 12) for each j= 1, . . . , k; 

(b) PSLz(Z,)rxC2 and ~SL2(Z,)~Cl, ife= 1 or pj- -5 (mod 12)for at least one 

j=l,...,k. 

Proof. By our assumptions on b,c there exists a unique WE&,, such that 

o2+w+1rO(modm),c~ob(modm).LetCdC2(Z,),(+Z}dKdC~~‘~(Z,),C,<K 

and x: SL,(iZ,)/C-tL:~‘)(Z,)/K be the canonical homomorphism. Again, C and 

K will be such that SL2(Z,)nK =C, implying that x is injective. Note that 1 is 

surjective if and only if there exists an element in K with determinant - 1. 

Let C = C,(Z,) and K = C’s_ “(Z,). By Theorem 9.9 and Lemma 9.3 if e = 0 and 

pj~ 1 (mod 12) for each j, we have a polytope with group PSL2(Z,). Otherwise, the 

group of the polytope is PSL2(Z,)rxC2 where C, = (a:K). 

Let C= { &I}. Under the conditions in (a) on m choose K = (xl) with 

x2 = - 1 (modm). Then the group of the polytope is ~SL,(Z,); otherwise, let 

K={ +I}, then the group is PSL2(Z,)rxC2. 0 

10. The type {3,6,3} 

We recall from Section 6 that [3,6,3] + is a subgroup of index 4 in [6,3,3] +. In 

matrix notation the generators of [3,6,3] ’ are represented by 

ol=[; i2], 02=[ -,“’ g. c3= [; -;I. (21) 
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Considered as elements in L $-“(Z,[w]) the matrices in (21) generate a subgroup 

L (say). The centre of L is { kZ>. Then the correspondence of Mobius transformations 

and matrices gives us 

where C= {AZ 1 A&*}. Again we use the notation rrl, 02, o3 for the generators of A. 

Let $,,,K: A-+L’,-‘)(Z,[o])/K and !? m, K : A -+ L:- ‘>(&)/K be the restrictions of 

* m,K and ~nl,K, respectively, to ,4. Again, we shall abuse notation by using K to 

denote two different groups. 

Lemma 10.1. Let R=Z,[co], x=$,,,~, or R=H,, x= !?m,x. 

(a) If mr f 1 (mod 3), then x is an epimorphism. 

(b) Zf m-0 (mod 3), then x(,4) is a subgroup of index 4 in L$-‘)(R)/K. 

Proof. Consider the a/s as elements of L:-‘)(R). Let m= f 1 (mod 3) so that 3 is 

invertible modm. Then a suitable power of 

Multiplication of cr by 

~zQ1~2 -l,;l= [ :, ,;‘I shows [; ;]q(/I). 

Also 

0 -1 
c-l l c3= 

[ 1 o EXM). 

Now, as in the proof of Lemma 5.4, we use Lemma 5.3 to prove that the homomor- 

phism L+L$-l)(R) is surjective. Then 2 is surjective. 

Let m=O(mod 3). Consider the ring homomorphism f: R+Z3 given by 

u+uot+u+v or U+U if R=Z,[o] or R=h,, respectively. The induced homomor- 

phism f”: L:-‘)(R)/K~L’,-1)(~3)/{ +I} IS surjective; see the proof of Lemma 5.4. 

Now, f”maps (G~,(T~,G~) onto 

which has index 4 in L’,-“(Z,)/{ +I}. It follows that <~~,~~,rr~) has index 4 in 

L$- “(R)/K. 0 

Theorem 10.2. Let m 2 2 be an integer and let K be a conjugation invariant subgroup 

of C$-‘)(iZ[o]) containing (+I). Then there exists a directly regular polytope P 

such that 
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(a) if m = f 1 (mod 3), 9 is self-dual, 9’ is in ((3, 6},,,o,, {6,3},,,,, ) and 

A+(~)~.L-“(Z,[w])/K; 

(b) ifm=O(mod 3), 9’ is in ( {3,6)cm,3,m,3j, (6, 3),,,o,) and A ‘(9) is a subgroup of 

L$-“(Z,[o])/K of index 4. 

