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Abstract

In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which
are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes
is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures
are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct
chiral polytopes, while PSL,(Z,,[i]) and PSL,(Z,[w]) are used to construct regular polytopes.

1. Introduction

Abstract polytopes are combinatorial structures that generalize the classical poly-
topes. We are particularly interested in those that possess a high degree of symmetry.
In this section, we briefly outline some definitions and basic results from the theory of
abstract polytopes. For details we refer to [9,22,25,27].

An (abstract) polytope P of rank n, or an n-polytope, is a partially ordered set with
a strictly monotone rank function rank(-) with range { —1,0, ..., n}. The elements of
2 with rank j are called j-faces of #. The maximal chains (totally ordered subsets) of
# are called flags. We require that 2 have a smallest (— 1)-face F_,, a greatest n-face
F, and that each flag contains exactly n+ 2 faces. Furthermore, we require that 2 be
strongly flag-connected and that 2 have the following homogeneity property: when-
ever F<G, rank(F)=j—1 and rank(G)=j+ 1, then there are exactly two j-faces
H with F<H<G.

If F and G are faces of  with F < G, we shall call G/F :={H | F < H <G} a section of
2. We shall not distinguish between a face F and the section F/F_, which itself is
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a polytope with the same rank as F. The faces of rank 0, 1 and n— 1 are called vertices,
edges and facets, respectively. If F is a face, then the polytope F,/F is called the co-face
of @ at F, or the vertex-figure of P at F if F is a vertex.

The dual Z of a polytope 2 is obtained from 2 by reversing the partial order, while
leaving the set of faces unchanged. We call 2 self-dual if # is isomorphic to . For
a more refined notion of self-duality, see Section 3.

A polytope 2 is said to be regular if its group of automorphisms is transitive on the
flags. For a regular 2, its group A(#) is generated by involutions py, ..., p,—1, Where
p; is the unique automorphism keeping fixed all but the j-face of fixed base flag
@:={F_,,Fy,...,F,} of ?. These distinguished generators satisfy the relations

(pipy =1 (j,k=0,...,n—1), Y

where pj;=1, pp=pi;j="p;j+1 if k=j+1, and py =2 otherwise. The generators also
satisfy the intersection property

{p;lied yn{pjljeK>={p;ljeJnK) forall J,K={0,...,n—1}. )

Properties (1) and (2) characterize the groups of regular polytopes. Namely, if 4 is
a group generated by involutions py, ..., p,—; Which satisfy (1) and (2), then 4 is
a group of a regular polytope [9,25] and py, ..., p,— are the distinguished generators
for its group. Such a group is called a C-group, and the polytope 2 is said to be of type
(Pt sPu-1})

The Coxeter group abstractly defined by relations (1) is denoted by [p;,...,Ps—1]-
This group is the automorphism group of the universal polytope {pi,...,Ps—1}
(cf. [25]).

For a regular n-polytope &, we define the rotation

o;=pj—1p; (j=1,...,n~1)

Then oy, ...,0,— generate the rotation subgroup A () of A(#), which is of index at
most 2 in A(2). When the index is 2 we shall say that & is directly regular. The
rotations o; satisfy the relations

ohi=1 (1<j<n—1), 3)
(O'jaj+1""'0'k)2=1 (1<]<k<n—l)

By [p1,...,Ps—1]1" we denote the group abstractly defined by (3); this is the rotation
group of the universal polytope {p;,...,pn-1}

Now let 2 be a polytope of rank n>3. Then 2 is said to be chiral if 2 is not regular,
but if for some base flag ¥ ={F_,,Fq,...,F,} of & there exist automorphisms
G1,...,0,—1 Of P such that o; fixes all faces in ¥\ {F;_,, F;} and cyclically permutes
consecutive j-faces of 2 in the (polygonal) rank 2 section F;, 1 /F;_ , of #. For a chiral
polytope the ¢;’s can be chosen in such a way that, if F denotes the j-face of #
with F;_; <F<F;+; and F;#F;, then o;(F})=F; (and thus ¢;(F;_;)=F}-,) for
j=1,...,n—1. The corresponding automorphisms o,...,0,-; generate A(#) and
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satisfy relations (3), with p,...,p,—, given by the type {py,...,pn—1} of 2. The
elements ¢4, ...,0,_, are called the distinguished generators of A(P).

It is not hard to see that all sections of a chiral polytope 2 must be directly regular
or chiral polytopes. In particular, the (n — 2)-faces and the co-faces at edges are directly
regular. For a detailed discussion of chiral polytopes, we refer to [27].

A group A with distinguished generators o,,...,0,-; must necessarily satisfy
a certain intersection property which is stated below for n=4 (see [27]). Conversely, if
A is a group generated by g4,...,0,_, satisfying relations (3) and this intersection
property, then A is the group of a chiral polytope or the rotation group of a directly
regular polytope. This polytope is directly regular if and only if there exists an
involutory group automorphism p: A—A such that p(e,)=01"', p(o,)=0610, and
p(oj)=o0;for j=3,...,n—1[27, Theorem 1]. Furthermore, it is properly self-dual (in
the sense of Section 3) if and only if there exists an involutory automorphism p such
that po,p '=03"! and po,p =05 "

This paper deals mostly with rank 4 polytopes. If 6,,06,,03 are the distinguished
generators of the group of a rank 4 chiral polytope 2, then the intersection property
takes the form

(a1 yn{ay )y =1={06,>N{03),
(61,02)N03,03)=X02)

(see [27, Lemma 11]).

2. Toroidal maps and locally toroidal polytopes of rank 4

Polytopes of rank 3 are (essentially) maps on surfaces. Note that in [6] the term
‘regular’ has been used for two kinds of maps: maps which are regular in our sense
(reflexible maps); and maps which are chiral in our sense (irreflexible maps). The
regular and chiral toroidal maps (maps on the torus) are all of type {4, 4}, o, {3,6}».0
or {6,3}@, (cf. [6, pp. 101-109]).

Consider the regular tessellation {4,4} of the Euclidean plane. Let
[4,4]1=<po,p1,p2> and [4,4]* ={0,,0,), in the notation of Section 1. In either of
these groups the translations X =p; pop1p, =01 '0,and Y=pyp,p2p1=0,0; " gen-
erate an abelian subgroup. Regarding X and Y as unit translations along the
Cartesian coordinate axes, X * Y* translates the origin (0, 0) to the point (b, c). The orbit
of (0,0) under (X, Y ) is the set of vertices of {4, 4} (which is Z[i]). For a given pair of
integers (b, ¢) the square

b,0),(0,0),(—c,b),(b—c,b+¢)

is a fundamental region for the translation subgroup (X°Y°, X ~<Y?®>. Identifying
opposite edges of the square (see Fig. 1), we obtain the toroidal map # :={4, 4},
Note that we made a slight change in the notation of [6] where {4, 4}, ., is denoted
by {4, 4}1,’6.
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It is easy to see that if b=0 or ¢=0, or if b=c (equivalently, if bc(b—c)=0), then
{4,4} . is regular; otherwise, it is chiral. Also note that {4,4}4,=1{4,4} (s> in
particular, {4,4} 4. 0,={4,4} 0.5 If bc(b—c) #0, then {4,4}, , and {4,4} ;. although
isomorphic, are distinct. In a sense the map {4,4} . 5 is a mirror image of {4,4}, . We
will say that one is the enantiomorphic form of the other, or that the two maps are the
two enantiomorphic forms of the same underlying isomorphism type of toroidal map.

Note that conjugation by o, maps X to ¥ ~! and Y to X, so that X®Y“=1 implies
X °Y®=1. Hence, A * (#)=:[4,4] ., has the following presentation:

=03=(0,0,)*=(0; '02)(010; 'f=1. )

Let us now consider the Euclidean tessellation {3,6}. Let [3,6]1={po,p1,027
and [3,6]* ={ay,0,). The translations X =(pop;p,)*=0,0; 01 'a,=01"c3 and
Y=(p1p2po)?=020105 07 =0,07 "0, generate again an abelian subgroup. Now
regarding X and Y as unit translations along the oblique axes inclined at n/3, the orbit
of (0,0) under (X, Y is the set of vertices of {3,6} (which is Z[w]). For a given pair
of integers (b, c), consider (X?Y¢, X ~°Y"**) whose fundamental region is the
parallelogram

(,¢),(0,0),(—c,b+c),(b—c,b+2c),

with coordinates understood relative to the basis X, Y. Identifying opposite edges of
this parallelogram (Fig. 1), we obtain the map A" :={3,6}¢ 4.

As before, if bc(b—c)=0 then 4" is regular; otherwise, 4" is chiral. Also
(3,6} .00=13,6}(—c.p+o and {3,6}4, 0y=13,6}0.5- When A" is chiral, the maps
{3,6}». and {3,6},» are enantiomorphic.