Proof. Modulo the intersection property (which we prove later) the subgroup 

(cl, c2, a3) of L$-‘)(Z,[w])/K (of index 1 or 4) is the rotation group of a chiral or 

a directly regular polytope 9. The polytope 9 is indeed regular, since conjugation of 

Z,[o] induces an involutory group automorphism of A ‘(9) that maps crr,(~~,gs 

onto cr ; i, 0: rs2, c3, respectively. 

To identify the facets of 9, we must (see the presentation (5)) consider 

(~1~21~;102)b(02~1~;1~;l)c= 
[ 

1 G(l-lX)(b-cw) 

0 1 I3 (24 

which is the identity if and only if (l-o) (b - cm) = 0 in Z, [w]. Let m = f 1 (mod 3), so 

that 3 is invertible mod m. Then multiplication by 1 - W shows that (1 - o)(b - co) = 0 

if and only if b -co = 0. Hence, the facets are maps { 3,6}(,, m) or { 3,6}(,, ,,). Since the 

order of 

is m (and not 3m), the facets must be maps { 3,6}(,, O). The polytope is self-dual, since 

conjugation by the matrix 

induces an involutory group automorphism of A ‘(9)) interchanging pi with a; ’ and 

o2 with o; i. It follows that the vertex-figures are maps {6,3},,,,,. To complete the 

proof of (a) we use Lemma 10.1. 

Let m ~0 (mod 3). From 0 = (1 - w)(b - cw) = b -c - o(2c + b) we see that the facets 

must be maps (3, ~SW,W or {3,6},,,,,. However, the transformation 

0102 -2 01 -‘a$= [ 

1 3w2 

0 1 1 
has order m/3, so that the facets are maps {3,6}Cm,3,m,3). Note here that this trans- 

formation shifts a Petrie 2-chain of { 3,6} two steps along itself; here a Petrie 2-chain is 

a zig-zag along the edges of { 3,6} which leaves at each vertex two faces to the right or 

left, in an alternating fashion. 
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To identify the vertex-figures { 6, 3}(d, e) consider 

l+o 1 (~;1a*~3~;l)*(0;10;la2~3)e= _02 
[ 

* 1_& --. e 
l-w I[ 1 1+02 1 

l+do d 1-eo2 -eo 
= 

-do2 l-do I[ e l+eo2 1 
1 +(d-eeo)o d-ew 

= 
-(d-eo)m’ 1 1 -(d-eo)w ’ 

(23) 

For this to be the identity we must have d - eo = 0 in Z, [w]. Hence, the vertex-figures 

are maps {6,3},,,0, or {6,3},,,,,. Since a;’ a; lo2rr3 has order m, they must in fact be 

maps {6,3}(,, e). Now part (b) of the theorem follows from Lemma 10.1(b). 

Finally, the proof of the intersection property (al, ts2 ) n (02, o3 ) = ( o2 ) is similar 

to that in the proof of Theorem 8.2. Here the ‘translation subgroups’ of (aI, o2 ) and 

(a2, a3) are given by 

and 

respectively, so that 

T,T,= 
1 +/Iw-41+24 /?-a(2+o)+c$(w-1) 

-/I?o’ 
1 _Bw 

Now the proof of the intersection property follows as in the proof of Theorem 8.2. 0 

The next corollary is an immediate consequence of the proof of Corollary 9.8. 

Corollary 10.3. Let m =2*pi’ - ..’ .pp be the prime decomposition of m, and assume 

that pj>5 for j=l,..., k. Then there exist self-dual directly regular polytopes in 

({3,6)(,,0), (6, 3}(,,0,) whose rotation groups are isomorphic to 

(a) PSL2(Z,[o]) ifd=O, 1 and pjf -5 (mod 12)for each j; 

(b) l%L,(Z,[o]) if d=O,l, and either pjE1,5(mod12) for each j or 

pjZ f 1 (mod 12)for each j; 

(c) PSL2(E,[w])rxC2 and FSL2(Z,[o])~C2, ifd>2 or pjZ -5(mod 12)for at 
least one j. 