The conjugation by o, maps X to Y and Y to YX ~'. Hence, X?Y°=1 implies
X ¢y?*¢=1, hence A *(A")=:{3,6}4., has the following presentation:

=06$=(010,)*=(0105 610, (020105 'a7 ) =1 (5)
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The dual of A ={3,6}¢., is given by 4 ={6,3}( ., where the index (b,c) of
the latter refers to the same translations X, Y as above. In particular, {6,3}, =
(6,3} (—c.o+cy and {6,3}.0={6,3}(0,5)- Again, in the chiral case the maps {6,3},,
and {6,3}..5 are enantiomorphic. By dualizing (i.e. by replacing po, py, p2 by
P2, P1s Po,and 64,6, by 071,07 ") we find that A * (A")=[6,3],. has the following
presentation:

0'?:0'3"—"(0102)2=((72_10'1020'1_1)b(0'1_10'2_10'102)c=1- (6)

Let 2 be either a regular or chiral 4-polytope. We say that £ is locally toroidal if its
facets and its vertex-figures are maps on the 2-sphere or on the torus, and either its
facets or its vertex-figures, or both, are actually toroidal. Then locally toroidal rank
4 polytopes are necessarily of type {4,4,3}, {3,4,4}, {4,4,4}, {3,6,3}, {6,3,p} or
{p,3,6} with p=3,4,5 or 6. In this paper we will construct infinite families of such
polytopes.

3. Enantiomorphic forms of chiral polytopes

It is a well-known phenomenon that certain objects (or more exactly, their isomor-
phism types) occur in two enantiomorphic (mirror image) geometric forms. Examples
are the chiral toroidal maps described in Section 2. As we shall see below, each
isomorphism type of chiral polytope occurs in two enantiomorphic forms. We begin
with the following observation.

Let & be a regular n-polytope, ¥ ={G_y,Gy,...,G,_1,G,} its base flag, and
%o, ..., o, 1 the distinguished generators of A(%). Fori=0,...,n—1 denote by G; the
i-face of # with G;_; <G}<G;,, and G}#G;, and let ¥':=(¥\ {G,})u{G;} be the flag
i-adjacent to Y. For i=1,...,n—1, let f;:=o;_y0;. Then f; cyclically permutes
consecutive i-faces of & in the (polygonal) 2-section G;,,/G;_, of &, and the
‘orientation’ of f; is such that S,(G;)=G; (and B:(G;-,)=G;-;). The elements
Bi, ..., B.— are the distinguished generators of A * (%) defined with respect to the
base flag V.

Now, consider changing the base flag to ¥* for some fixed k. Clearly, o, (¥ )= P*, so
that o B0, ..., % B.— 1% are the distinguished generators of A * (%) defined with
respect to the new base flag ¥*. Note that

B: if i<k—2 or izk+3,
BBty if i=k—1,

S O A A ) @)
BB if i=k+2.

For example, if k=0, the new generators of A * (%) are

ﬂl_l,ﬁ%ﬂZ’ﬁ3a""ﬁn*1-



226 E. Schulte, A.I. Weiss | Discrete Mathematics 131 (1994) 221-261

We are particularly interested in the case when % is directly regular. Then A* (%)
has precisely two orbits on the flags. (Once a base flag has been fixed, these are the set
of even flags and the set of odd flags; see [27].) Passing from one flag to another flag in
the same orbit implies that the corresponding sets of distinguished generators of
A1 (&) are related by conjugation in 4% (&). However, if we pass from one flag to
a new flag in the other orbit, then the sets of distinguished generators of 4™ (%) are
related by conjugation in A(.%) but not in A*(.#). The above change from ¥ to ¥*
illustrates this case; here the change to new generators is realized by an involutory
group automorphism of 4% ().

Now let 2 be a chiral or directly regular n-polytope of type {pi,....Ps—1}>
@:={F_,,Fy,..., F,} its base flag, and o,,...,0,- the distinguished generators of
A1 () defined with respect to @. Again, the distinguished generators of A™(2)
belonging to flags in the same orbit of 4*(2) are related by conjugationin A* (2). As
above, the change from & to the k-adjacent flag ®* results in a change from
04, ...,0,—1 to the new generators given on the right-hand side of (7). (Note that in the
chiral case the left-hand side of (7) makes no sense.) This can be seen either directly, or
by relating 2 to the universal (directly regular) n-polytope & ={p,...,pn—1}. Note
that for different k’s the corresponding sets of generators are related by conjugation in
A*(2). It follows that up to conjugation in 4*(Z) there are precisely two sets of
distinguished generators of A*(£), namely o4, ...,0,- and o7 ',610,,03,..., 04—,
belonging to @ and @, respectively. Recall from [27] that the polytope 2 is regular if
and only if there exists an involutary group automorphism of A*(£) carrying one set
into the other.

These considerations motivate the following definition. By an oriented chiral or
oriented directly regular polytope 2, we mean a chiral or directly regular polytope
together with a distinguished orbit {®} of flags under the action of 4* (). Here we
use the notation (2, {®@}), or simply (2, ®) with appropriate identifications modulo
A% (#) understood. Each (isomorphism type of) chiral or directly regular polytope
P gives rise to two oriented chiral or oriented directly regular polytopes; if
one of them is (2, ®), then the other is (%, ®°) (or (#, $¥) for any k). We say that
these two oriented polytopes are the two enantiomorphic forms of 2. The orbits {®}
and {®°} are also called the two orientations of 2. In the case of a directly
regular polytope 2, we shall later identify the two enantiomorphic forms (2, @)
and (2, ®°). For now, note that by the above remarks each oriented chiral or
oriented regular polytope (#,®) comes along with a distinguished choice of
generators of A*(Z) (unique up to conjugation in A*(2)). If 2 is directly regular,
then these sets of generators are equivalent under an involutory group automorphism
of A*(2).

Yet another view of enantiomorphism is obtained by relating £ to the
universal polytope £ ={py,...,Pn—1}. Let Bi,...,B,-1 be as above, so that
AYN(L)Y=[p1,.--»Pn-11T =<{B1, ..., Ba—1); note that here implicitly we are consider-
ing % as an oriented directly regular polytope. Let (£, ) and (2, ®°) be the two
enantiomorphic forms of & with corresponding generators oy,...,0,-1 and
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o;Y,0%0,,03,...,0,_,, respectively. Then B0 (i=1,...,n—1) and B;+s0o7l,
B, oic,, PBi—o; (i=3,...,n—1) define two surjective homomorphisms
fiAY (L) AT (P) and g: AT (L)~ A* (P) with kernels N; and N, respectively.
However, g(8)=f(ao o) for each feA™ (&), with ay, ..., a,-, as above. It follows
that N,=ao N oo (= N oy for each k). Hence, distinguishing the two enantiomor-
phic forms (£, @) and (2, ®°) of a chiral or directly regular polytope £ is equivalent
to distinguishing the groups in a pair (N, N,) of normal subgroups of A* (%) which
are related by conjugation with o, or any other o). As an example, the two translation
subgroups of [4,4] defining the two enantiomorphic forms {4,4},, ., and {4,4} , are
conjugates by . In the general situation, if & is directly regular, then f is the
restriction to 41 (%) of the homomorphism f~: A(ZL)— A(2) which maps ag, ..., 0,1
to the distinguished generators of A(2); since & is directly regular, its kernel is again
N; and thus N, is normal in A(%). It follows that for a directly regular 2 the two
subgroups N, and N, coincide.

Note that, in the above interpretation of enantiomorphism, the universal
{p1,....Pa—1} can be replaced by any directly regular polytope & which covers 2 (i.e.
for which f and g exist).

Recall that the dual 2 of an abstract polytope £ is obtained by reversing the partial
order of £ while keeping all faces of 2. For an oriented chiral or oriented directly
regular polytope (2, {®}), the dual is defined as (%, {®}), with flags given in reverse
order. If 6,,...,6,_; are the distinguished generators for A*(#) with respect to
(2,{®}), then 6,4y, 0,,,...,07 " are the distinguished generators with respect to
(2, {®}). Note that the ‘orientation’ of the generators is correct; in fact, in the notation
of Section 1, we have 6, {(F,.;—1)=F,_;- fori=1,...,n—2.

Let (2,,{®,}) and (#,,{®,}) be two oriented chiral or oriented directly regular
polytopes, and let ¢ : 2, >, be an isomorphism of abstract polytopes. Then ¢ maps
{®,} onto {®,} or {®3}, and thus maps { #?} onto { ®3} or {P, }, respectively; in fact,
in the notation of [27], ¢ maps the set of even flags of 2, onto the set of even flags or
the set of odd flags of #,. We call ¢ proper (or an isomorphism of oriented polytopes) if
it preserves orientations, i.e. {@(®,)} ={®P,}; otherwise, ¢ is improper.

Note that for any chiral or directly regular polytope £ the identity map is an
improper isomorphism between the two enantiomorphic forms of 2. If 2 is directly
regular, then the automorphism «, of 2 with aq(®)=@° is a proper isomorphism of
(2, ®) onto (2, $°). Hence, since properly isomorphic oriented polytopes can be
identified, we can identify the two enantiomorphic forms (2, @) and (2, ®°) for any
directly regular polytope.

Let {#2,,®,} and {#,,®,} be as above. A duality (incidence reversing bijection)
@: P —P, is proper or improper if it preserves or changes the orientations, respec-
tively. A self-dual chiral or directly regular polytope 2 is properly self-dual if 2 admits
a duality ¢ (and thus only dualities) which preserves the two orbits of 4*(2); then
¢ must be proper. Note that any self-dual directly regular polytope is indeed properly
self-dual, since it possesses a polarity (duality of order 2) which fixes the base flag. In
the general situation, if (£, ®) is an oriented chiral or oriented directly regular
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polytope such that & is properly self-dual, then 2 admits a polarity w which fixes
@ and thus induces an involutory group automorphism A*(2)—»A*(#) with
6;—wo;0=06,_; note that for (%, ®°) the polarity we, - --- - 6,_ ; fixes #° and induces
a corresponding group automorphism for the generators a1}, 636, G3,...,0n—1.
Conversely, if for an oriented chiral or oriented directly regular polytope (#, @) there
exists a group automorphism A*(2)— A" (2) with 6,0, Y, then 2 is properly
self-dual.