Theorem 10.4. Let m = 3epT’ - .‘. - p? be the prime decomposition of m, and assume that 

e=O,l and pj~l (mod3)for each j=l,...,k. Let WE&,, be such that w’+o+l= 

0 (mod m), and let b, c be the unique pair of positive integers such that m = b2 + bc + c2, 

(b, c) = 1 and c EE ob (mod m). Let K be a subgroup of C$- ‘)(Z,) containing { f I}. Then 

there exists a chiral polytope 9 such that 
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(a) if mr 1 (mod3), 9 is self-dual, 9’ is in ((3,6}(,,b),{6,3}(,,b)) and A(P)= 

~~-lRn)I~; 
(b) ifmz0(mod3),Bisin({3,6}C.,d), {6,3},,,,) witha=(c-b)/3andd=(2b+c)/3, 

and A(P) is a subgroup of L$- “(&J/K of index 4. 

Proof. Again we write el, c2, CT~ for the images of the generators of /i under the 

homomorphism p : A--+ L $- “(i&,)/K, the restriction of Y,,K in (20) to A. Module the 

intersection property, the subgroup (al, CT~, c3 ) of L$-l)(Z,)/K (of index 1 or 4) is 

the rotation group of a chiral or directly regular polytope 8. 

To find the structure of the facets consider (as in (22)) 

(o102 -1 Cl -1 02) 4 (cJ261cJ;10;l)~= [ 

1 

O(1 -w)(k-lo) 0 1 1 . 
This leads to the equation (1 - o)(k - lo) = 0 over H,. By our choice of b and c, k = c 
and 1= b is one possible solution. 

If m s 1 (mod 3), then (o - l)(w2 - 1) = 3 shows that IX - 1 is invertible modulo m, so 

that the order of 

is m. It follows that the facets are maps (3,6}C,,b,. As in the proof of Theorem 10.2 

conjugation by 

gives a group automorphism interchanging cl with cr; ’ and c2 with a; ‘. Hence, 9’ is 

self-dual. The vertex-figures are maps {6,3}(,,,,, as can be seen either by self-duality 

arguments or by computations as in the next case. To complete the proof of (a) we use 

Lemma 10.1 (a). 

Let m E 0 (mod 3). First note that c E ob implies that a, dEZ and a E od. Now the 

order of 02~lg.;1rr;1 . IS m/3 = a2 + ad + d2, so that the facets are maps (3, 6}(.,d), To 

find the structure of the vertex-figure we need to consider an equation like (23) over 

Z,. This shows that the relation (a;’ ~2~3~;1)C(a;‘a;‘02a3)b=l holds in A(B). 
However, the order of 

-I_ l+oJ c7;1cJ20362 - 
[ 

1 
-co2 l--w 1 

is m, so that the vertex-figures are maps {6,3},,,,. By Lemma 10.1(b) the index of 

A(Y) in L$-“(Z )/K is 4. 

Finally, the pr”bof of the intersection property carries over from the proof of 

Theorem 10.2, but now with CX,PEZ,. This completes the proof. I7 
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Corollary 10.5. Let m =p?’ -.-.-pT be the prime decomposition of m, and let 
pjEl(mod3)foreachj=l,..., k. Let b, c be positive integers such that m = b2 + be + c2, 
(b, c) = 1. There exist self-dual chiral polytopes in ({ 3,6} (c,b), (6, $‘(,,b)) whose rotation 

groups are isomorphic to 
(a) PSL2(E,) and l%L,(H,), ifpjs 1 (mod 12)for eachj= 1, . . . , k; 
(b) PSL2(Z,)~C2 and ~SL2(Z,)rxC2, $ pj=-5(mod12) for at least one 

j=l 3 a.1 7 k. 

Proof. Follows from that of Corollary 9.10. 

Note that the results of this and the next section could also be derived from the 

results of the previous section by employing suitable mixing operations in the sense of 

[20] to the (rotation) groups. As in Section 8 this does not lead to shorter proofs. 

11. The type {6,3,6) 

Recall from Section 6 that [6,3,6] + is a subgroup of index 6 in [6,3,3]+. Hence, to 

construct the polytopes of type {6,3,6} we proceed as in Section 10. We first represent 

the generators of [6,3,6] + as 

ol=[ -; i2], g2=[; “;“2], o,=[“;-” a]. (24) 

Considered as elements in L :-“(E[o]) the matrices in (24) generate a subgroup 

L (say) whose centre is { kZ}. Then 

with C={nZ ll~C*}. Agztin we write cl, c2,c3 for the generators of II. Let $,,K: 

A+ Li-‘)(Z[o])/K and Y,,K : A-vL<,-~$~,)/K be the restrictions of I,&,,~ and Ym,K, 

respectively, to A. 