Let (2, ®) be an oriented chiral or oriented directly regular polytope, and let
@={F_\,F,,...,F,} and —1<i<j—1<n—1.First note that (F;/F;, {F;, Fi1{, ..., F;})
is again an oriented chiral or oriented regular polytope (but is not necessarily chiral if
2 is chiral); this is a particular instance of a section of (%, @). More generally, if F is an
i-face of #,G a j-face of # with F<G, and ¥ a flag of G/F equivalent to
{Fi,Fi+1,....F;} under an element ¢ (say) of A*(2), then (G/F,¥) is an oriented
chiral or oriented directly regular polytope called a section of (#,®). Note that
in this situation ¢ becomes a proper isomorphism between (G/F,¥) and
(F;/Fi, {Fi,Fi41,...,F;}). We also use terms like face, facet, co-face or vertex-figure of
(2, @) for sections (G/F, V) of (2, ®), where G/F is a face, facet, co-face or vertex-figure
of 2, respectively.

In the above situation, if i= 1 or j<n—2, F;/F;and G/F are directly regular polytopes.
In this case there exists an element te 4™ () which induces a proper isomorphism
between (G/F, ¥)and (G/F, ¥°), with ¥° the (0-adjacent) flag of G/F differing from ¥ in
an (i+ 1)-face of 2. This is in agreement with our identification of the two enantiomor-
phic forms for directly regular polytopes. In fact, if i+2<j<n—2, then
TI=0;420;13°  * Op—1 maps @ to ('* 1y~ ! and thus maps (F;/F;, {F;, Fiv1, ..., F;})
to (Fj/F;, {Fi,Fixy,....F;}°); if j—2>i>1, then t:=06,0,"---+0,4, has a similar
effect. Note that if i=0 or j=n—1 such an element t cannot exist in 4" ().

From now on we often simplify notation and write £ for an oriented chiral or
directly regular polytope (2, ), with a specification of the orientation {®} under-
stood. By 2 we denote the oppositely oriented polytope (2, #°), with the convention

that Z =2 if 2 is directly regular. Then for all # we have (5 )=2. Note that terms
like section, face, etc., always refer to the chosen orientation.

4. Classes of polytopes

In this section we briefly discuss the problem of amalgamating two rank
n-polytopes 2; and 2, . In particular, we elaborate on the corresponding discussion in
[27, Section 6].

For two regular n-polytopes 2, and #,, we denote by (#,, %, the class of all
regular (n+ 1)-polytopes & with facets isomorphic to #; and vertex-figures isomor-
phic to 2,. Each nonempty class (#;, #, ) contains a universal member denoted by
{P,, #,}. In particular, the polytope {#,, 2, } is directly regular if and only if both 2,
and #, are directly regular.
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The definition of classes is more subtle for chiral polytopes and does not simply
carry over from regular polytopes. We need to distinguish the two enantiomorphic
forms of chiral or directly regular polytopes. This distinction is more or less irrelevant
if at least one of the polytopes 2, 2, is directly regular, but is essential if both 2, and
2, are chiral.

Let (2, ®,)and (£,, @,) be oriented chiral or oriented directly regular n-polytopes.
By (21, D)), (P, ;)" or simply {2, #, >", we denote the class of all oriented
chiral (n+ 1)-polytopes (2, @) whose facets and vertex-figures are properly isomor-
phic to (#,,®,) and (#,,®,), respectively. For this class to be nonempty it is
necessary that the vertex-figures of (%, @) are properly isomorphic (as oriented
polytopes) to the facets of (#,, @,). However in general this will not be sufficient.

Now, let (2, @) be in (2, D,),(#,, P,)>°". Then the oppositely oriented polytope
(2,00 =(2,®) is in (P, P}), (#,, ®9) >, so that both facets and vertex-figures
get changed to the oppositely oriented polytopes. Hence, in the notation of Section 3
we have Pe(P, P, >" if and only if Pe( P, P, )" If we adopt the short form

<W1,92>Ch5=r@lg€<91,92>6h},
then this can be written as
<@1,92>Ch=<=@1»@2>6h'

In particular, if &, is directly regular, then {(2,, 2, >"=(P,, #,>". A similar
equality holds if &, is directly regular. However, if both 2, and £, are chiral, we
cannot in general relate {(#,, #,>°" and (#,;, 2, >

For further reference we recall [27, Theorem 2], the following result. (Note that
[27] does not elaborate on the notion of oriented chiral polytopes.)

Theorem 4.1. Let P, and P, be oriented chiral or directly reqular n-polytopes but not
both directly regular. Assume that {(P,, P, >"#0. Then there exists an oriented chiral
(n+1)-polytope in (P, P, >" such that any other P in (P, P,>" is obtained from it
by suitable identifications. This polytope is denoted by {Py,P,}* and is called the
universal (oriented) chiral (n+ l)-polytope with facet type P, and vertex-figure
type P,.

To give an example that different enantiomorphic forms indeed matter, consider the
classes ({4,4}1,3),{4.4}1,3>" and <{{4,4}3 1), {4,4}1 3> Here the Coxeter—
Todd coset enumeration algorithm found that the universal {{4,4} 3),{4,4} 1.3 }"
and {{4,4} 3.1y, {4,4} (1,3} have groups of order 960 and 2000, respectively (cf. [3]).

Note that for universal polytopes we have {2;, 2, }*={2,, #,}". If either 2, or
2, is directly regular, then {2, 2, }"={P,, P, }" or {P,, P, }*"={P,, #,}°". Note
that if both 2, and 2, are directly regular, then (£, #,)>°* does not contain
a universal member, since the natural candidate for this member is directly regular.
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S. Generating special linear groups

Let R be a commutative ring with identity 1 and G a subgroup of the units R* of R.
Let L$(R) be the group of 2 x 2 matrices with entries in R and determinants in G, and
PL§(R) be the quotient of L§(R) by its centre. Note that the centre C$(R) of L$(R)
consists of all the matrices AI (I being the 2x2 identity matrix) with A%eG.
Then C,(R):=C{"(R), SLy(R):=L${"(R) and PSL,(R):=PLS{(R). Furthermore,
GL,(R)= L% (R) and PGL,(R)=PL%(R). Let PL§(R) denote the quotient of L$(R)
by {+1}; then PSL,(R)=SL,(R)/{+1} and PGL,(R)=GL,(R)/{+1}. Note that
since {+ 1} < C§(R), we have a projection PL§(R)=PL§(R).

Let JSR be an ideal. Then the natural ring epimorphism R—R/J, r—r+J,
induces a group homomorphism ¢ : L§(R)— L’ (R/J), where G,={g+J/geG}. Note
that @(C$(R)) is a subgroup of C§’(R/J), and hence for each subgroup H of C§*(R/J)
containing ¢ (C5(R)) the map ¢ induces a homomorphism ¢y : PLS(R)—L$’(R/J)/H.

We will be particularly interested in the following two rings of complex numbers:
the ring of Gaussian integers Z[i]={a+bi|a,beZ, i*+1=0}, and the ring of
Eisenstein integers Z[w]={a+bw|a,beZ, w*+w+1=0}. In these rings, {id>=
{£1, +i} and {tw)={+1, +w, +@} are the groups of units, respectively, each
containing { —1)={+1}.

For later reference we will need the following lemmas.

Lemma 5.1. Let

0 -1 11 1 i
A=[1 O:,’ B-—-[O 1] and Cz[o 1:'.
{a) SL,(Z{i]) is generated by A, B and C.
(b) L 1(Z[i]) is generated by A, B, C and

-1 0
0 1
(c) L{(Z[i]) is generated by A, B, C and
3
—i 0
0ty

Proof. Bianchi [1] noticed that

[l (_)]=ACAC"1AC.
0 —i
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To complete the proof of (a), see [11, p. 75]. Then (b} is trivial and (c) follows since
EHERNEE
L 0 1] L ot

Lemma 5.2. Let

Proof. Again, Bianchi [1] noticed that
20
[‘” ]:(CAC*‘BA—ICA)Z.
0 w
To complete the proof of (a), see [11, pp. 75-76]. Then (b) follows trivially. [J

For the sake of completeness we give a proof of the following lemma.

Lemma 5.3. Let R be a finite commutative ring with identity. Then SL,(R) is generated
by the elementary matrices of the form

1 a 1 O )
[0 1] and [b 1] with a,beR.

Proof. We first note that whenever veR*, then

[v 0
O V_IJ

has the required from since

EISY o PR PR ] B

This settles the case of diagonal matrices. Now, let

A=[°‘ ﬂ]eSLZ(R)
y 0

and By +#0; then ad—py=1=1;.
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Let J(R) be the radical of R. Then by a general fact for finite commutative rings,
R/J(R) is the direct sum of simple commutative rings (see for example [2, p. 208]) and
hence

RIJ(R)=F  ® - @ F, (8)
where each F; is a finite field. For each reR, let F=r +J(R), and write F=(ry, ..., 1)
corresponding to (8). Let supp(F):={j|r;#0}. Note that since ad—pfy=1,
w;8;—Pjyj=1F, for all j=1,....,k, where 1=(1g,...,15). Also note that
|supp (@)usupp (B)| =k.

Assume for the moment that |supp(&)|=k. Then, since each F; is a field, & is
invertible in R/J(R) say &~ ! =A+J(R). Then aA— 1€J(R), and since J(R) consists of

nilpotent elements, xc R*. Hence, since 6 —a 1fy=a"1,

Al—oc“[f__ocO_lOon
[O 1 Ty ot ey I:I[O cx*l]’

and A has the required form.

Now let |supp (@)|=m<k and, without loss of generality, assume &=(ay, ..., %y,
0,...,0) where o;#0 for j=1,...,m. Then ﬁ=(ﬂm+1, ..., By) 1s an invertible element of
Fruy 1 ®---@F, and let (B,+4,...,8x) be its inverse. Let peR such that

5=(0,...,0,Bms1,.... Bi). Then

10 x+fp B
A = .
p 1 y+dp o
Here o+ fp=(xy,... 0, lg,,,s.--»1p) and hence [supp(a+fp)|=k We now

complete the proof by the above argument applied to the matrix on the right-
hand side. O

Let R be a finite local ring (every element of R is either a unit or nilpotent) with
g elements s of which are units. In subsequent sections we will make use of the
following formula |SL,(R)|=gs(2g —s).

For each integer m=2, let Z,,=7/mZ denote the ring of integers mod m. Let

Z,i1=2[i]/mZ[i], Zylo]=Z[w]/mZ[w)].

Note that here we are not requiring the equations x?+1=0 or x +x+ 1 =0, respec-
tively, to be irreducible over Z,,. Instead, we use the notation Z,,[i] and Z,,[ ] (in any
case) to mean the quotient rings of Z[i] and Z[w] by the ideals mZ,[i] and mZ,[w],
respectively.

Under the projections Z[i]—Z,,[i] and Z[w]—>Z,[w] units are mapped onto
units. In particular, if m>=3 then Z[i*={)=d+mZ[i])><Z,[i]* and similarly
Z{o*={tw)={(to+mZ[w])<Z[w]* If m=2 then Z,[i] is a ring with four
elements two of which are units, 1 +2Z[i] and i+2Z[i]; it is not the field GF(2?),
since 2Z[i] is not a maximal ideal. On the other hand, Z,[w] is indeed the field with
four elements. If m=p is a prime with p=—(mod4), then —1 is a quadratic
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non-residue mod p and thus x? + 1 =0 is irreducible over Z,,. It follows that in this case
Z,[i1= GF(p?). Similarly, if m=p is a prime with p=2(mod 3), then —3 is a quadratic
non-residue mod p, and x? + x + 1 =0 is irreducible over Z, and thus Z ,[w] = GF(p?).

Below we shall slightly abuse notation and write r for a unit r+mZ[i] of Z,,[i] or
r+mZ[w] of Z,,[w]. This is mainly used with r=i or r= — 1. For example, i) will
denote the subgroup (i+mZ[i]> of Z,[i]. Also we write ¢,:L$"(Z[i])—~
L$P(Zn[[0]) and Y LS P (Z[w])— L5V (Zu[w]) for the induced homomorphisms.

Lemma 5.4. The canonical homomorphisms

(@) Qm i PLS?(Z[1])— LS (ZW[i1)/H with il y <H< C$(Zn[i]); and

() Ymk: PLS P(Z[w0])> LS P (Zu[w])/K with {£I}<K<LCS V(Zu[w]), are
epimorphisms.

Proof. To prove that ¢,, y is an epimorphism it is sufficient to show that the
restriction SL,(Z[i])—=SL(Z,[i]) of ¢, is surjective. By the previous lemma this is
true since

o Vo e ]
k(b | R

A similar proof applies to ¥, x. O

and

For the rings Z,,[i] and Z,,[«] the conjugation o+ fi—o— Bi and o+ Bo— o+ fw?,
respectively, define involutory ring automorphisms. As usual we write X for the
conjugate of an element x. A subgroup H of L{?(Z,[i]) or K of L§ V(Z,[w]) is
called conjugation invariant if for each matrix A in H or K the conjugate matrix (with
entries conjugate to those of 4) is again in H or K, respectively.

Now let us assume that —1 is a quadratic residue mod m; ie., there exists an
element feZ, such that i?=—1. Then the ring homomorphism Z,[i]—Z,,
«+ Birso+ B, induces the homomorphism &,,: L$?(Z,,[i])—L{>(Z,,). Similarly, if
the polynomial x2+x+ 1=0 is reducible in Z,, we have the homomorphism
v, L§_1>(Zm[w])—+L§_I>(ZM) induced by a+pwra+pd, where @eZ, with
@2+ ®+1=0. As before let us abuse the notation by omitting tilde.

The following is a consequence of Lemmas 5.3 and 5.4.

Lemma 5.5. (a) Assuming that x2>+1=0 (modm) is solvable, the canonical homomor-
phism @, y: PL{P(Z[i])—>L${P(Z,,) /H induced by ®,,0,, is an epimorphism whenever
GIY<SHKCSZ,y).

(b) Assuming that x*>+x+1=0 (modm) is solvable, the canonical homomorphism
Yk PLS V(Z[w])~> L V(Z,)/K induced by ¥\, is an epimorphism whenever
(41} <K<CE O (Z,).
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6. Hyperbolic honeycombs and the inversive plane

The regular and chiral polytopes which we construct in this paper are all finite and
locally toroidal. They can be derived from the universal polytopes which are isomor-
phic to regular honeycombs in the three-dimensional hyperbolic space H3; see
Section 2.

The absolute of the hyperbolic space H? is an inversive plane as can be seen from
Poincaré’s half-space model for H*. The absolute is then an extension of the Euclidean
plane by the point at infinity. The reflection in a hyperbolic plane induces the
inversion in the circle which is the intersection of that plane by the absolute.
Conversely, the inversion in a circle of the inversive plane induces the corresponding
hyperbolic reflection in M3, This then implies that a group of displacements in H? is
isomorphic to a group of Mdbius transformations over C.

The symmetry group [p,q,r] of a honeycomb {p, q,r} is generated by reflections p,
in four planes R, (say) which form an orthoscheme [5, p. 188], a simplex with dihedral
angles < (Ry,Ry)=n/p, x(Ry,Ry)=m/q, £(R,,R3)=mn/r, and the remaining three
angles /2. By the above-mentioned isomorphism, [p,q,r] can be represented by
a group of Mobius transformations generated by the inversions in four circles cutting
one another at the same angles as the corresponding reflection planes. For the
complete list of generating inversions one is referred to [31]. Here we only require five
of the ten possible groups.

As before, let i denote a fourth root of unity in C, so that i2+1=0, and w a cube
root of unity, i.e. >+ w+1=0. Then

[4,4’3}=<PO(2)=Z_’ P1(2)=i2—’ pZ(Z):l_Ea P3(2)=1/2—>,

[6,3,31=(po(2)=5  p(@)=—mz, pal)=1—2  ps(d)=1/2>.

In terms of its generators o, =pgp1, 0,=p1p, and o3=p,p, the corresponding
rotation subgroups are given by

[4,4,3]" =<{0,(2)= — iz, 0,(z)= —iz+1, o3(z)=1—-1/2),
[6,3,3]" =<0,(2) = — wz, 0,(z)=(z—1)/w, o3(z2)=1—1/z).

By simplex dissection, we know that the group [4,4,4] of {4,4,4} is a subgroup of
index 3 in [4,4,3]. In terms of the gencrators p’, (say) of [4,4,3], the generating
reflections p, for [4,4,4] are

Po=P1>  P1=Po>»  P2=p2P1P2,  P3=p5.
Hence,
[4,4,41={po(2)=iz, p1(2)=2,  pala)=—iz+1+i, p3(z)=1/2),

[4,4,4]1" =<o,(2) =iz, o,(2)=iz+1—1, g3(zZ)=1+i—i/z).
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Similarly, [3,6,3] and [6,3,6] are subgroups of index 4 and 6, respectively, in
[6,3,3]. In terms of generators p;, (say) of [6,3,3], the generating reflections for
[3,6,3] and [6, 3, 6] are

Po=pPo,  P1=P1PoP1.  P2=P2  P3=P3,

and
Po=P1,  P1=Pos  P2=p2P1P0P1P2,  P3=P3,

respectively. Hence,
[3,6,3]1={pol2)=2, p1(D=wz,  palr)=1-2,  ps(9)=1/z),
[3,6,3]" =<{0,(2)=w?z, ax(z)=w(l—2z), o3(z)=1-1/z),
[6,3,6]=<pold)=—w’2,  pi(d=Z  pld)=1-0’+0’Z  ps(2)=1/2),
[6,3,6]" ={0,(z)= —0?z, g,(2)=1—w+wz, o3(2)=1—w?+w?/z).

Below we will represent the Mobius transformations o; by matrices, the corres-
pondence

az+b a b
>
cz+d c d

being one-to-one up to scalar multiplication.

7. The type {4,4,3}

In matrix notation the generators ¢,,0, and o5 of [4,4,3]" can be expressed as
g P

—i 0 —i i 1 -1
O-lz[ 0 1]7 0-2=|: 0 1}’ 03:{1 0] (9)
Theorem 7.1. [4,4,3]* = PL{(Z[i])x PSL,(Z[i1)><C,.