Lemma 11.1. Let R=Z,[o], x=$,,,,~, or R=Z,, x=@,,,,~. 
(a) Zf m E f 1 (mod 3), then x is an epimorphism. 
(b) If m=O (mod 3), then x(A) is a subgroup of index 6 in L$-‘>(R)/K. 

Proof. The proof is similar to that of Lemma 10.1. For (a), first note that 

6:cJ;1g;%2= 
1 -3 

[ 1 0 1 
implies U= 

and 

-l_ l w oa:o, - 
[ 1 o 1 EXV). 
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Also 

O2O3= :, ; 
[ 1 EX(A), 

and since 

[: :I=[: :I[:, ;I[; i] forcER, 
we can use arguments such as in the proof of Lemma 5.4 to complete the proof of (a). 

For (b), note that over Z3 the matrices of (24) generate a subgroup of L:- “(Z,)/( f I} 
which is isomorphic to C2 x C, and thus has index 6. As in the proof of Lemma 10.1 it 

follows that x(/i) has index 6 in L$-‘)(R)/K. 

Theorem 11.2. Let m > 3 be an integer and let K be a conjugation invariant subgroup of 
C<,-“(H[o]) containing {*I}. Then there exists a self-dual directly regular polytope 
B such that 

(a) if m= k 1 (mod3), then 9 is in ({6,3)(,,0J, {3,6)(,,0)) and A+(B)z 

W’(~mC~l)IK; 
04 if m=O (mod% then 9 is in <{6,3)(,,,,3,,,,,3), {3,6}(m,3,mj3j) and A+(B) is 

a subgroup of L$-“(Z,[o])/K of index 6. 

Proof. Modulo the intersection property, the subgroup (cri, (TV, CJ~) of 

L$-“(Z,[o])/K (of index 1 or 6) is the rotation group of a chiral or a directly regular 

polytope 9 of type {6,3,6); note for this that m>3. Define the involutory group 

automorphism p of (rr1,cr2,03) by 

I([; ;I)=[ _I -y2]=al[; ga;l. 

where conjugation of Z, [o] is given by u + VW = u + vo2. Then p maps rri, c2, g3 onto 

01 - ', o:r~~, 03, respectively, and hence 9 is indeed regular. Furthermore, conjugation 

by the matrix 

[: -“;‘I 
induces an involutory group automorphism of (or, a2,a3) which interchanges 

a1 with a;’ and a2 with a; ‘. It follows that 9 must be self-dual. 

To identify the facets of 9 consider 

(a~1aIa2a~1)k(a~‘a~1a1a2)z= 
[ 

1 (co-1)(-kklco) 

0 1 I. (25) 
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This is the identity if and only if (w- l)(k -lw)=O in H,[w]. Also 

has order m. 

Now, if mr + 1 (mod 3), then (w- 1)(02 - l)= 3 shows that o- 1 is invertible in 

Z,[w], so that the facets must be maps {6,3)(,,er. If m=O(mod3), then 

&n(o-1)2=~~(~2-2cc+1)= -mo=O and so we must have facets {6,3}(m,3,m,3j. 

Together with Lemma 11.1 this proves (a) and (b). 

Finally, for the proof of the intersection property note that in the group of the 

vertex-figure we have 

-r(o+2)+s(o-1)-l r(w+2)-s(o- 1) 

-r(o+2)+s(o-1) r(w+2)-s(o- l)- 1 1 . 
This can be used to complete the proof as in Theorem 10.2. 0 

(26) 

Corollary 11.3. Corollary 10.3 remains true if the class ( (3, 61\(,,0r, {6,3}(,, ,,, ) is 

replaced by the class ( { 6,3},,, ,,), { 3,6}(,, 0r >. 