Proof. We first note that the matrices (9) as elements of L§”(Z[i]) generate that
group, using Lemma 5.1(c) with ¢,, 6; '6,03, 6,0,0% and g,0; L. The centre of the
group is C$”(Z[i])= (il ). However, the correspondence of Mébius transformations
and matrices gives us

[4,4,3]1 " =C- L$(Z[i])/C= L (2[i])/C$P(Z[i])= PL§P(Z[1]),

where C={AI|AeC*} is the centre of GL,(C); here the second isomorphism holds
because of CALP(Z[i])= C{P(Z[i]). Similarly, since C$(Z[i1)NSL,(Z[i])=C,(Z[i]),
we have

PSL,(Z[i])=SLo(Z[i])/ C2(Z[(1)= C5(Z[1])- SL,(Z[i])/C§(Z[i])=:U.
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Now, the subgroup C${”(Z[i])'SL,(Z[i]) consists precisely of all matrices in
L$P(Z[i]) with determinant +1, ie. equals L (Z[i]). It follows that U together
with the involution

i

0263C§i>(l[i])=[? O}Cgb(zm)

generate PL{P(Z[i]), which then must be isomorphic to Us<C,. O

Lemma 7.2. For each integer m>3 and for each subgroup H of C{V(Z,,[i]) containing
(il 'y, there is a chiral or a directly regular polytope of type {4,4,3} with the rotation
group isomorphic to L$”(Z,,[i])/H.

Proof. By Lemma 5.4 we have an epimorphism
@m,u:[4,4,31 = PL(Z[i]) > LS (Za[i1)/H.

The images of the generators under ¢, y satisfy the same relations as o, (but now the
relations do not suffice to define the group). There is little possibility of confusion if we
denote by g, the image of g, under ¢,,, g (since we can think of the ‘new’ ¢,’s as the ‘old’
o,’s mod m). Since m = 3, the elements o4, 05, 03 have again orders 4,4, 3, respectively.
Then, subject to the intersection property, L$*(Z,,[i])/H = {61,0,,063 is the rotation
group of a chiral or a directly regular polytope of type {4,4,3}; see Section 1.

For the intersection property we need to check {o,>n{o,)>={1}=<0,>n{a3)
and U:={6,0,>n{06,,03»<{0,). The former equalities are trivial. For the latter,
note first that {o,,03>=[4,3]" =S,. In fact, since <{g,,05) is a quotient of [4,3]"
and ¢,, 03 have orders 4, 3, respectively, we must have {{a,,03>|=12 or 24; but the
first case is impossible, since S, has no normal subgroup of order 2. Now, to find
U note that | U| must divide 24, and must be divisible by 4=|a,|. The orders 8, 12 and
24 are easily disproved, so that |U|=4 and hence U={0o,). This completes the
proof. O

We now proceed to identify the facets of the polytopes from Lemma 7.2. Since the
facet type is {4,4} and each facet is either chiral or regular, we see that the facets must
be isomorphic to toroidal maps {4,4}, .. From [4,4]* = (o,,0, ) we obtain [4,4]
(see the presentation (4)) by the addition of

(67'02)(0102 ) =1

to the defining relations for [4,4]*. To find the possible values for b and ¢ we consider

— b 3 e _ R
(0'1—102)"(010'2‘1)‘=[(1) i:l I:(l) IIJ =[(1) (b1+c1):|.

This matrix is the identity in L$”(Z,[i])/H if and only if b+¢i=0 in Z,[i].
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Theorem 7.3. For each integer m= 3 and for each conjugation invariant subgroup H of
C$P(Z,,[1]) containing (il ) there is a directly regular polytope Pin {{4,4} im0 14,3}
such that the rotation group of P is isomorphic to L§(Z,,[i])/H.

Proof. From Lemma 7.2 we know that there exists a polytope of type {4,4, 3} with the
rotation group <a;,0,,03> = L§’(Z,[i])/H. As remarked in Section 1, the polytope
is regular if and only if there exists an involutory automorphism p of the group such
that p(e,)=011, p(o,)=0%0, and p{(o3)=03. Or, using the corresponding matrices,

IR e P A S S P
I |

Clearly, p is induced by conjugation of Z,,[i]. Note for this that H is conjugation
invariant.
To identify the facets we note that b+ic=0 in Z,[i] if and only if either b=c=m

or b=m, c=0(or the other way around). We can rule out the possibility b = ¢ =m since
the order of

,1 1 —1
1 %2%1 g

is m, whereas in [4,4], n it should be 2m.

Remark. In Theorem 7.3, if H is not conjugation invariant, then in general 2 will only
be chiral. In fact, the right and left Petrie polygons will generally have different
lengths; see Section 12.

To recognize the groups explicitly we use the following lemma.

Lemma 7.4. Let m=2°p§'-...- pi*(>2) be the prime decomposition of m in Z.

(a) The equation x*=i is solvable in Z,,[i] if and only if e=0 and p;# —3(mod 8)
for each j.

(b) Let xe€Z,[i] be such that x*=i. Then {(x)=<{=+1, +i, +x, +xi} is conjugation
invariant in Z,[i] if and only if either p;= + 1(mod 8) for all j or p;=1, 3 (mod8)
Sor all j.

Proof. The equation x?=i has a solution in Z,[i] if and only if
(u+v)(u—v)=0(modm), 2uv=1(modm) has a solution. Here the second equation
forces m to be odd. Now, these equations are solvable mod m if and only if they are
solvable mod p§’ for each j; ie. if and only if u=v, u*=2""(mod p%) or u= —uv,
u?=—2"1(mod p¥) are solvable. Hence, we have a solution mod m if and only if 2 or
—21is a quadratic residue mod p; for each j, i.e. if and only if p;# — 3 (mod 8) for each j.
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This proves (a). Note for part (b) that for conjugation invariance we must have
X=—ix or X=ix, that is, x=u-+ui or x=u—ui for some ucZ,, but then 2 or —2 is
a quadratic residue mod m, respectively. [

Corollary 7.5. Let m=2°p{',---- - pf* be the prime decomposition of m, m>2. There
exist directly regular polytopes in ({4,4}m, o), {4.3} > whose rotation groups are isomor-
phic to

(@) PSLy(Z,[i]) if e=0 and p;# — 3 (mod 8) for each j;

(b) PSLy(Z,,[i]) if e=0 and either p;= + 1(mod 8) for each j or p;=1, 3(mod 8) for
each j;

(c) PSL,(Z,[i1)p<C, and ISSLZ(Zm[i])xCZ, if e#0 or p;= —3 (mod 8) for at least
one J.

Proof. Let C<Cy(Zn{i1), (I><SHSC(Z,0]), C<H, and y:SLy(Z,[i])/C—
L§{(Za[i])/H be the canonical homomorphism. We choose C and H such that
SL,(Z,[i])nH =C, so that y is injective. Note that y is surjective if and only if there
exists an element in H with determinant i; in particular, x?=i must be solvable in
Za[i]

Let C=C5(Z,[i]) and H=C§’(Z,[i]). Then H is conjugation invariant. By
Theorem 7.3 and Lemma 74, if e=0 and p;# —3 (mod8) for each j, we have
a polytope with rotation group PSL,(Z,,[i1). If e#0 of p;= —3(mod 8) for some j,
then y is not surjective and has image L§™ "’(Z,,[i])/H. The element

0 i
[1 é:l'H(=oza3H)

is an involution in L$”(Z,,[i])/H not in this image. It follows that the rotation group
L$P(Zn[11)/H of the polytope is isomorphic to PSL,(Z,,[i])><C,.

Let C={+1}. If e=0 and either p;= % 1(mod 8) for each j or p;=1, 3 (mod 8) for
each j, let xeZ,[i] be such that x2=i and {(x) is conjugation invariant. Then
H=<{xIy={xI, +il, + xI, + xil } is conjugation invariant, and the rotation group of
the polytope is PSL,(Z[i]). If e#0 or p;= —3(mod 8) for some j, choose H={il).
Again, y is not surjective, and the rotation group of the polytope becomes
PSL,(Z.[i])><C,. O

Remarks. (a) The groups PSL,(Z,[i}) and ISSLZ(Zm[i]) occurring in Corollary 7.5
coincide precisely for m=2¢p* where e=0, 1 and p= —1 (mod 4), or m=4. In fact,
precisely for these m the equation x?= 1 has only two solutions in Z,,[i], namely =+ 1.

(b) If m=p= —1(mod 4), then Z,[i]1=~GF(p?) and thus PSL,(Z,[i]1)= PSL,(p?).

Theorem 7.6. Let m=2°p$- -« pi¥ (> 2) be the prime decomposition of m, and assume
that e=0,1 and p;=1(mod4) for each j=1,...,k. Let icZ, be such that
i2=— ({(mod m), and let b, ¢ be the unique pair of positive integers such that m=5b?+¢?,
(b,c)=1 and b= —ic(modm). Then for each subgroup H of C$’(Z,) containing {il )
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there exists a chiral polytope in {{4,4}4 ,{4,3}) with the group isomorphic to
L{Z,)/H.

Proof. First note that our conditions on m are precisely those that guarantee the
existence of i (cf. [15, p. 50]). Also note that our assumptions on m imply the existence
and uniqueness of b, ¢ (cf. [14, p. 117]).

By Lemma 5.5(a) there is the canonical epimorphism

Bp it PLYPZ[1]) L (Z,)/H.

As in the proof of Lemma 7.2 we have the existence of a chiral or a directly regular
polytope of type {4,4,3} with cubical vertex-figures and with the rotation group
isomorphic to L{?(Z,,)/H={0;,06,,03), where g, is the image of the matrix g, in (9)
under @,,¢,,.

To identify the facets as {4,4} . note that, by the remarks preceding Theorem 7.3
and by our choice of b, ¢, the required relation (67 16,)%(o105 ') =1holdsin {o,,0; .
However, the ‘translation’ o1 o, (and 6,05 !) is easily seen to have order m, so that
the facets must in fact be {4,4}, . Finally, since the facets are chiral, the polytope
must also be chiral. This completes the proof. [

Note that the integers b and ¢ in Theorem 7.6 depend on the choice of i. The number
of solutions of x2= —1(modm) is exactly 2* (cf. [14, p. 116]). It follows that the
number of solutions of m=5b%+c? with b, ¢>0 and (b,c)=1 is exactly 2% Here the
pairs b, ¢ and ¢, b are counted as distinct solutions, corresponding to i and —i.
Hence, Theorem 7.6 gives us (at least) 2* polytopes with groups L$”(Z,)/H,
Iy <H<KC§?(Z,). As we shall see below, the groups for different choices of i are
isomorphic. However, the polytopes are isomorphic (as abstract polytopes) only if i is
replaced by —i, corresponding to switching b and c. In fact, the polytopes for i and —i
are the two enantiomorphic forms of the same underlying chiral polytope. To see this,
note that changing the generators g,,0,,05 of (9) to 61 !, 0%6,, o5 gives precisely the
generators of (9) for —i.

For example, if m=65=513, then m=12+82=42 + 72, while the pair 1, 8 belongs
to i=8, the pair 4, 7 belongs to i =18 (# —8). Hence, one gets different kinds of facets
{4,4} 1,8 and {4,4}, -, for the same m. If i is replaced by —i, we can also obtain facets
{4,4}s,1) and {4,4}7 4, respectively.

Corollary 7.7. Let m=2°p$* - --- - pg* be the prime decomposition of m> 2, and let e =0, 1
and pj=1(mod4) for each j=1, ... k. Let b,c be positive integers such that m=b?+c?
and (b,c)=1. There exist chiral polytopes in {{4,4}4 ,{4,3}> whose groups are
isomorphic to

(2) PSLy(Z,) and PSLy(Z,,) if p;=1(mod 8) for each j;

(b) PSLy(Z,)><C, and PSLy(Z,,)><C,, if p;= —3(mod 8) for at least one j.
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Proof. By our assumptions on b, ¢ there exists a unique ieZ,, with the property that

—1(modm) and b= —ic (modm). Let C<C,(Z,), il ySH<KC{P(Z,), C<H,
and x:SL,(Z,)/C—L$"(Z,)/H. Again we choose C and H such that y becomes
injective, i.e. SL,(Z,,)nH=C. As in Corollary 7.5, for ¥ to be surjective we need an
element in H of determinant i.

Now, x*=i(mod m) has a solution if and only if x*=i(mod p%) has a solution for
each j. This is satisfied if and only if x®*=1(mod p%’) has exactly eight distinct
solutions. On the other hand, this congruence has exactly (8, p;— 1) solutions (cf. [14,
p. 47]), so that we must have p;=1(mod 8) for each j.

Let C=C,(Z,) and H=C${"(Z,). By Theorem 7.6, if p;=1(mod 8) for each j, we
have a polytope with group PSL,(Z,,). If p;= —3(mod 8) for some j, then y is not
surjective and has image LS '’(Z,,)/H. Again,

0 i
-H
7o)
is an involution not in this image, so that the group of the polytope is PSL,(Z,,})><C,.
Let C={+£I}.1f p;=1(mod 8) for each j, choose x such that x*=i (mod m), and let

H={xI>. Then the group of the polytope is PSL,(Z,). If p ;= — 3 (mod 8) for some j,
let H= {il'). Then the group of the polytope is PSL;,(Z,,)><C,. [

Remark. The groups PSL,(Z,,) and PSL,(Z,,) coincide if and only if m=2°p* where
e=0, 1 and A=1, or m=4. Hence, when m>2, they coincide if and only if there exist
primitive roots mod m. Furthermore, the image of the canonical homomorphism
PSL,(Z,)-»PGL,(Z,) is a subgroup in PGL,(Z,) with elements represented by
matrices whose determinants are quadratic residues mod m. The index of this sub-
group is 2 if there exist primitive roots and mod m. Hence, when m=4 or m=2°p* with
e=0, 1 and A>1, then PSL,(Z,,)><C,=PSL,(Z,)o<Cy = PGL,(Z,,).

To summarize the above construction of polytopes, for every positive integer m =3
we have an epimorphism

PLPZ[]) 225 L (Za[i])/H, (10)

with (IY =@ u(CSP(Z[[I]))<H < C$P(Zn[i]), Furthermore, whenever x*+1=
0(mod m) is solvable in Z,,, we have a commutative diagram of homomorphisms

L @[i]) 2= L9200 (11)

N\ /-

L(Zn)
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This induces an epimorphism
. S S
PL(2[i]) —> L§*(Zw)/H, (12)

with (I =&, y(C$P(Z[i])) <SH<SC(Z,,).

The above epimorphisms and an appropriate choice of generators were used to
construct chiral and directly regular polytopes of type {4,4, 3} whose rotation groups
are precisely the groups in the diagrams (10} and (12). More precisely, the chiral
polytopes 2 of Theorem 7.6 in the class {({4,4}4. . {4,3}) are covered by suitable
directly regular polytopes .# (say) of Theorem 7.3 in the class {{4,4}, o), {4, 3}, with
m=>b%+c¢? (provided that H is conjugation invariant). For example, since &, is
surjective and @,,(C$”(Z,[i]))=C$(Z,,), the map ®,, induces an epimorphism
PL{P(Z,[i1)>PL§?(Z,,) and thus a corresponding projection of % onto 2.

8. The type {4,4,4}

In matrix notation the generators g; of [4,4,4]" are represented by

i 0 i 1-—i 1+i —i
01—[0 1:|, 0'2—|:0 1 :I, 0'3—[ 1 0 ] (13)

Considered as elements in L§’(Z[i]) the matrices in (13) generate a subgroup L (say).
The centre of L is {iI). Then the correspondence of Mébius transformations and
matrices gives us

[4,4,4]*~C L/C=L/LnC=L/{ly=:A,

where C={AI|1eC*}. We use the notation o, 6,, 65 for both the generators of L and
their images in A. As explained in Section 6, A= {04, 0,,65 ) is a subgroup of index
3in [4,4,3]" @ PL{P(Z[i]). Using the methods of Section 7 we construct polytopes,
directly regular and chiral, in this case by considering the restrictions of the maps in
(10) and (12) to this subgroup. Let @, 5 : A—L§>(Z,,[i])/H and &, yy: A—>L$>(Z,,)/H
be the restrictions of ¢,, y and @, g, respectively, to A. Note that H in @,, y and H in
(5,,,, n represent different subgroups. We shall abuse notation and use the same letter,
but this should cause no confusion.

Lemma 8.1. Let R=2Z,[i], y=@mu, or R=Zm,x=d~>,,,,y.
(@) If m is odd, then x is an epimorphism.

(b) If m is even, then y(A) is a subgroup of index 3 in L{P(R)/H.

Proof. Consider the 6's as elements of L{”(R). Since

1 —1—i 1 —1+i
01—102=[0 ) l:l and 0'102_1=|:0 1+l:|,
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it follows that

o 1 2
0'20'110'210'1=|:0 1:|

If m is odd, 2 is invertible in Z,, and hence

11

[0 1]ex(/l).

voi] 411 1
0 1 =0103 - 0 1 ex(A).

Furthermore,

2 0 -1
010,03 = 1 o |

and as in the proof of Lemma 5.4, we use Lemma 5.3 to show that the natural
homomorphism L-—»L{”(R) is surjective. Then y is surjective.

Let m be even. To prove that y(A) is a subgroup of L$”(R)/H of index 3, consider
the ring homomorphism f:R-—Z, given by u+ivi—>u+v or u—u if R=2,[i] or
R =127, respectively. This induces a homomorphism f: L{?(R)/H—SL,(Z,). By argu-
ments similar to those used in the proof of Lemma 5.4, fis surjective. Now, f~ maps
{61,0,,03) onto

O 01
<O'1,O'2,O'3>=<I,I,|:1 0i|>gC25

which has index 3 in SL,(Z,). It follows that {¢;,0,,03) and L$”(R)/H cannot
coincide, and hence the index is 3. This completes the proof. O

Also

There is little possibility of confusion if we denote by o, the image of &, under
@, g O 5,,,, u (as we did in the above proof).

Theorem 8.2. Let m>2 be an integer and let H be a conjugation invariant subgroup of
C$P(Zu[i]) containing (il ). Then there exists a directly regular polytope 2 such that
(@) if m is odd, P is self-dual, P is in {{4,4} im0y {434} moyy and AT (P)x
LY@/ H;
(b) if m is even, P is in {{4,4}m2.m2)> %4} m 0> and A*(P) is a subgroup of
L{Zu[i1)/H of index 3.
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Proof. Modulo the intersection property (which we prove later) the subgroup
(0,,0,5,03) of L{P(Z,[i1)/H (of index 1 or 3) is the rotation group of a chiral or
a directly regular polytope 2. Define the group automorphism p of {6,0,,03) by

G 2D el 2o

Then p(o,)=01", p(6,)=030, and p(o3)=0; and hence 2 must be regular.
To identify the facets we consider

(14)

(aflaz)b(alaz_l)”=[l (=b+ed +i)].