Proof. See the proof of Corollary 9.8. q 

Theorem 11.4. Let m= 3=p!’ - ... -pp be the prime decomposition of m>4, and assume 

that e=O,l and pjEl(mod3) for each j=l,...,k. Let OE&,, be such that 

co2 + o + 1 z 0 (mod m), and let b, c be the unique pair of positive integers such that 

m=b2+bc+c2, (b,c)=l and c=ub(modm). Let K be a subgroup of Cl-“(Z,) 

containing { _+ I}. Then there exists a self-dual chiral polytope 9 such that 

(a) if m= 1 (mod3), then 9’ is in ({6,3}(,,,,, {3,6}(,,,) and A(B)EL$-“(E,)/K; 

(b) if m=O(mod3), then S is in ({6,3}(,,b),{3,6}(,,6)) with a=(c-b)/3 and 

d=(2b+c)/3, and A(P) is a subgroup of L$-“(i&J/K of index 6. 

Proof. Modulo the intersection property, the subgroup (rrr , 02, a3) of L$- “(&J/K 

(of index 1 or 6) is the rotation group of a chiral or regular polytope 9 of type (6,3,6}; 

note that m 2 4. By the same arguments as in the proof of Theorem 11.2, B is self-dual. 

To find the facets of 9 we consider (25) over Z,. A similar analysis as in the proof of 

Theorem 10.4 shows that the facets are maps {6,3},,,, if m = 1 (mod 3), or {6,3},,,,, if 

m E 0 (mod 3). Since the facets are chiral, B is chiral too. The self-duality of B and 

considerations involving (26) over Z, imply that the vertex-figures are maps {3,6},,,,, 

and {3,6}(,,d,, respectively. Then (a) and (b) follow from Lemma 11.1. Finally, the 

proof of the intersection property is similar to that of Theorem 11.2. q 
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Corollary 11.5. Corollary 10.5 remains true if the class ({3,6}(,,,), {6,3},,,,,) is 

replaced by the class <{6,3},,,,,,{3,6},,,,,). 

12. Petrie polygons 

For a regular or a chiral polytope it is sometimes useful to know the length of its 

Petrie polygons. For the definition of the Petrie polygon for a regular polytope, we 

refer to [25, pp. 3 15-3 161. This definition naturally extends to chiral polytopes, but in 

this case (since there are two orbits on the flags of the polytope) there are two ‘kinds’ of 

Petrie polygons: left- and right-handed. The right-handed Petrie polygon is shifted 

one step along itself by 01cr3, and the left-handed one by ~;‘a~. We proceed to find 

the orders of these transformations. For example, for the polytopes of type {4,4,3} in 

Section 7 we can do the following. Note that 

aIas=[-i :I=[: A]-i[i i]. 

Let 

Then ala3 =A - iB. We may allow (a,a3)k=ak(A-iB)+ bkZ, for some ak and bk. Then 

(a1a3)k+1 = (bk - &)(A - iB) + iakl. 

Hence, bk+l=iak and ak+l=bk-iUk, and we have the following recursive formula: 

ao=o, a, = 1, ak+r +iak-iak_l =o. 

In conclusion, if 9 is a polytope described in Theorem 7.3 or 7.6, the order of ala3 

is the smallest integer k such that ak = 0 in Z,[i] or Z,, respectively, and a& r IEH. 

Here the condition on a,+rl is automatically satisfied if H =C$-“(&,,[i]) or 

H = C(,- ‘)(Z,), respectively. 

To find the order of 

a;‘a3= 
i -i 

[ 1 1 0’ 

we see that it is sufficient to replace i by -i in the above recursion formula. With 

c=[; -;I, D=[:, J=B, 
a:‘a3=C+iB and cT;‘O,=Ck(C+iB)+dkl, 

this leads to the recursion 

cg=o, Cl = 1, ck+l-ick+ick_l=o. 
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Now, for Z,[i] the change in-i correspond to conjugation in H,[i], so that the two 

recursions are conjugate. Also, by assumption H is invariant under conjugation. It 

follows that the orders of 0;’ 0s and 0~0~ are the same, in agreement with the fact that 

the polytope of Theorem 7.3 is regular. However, this is no longer true in the chiral 

case of Theorem 7.6. 

Similar remarks extend to the polytopes in Sections 8-11. 
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