0 1

Hence, we must consider (—b+ci)(1+1)=0 in Z,[{].

If m is odd, 1+ is invertible since (1+i)(1 —i)=2 and 2 is invertible. Then the
equation is equivalent to —b+ci=0 in Z,[i], and the facets are either {4,4}, . or
{4,4} n.0)- We can rule out the possibility of {4,4}, ., since the order of

1 _[1 —(1+i)]
R I T

is m, and so the facets must be {4,4}, ). Note that conjugation by the element

1 —i
o
interchanges ¢, with o3 ! and ¢, with 6, !, and hence the polytope is self-dual. To
complete the proof of (a) we use Lemma 8.1.

Let m be even. Since (—b+ci)(1 +i)=0 implies 2(—b +ci)=0, the facets could be
(4,8} w2 m2)> {88} omomys 144} (m2, 0y OF {4,4} (. 0)- However, the order of o1 "6, is m, so
that we are left only with {4,4} .2 w2 Or {4,4}(m,0). To rule out the possibility of
{4,4} u, 0. We consider the transformation

1 =2
0'10'2‘10'1_10'2=|:0 1 J

of order m/2. This transformation shifts a Petrie polygon of a facet two steps along
itself. Here a Petrie polygon is a zig-zag along the edges of the map such that each two
consecutive edges, but no three, belong to a face (cf. [6]). Hence, the length of the
Petrie polygon is m, so that the facets are maps {4, 4}om/2. m2)-

Note that for even m the above argument for self-duality does not extend, since

2
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is not invertible over Z,[i]. To identify the vertex-figures we must consider

_ i 2 1V [1+i —i}®
(0'2103)"(0203 l) =[1 0] [ i 1_1.]

_ 1+d —d 14+ai —ai
| d  1-d ai  1—ai
=[1+(d+ai) —(d+ai)J

d+ai 1 —(d+ai) (13)

It follows that the vertex-figures are {4,4},, o) O {4,4}m m, but 65 '3 is of order m,
and hence the vertex figures are maps {4, 4}, o). To complete the proof of (b) we use
Lemma 8.1,

Concluding we need to check the intersection property. It suffices to prove
{a4,0,yn{0,,63 ) =<0, ). First note that

T, :=<0f162,01;7{‘>={[(1) oc(11+i)] aezm[i]}
and
T2:=<o;103,62651>={[1;ﬁ 1:/;] ﬁez”[i]}

are the ‘translation subgroups’ of {6,,0,> and {o;,03), respectively. Also,
{61,030 =(03) T and {0;,63)=<0,).T,. Now, let 6e{0,,6,>n{06,,03), say
o=0%1,=0%1, with 1, T}, 1,€T;. Then 1,77 ' =4 7*, but for some a, § in Z,,[i] we
have

. f‘:[Hﬁ oc(1+i)(1+ﬁ)-ﬂ]
2 B Bal+i+1-p |

so that a comparison with the elements in (o, ) shows that §=0. It follows that 1, =1,
and hence o=0d%e<{a,). This completes the proof of the theorem. [

The proof of Corollary 7.5 implies the following consequence of Theorem 8.2. See
also the remark following Corollary 7.5.

Corollary 8.3. Let m=p% - --- - pi* be the prime decomposition of m such that p;#?2 for
each j. There exist self-dual directly regular polytopes in {{4,4} ¢, o), {4, 4}, 0)> Whose
rotation groups are isomorphic to

(a) PSL,(Z,[i]) if p;# —3 (mod 8) for each j;

(by PSL,(Z,[i]) if either p;= +1 (mod ) for each j or p;= —3(mod 8) for each j.

(€) PSL,(Z,,[i1)5<C, and PSLy(Z,,[i])><C,, if p;= —3 (mod 8) for at leat one j.

Theorem 8.4. Let m=2°p$:----- p* be the prime decomposition of m>2, and assume
e=0,1and p;=1 (mod4) for each j=1,... k. Let icZ,, be such that i?= —1 (mod m),
and let b, ¢ be the unique pair of positive integers b, ¢ such that m=b?4c2,(b,c)=1 and
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= —ic(modm). Let H be a subgroup of C$"(Z,,) containing (il ». Then there exists
a chiral polytope 2 such that

(@) if mis odd, P is self-dual, P is in {{4,4} .5y {44} 3.0, and A(P)= L§"(Z,,)/H;

(b) if mis even, P isin {{4,4}, 2, {4,4}p.0» Witha=(c—b)/2 " and d=(c+b)/2, and
A(P) is a subgroup of L$?(Z,,)/H of index 3.

Proof. Let u: A—L§"(Z,)/H be the restriction of @,  in (12) to A. Again we write
01,0,,05 for the images of the generators of A under u. Modulo the intersection
property, the subgroup {(6;,0,,03) of L§{’(Z,)/H (of index 1 or 3) is the rotation
group of a chiral or directly regular polytope 2. As we shall see below, the facets of
2 are chiral, so £ must also be chiral.

To identify the facets consider (as in (14))

1 (—k+li)(1+i):|

(01_10'2)“(010'2_1)1=|:0 1

This leads to the equation (I +ik)(—14i}=(—k+1i)(1 +i)=0 over Z,,. By our choice
of b and ¢, I=b and k=c is one possible solution.
If m is odd, then the ‘translation’

67l = [(1) -(11+i):|

has order m, so that the facets must in fact be isomorphic to {4,4} . As in the proof
of the previous theorem, the matrix

1 —i
=
can be used to show that # is self-dual. Note that conjugation by this matrix leads to
the relation (65 '63)" (6,05 *)°=1, implying that the vertex-figures are maps {4,4}, ).
Finally, A(#)=A*(?)=~L{"(Z,)/H, by Lemma 8.1.

Let m be even. First note that d+ia=0(modm). It follows that
(67 '0,) (6105 1) =1. This time g; ‘¢, has order m/2=a?+d?, so that the facets are
maps {4,4}, 4. To find the vertex-figures we can use (15) to show that
(65 '03)(0,05 1) =1. Again the order of 65 o5 is m, so that the vertex-figures are
maps {4,4} .. By Lemma 8.1 A *(#) is of index 3 in L{(Z,)/H.

Finally, the proof of the intersection property carries over from the proof of
Theorem 8.2, but now with «, fe Z,,. This completes the proof. [

Corollary 8.5. Let m=p§'-----pi* be the prime decomposition of m such that p;=1
(mod 4) for each j=1,...,k. Let b,c be positive integers such that m=b?+c? and

'Note that if a<0 then {4,4}, ,,={4,4}, _,.
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(b,c)=1. There exist self-dual chiral polytopes in {{4,4} p),{4,4}¢.o> Whose groups
are isomorphic to

(@) PSL,(Z,) and PSL,(Z,), if pj=1(mod 8) for each j;

(b) PSLy(Z,)><C, and PSL,(Z,,)><C,, if p;= —3(mod 8) for at least one j.

Proof. Follows from Corollaries 7.7 and 8.3. [

Concluding we remark that the results of this section could also be derived from the
results of the previous section by employing suitable mixing operations in the sense of
[20, Section 6] to the (rotation) groups. However, this does not lead to shorter proofs.

9. The type {6,3, 3}

The generators ¢(,0, and a5 of [6,3,3]" can be represented by the following
matrices in GL,(Z[w]):

w? 0 0w —o 1 -1
Glzl:o _w:I’ 02=[0 wz jla 03_[1 O:I (16)
Theorem 9.1. [6,3,3]* = PLS™V(Z[w])= PSL,(Z[w])>=<Cs.

Proof. Use Lemma 5.2(b) with A=0,630%, B=0;162, C=0,0%0, and

10
3 _
=lo 1)

to show that the matrices in (16) considered as elements of L{™'’(Z[w]) generate that
group. The centres of SL,(Z[w]) and L§ V(Z[w]) are {+1}. Then

[6,3,3]"=C- Ly P(Z[w])/C=Ly P(Z[w])/{£1}=PLS V(Z[w]),

with C={AI|ieC*}; note for this that CnL{ V(Z[w])={£I}. Furthermore,
PL{ V(Z[w])2 PSLy(Z[w])<C, with C,={a3{+1}>. O

For later reference we need the following number theoretical lemmas. From now
on, in prime decompositions we distinguish the primes 2 and 3.

Lemma 9.2. Let m=2d3°p...--pgc be the prime decomposition of m. Then
x?+x+1=0(mod m) is solvable if and only if d=0, e=0, 1 and p;=1 (mod 3) for each
j=1...,k

Proof, We first notice that for solvability m must be odd, for x>+ x+1 is odd and
hence is not congruent to 0 (modm) if m is even. Then, 4 is invertible, and hence
x24 x4+ 1=0(mod m) is solvable if and only if y?>=(2x + 1)>= — 3 (mod m) is solvable.
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Now, y*=—3 (modm) is equivalent to the system y?>= —3 (mod3®), y?’= —
(mod p%), ..., y*= —3 (mod pg). However, y2= —3 (mod 3°) is solvable if and only if
e=0,1. Also y?= —3 (mod p*) is solvable if and only if y2= —3 (mod p) is solvable
whenever p > 3 is prime. However, — 3 is a quadratic residue mod p if and only if p=1
(mod3). O

Since —1 is a quadratic residue mod m if and only if m=2°p§'- ... pgx with e=0, 1
and p;=1 (mod 4) for each j=1,...,k, the following lemma is obvious.

Lemma 9.3. Let m=3%p$'.--- - pf* be the prime decomposition of m such that e=0,
1 and p;=1 (mod 3) for each j=1,... k. Then —1 is a quadratic residue mod m if and
only if e=0 and p;=1 (mod 12) for each j=1, ... k.

Lemma 9.4. Let m=2%3°p$'. ... . p&* be the prime decomposition of m.

(@) Then x*=—1 has a solution in Z,[w] if and only if d=0,1, e=0 and
piE —5(mod 12) for each j=1,...,k.

(b) Let xeZ,,[w] be such that x*= —1. Then {x)={ + 1, + x} is conjugation invari-
ant in Z,,[w] if and only if either p;=1, 5 (mod 12) for each j or p;= +1 (mod 12) for
each j.

Proof. Let x=u+wvw. Then x2=—1 in Z,[w] if and only if 4> —v?= —1 (mod m),
v(2u—v)=0 (mod m); i.e. if and only if u>—v?= —1 (mod g), v(2u—1v)=0 (mod gq) for
g=2% 3¢ p% for all j. Note that v(2u—1v)=0(mod g) implies v=0 or v=2u(mod g) if
g #2¢; then there exists a solution #, v modulo q if e=0 or p;# — 5 (mod 12). For g=2?
there exists a solution only if =0, 1. This proves (a). Note for (b) that for conjugation
invariance we must have X=x or X= —x, i.e. x=u or x=u(l +2w) for some ueZ,,.
However, then —1 or 3 is a quadratic residue mod m, respectively. [

Lemma 9.5. Let m>1 be an integer such that

x?+x+1=0(mod m) (17)
is solvable. Let w be a solution. Then there exists a unique pair b, c of positive integers
satisfying

m=>b*+bc+c?,(b,c)=1, c=wb (mod m). (18)

Proof. The proof is analogous to that of [14, p. 117] for the equation x2+41=0
(mod m). As we do not know of any explicit reference, we give a proof here. Only for
the purpose of this proof we change the notation of the ring Z[w] of Eisenstein
integers to Z[ p] where p=¢?™/3,

First note that in Z[ p] we have

X2+ xy+y?=(x—yp)(x—yp)=(x—yp)(x — yp?).
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If z is a unit of Z[ p] and z(x — yp) = X — Jip, then x2 + xy + y? = %% + % + j2. Hence, by
multiplying x — yp by a unit if need be, we can achieve x, y=0.

By (17) and Lemma 9.2 we have m=3°p{* - --- - pi* with e=0, 1 and p;=1 (mod 3) for
each j. We proceed by induction on m. The case m=3 is trivial.

It is well-known that if m=p is a prime with p=1 (mod 3), there exists a unique pair
of positive integers u, v such that

p=ul4+uv+1v?, (u,v)=1, v=wu(modp)

(cf. {15,p.95]). This proves the lemma for m=p. Assume (18) holds for m=p* Let
m=p**! and p#3; then w# +1 (modp). Since w?+w+1=0 (mod p?), there
exist x,y such that p*=x*+xy+)? (x,»))=1 and y=wx (modp?). Then
pPHi=(x2+xy+y2)u? +uv+v2)=r?+rs+s? where r=xu—yv and s=xv+ yu+ yv.
First we show that (r, s)=1, and that we can assume s=wr (mod p**?!). However,
(r,s)#1 implies p|(r,s) and hence O=r=xu—yv=xu(l —w?)#0 (modp); hence,
(r,s)=1. Further, since (r,p)=1 there exists y such that ry=s(mod p**1!). It follows
that O0=r24+rs+s>=r?(1 +y+7y%)(mod p**'). Hence, y=w,w*(modp**?). If
y=w(mod p**1), we are done. If y=w? (mod p**!), we can exchange r and s. Finally,
it was remarked above that by changing s—rp in p**'=r2+rs+s2=(s—rp)(s—rp?)
by a unit of Z[ p] to §—Fp (if need be), we can also achieve r, s > 0. Note for this that we
still have (7, §)=1 and §= w7 (mod p**!); the latter can be easily seen by employing the
ring homomorphism Z[ p]—Z,, given by a+ bp—a + bw. This completes the existence
proof for prime powers.
Now let m=a-b, a,b>1, (a,b)=1. Assume

a=u*+uv+v? wv>0, (Wv)=1, v=wu(moda),
b=x24+xy+y% x,y>0, (x,y)=1, y=wx(modb).

Then m=ab=r>+rs+s* with r=xu—yv, s=xv+yu+yv. Again, if we can prove
(r,s)=1 and s=wr(mod m), then a similar argument to that above shows that we can
also achieve r,s>0.

If (r,s)#1, then p|(r,s) for some prime p, and we write xu—yv=po and
xv+ yu+yv=pp with positive integers «, . Then xuv = pav+ yv? = pfu— yu* — yuv
and hence y(u? 4+ uv+v2) = p(Bu—oav). Hence, p|y or p|u®+uv+v*>=a. However, p|y
implies p| xu=r+ yv and p|xv=s— yu—yv, and hence p|u, v; note here that p f x. It
follows that necessarily p|a. In a similar fashion, one proves p|b, contradicting
(a,b)=1. Hence, (r,s)=1. Further, since s=xv+ yu+ yv, we have

§ = xou + yu+ you = oxu—o? yu= w(xu — yv) = or (mod a),
5= X0+ wxu + wxv = oxu —0?xv= w(xu — yv) = or(mod b).

However, (a,b)=1, so that s =wr(mod m). This completes the existence proof.
Finally, to prove uniqueness assume there are two pairs b, ¢ and b, ¢ satisfying (18).

Then m?=(b*+bc+c?)(B2+bi+&2)=r*+rs+s> with r=bi—cbh, s=bb+ci+ch,

but s=bb(w?+ w+ 1)=0(mod m) and s is positive. It follows that s=m and r=0. Let
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t:=b/b=c/¢. Then m=b2+bc+c*=13(b>+bé+&%)=1>m, so that t=1. Hence, b=>
and ¢=¢. This completes the proof. [

For every positive integer m we have an epimorphism (Lemma 5.4)
- ‘pM.K —_

PL{ P(Z[w]) == Ly V(Zn[w])/K, (19)
with {+1}<K<C§ V(Zn[w]). Furthermore, whenever m=3°p{'...--pi* where
e=0, 1 and p;=1(mod 3) for each j=1,...,k, we have a commutative diagram of
epimorphisms

LS V@ [0]) 2 LS VD (Za[0])

L
LSV (Zn)
This induces an epimorphism
- - l,/m,H —
PLS™P(Z[1]) — L P (Zn)/K, (20)

with {+1} <K< C§ P(Z,).

We will use the images of the generators (16) under the epimorphisms ¥, x and
¥, x to construct chiral and regular polytopes of type {6,3, 3}.

Again let us denote by ¢, the image of ¢, under ¥, x or ¥,, x. Using the homomor-
phisms (19) and (20) and a proof similar to the proof of Lemma 7.2 we have the
following lemma.

Lemma 9.6, Let R be Z,,[w] withm =2 or Z,, with m>3 and m as in Lemma 9.2. Then
for each subgroup K of C§{™V’(R) containing {1}, there is a chiral or a directly regular
abstract polytope of type {6,3,3} with the rotation group isomorphic to
(61,02,03)= LS V(R)/K.

Proof. The conditions on m imply that o, ¢,, 65 are of order 6, 3, 3, respectively. The
intersection property for the group is easily checked; see [19, p. 91].

We proceed to identify the facets of the polytopes of Lemma 9.6. Since each facet is
either chiral or regular of type {6,3}, it must be isomorphic to a toroidal map
{6,3}».)- Recall from Section 2 that {6,3},,, is regular if and only if be(b—c)=0. We
obtain {6, 3}(;6) (see the presentation (6)) by the addition of

(67010067 ) (6165 010,) =1

to the defining relations for [6,3]". In terms of the matrices (16) the left-hand side
becomes

1 —®’[1 o] [1 (-bo)o
0 1][0 1]’[0 1 ]
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Let R and K be as in Lemma 9.6. Since w is invertible in R, the above matrix is the
identity in L{"’(R)/K if and only if c—bw=0in R. O

Theorem 9.7. For each integer m>=2 and each conjugation invariant subgroup K of
C{ V(Zu[w]) containing { £ 1}, there is a directly regular polytope P in {{6,3}(m o),
{3,3) > such that the rotation group of 2 is isomorphic to L5 (Z,[w])/K.

Proof. From Lemma 9.6 we have the existence of the polytope £ with rotation
group generated by the matrices (16) taken modulo m. The polytope is regular, since
here exists an involutory automorphism p such that p(s,)=01", p(s,)=0l0,
and p(os)=03. In fact, p is induced by conjugation in Z,[w], ie by
a+ pwr a+ pd=a+ Pw? Note that K is conjugation invariant.

To identify the facets note that c—bw=0 n Z,[®] is and only if either b=c=m or
b=m, c =0 (or vice versa). We can rule out the possibility of b =c¢=m since the order of
65 10,0,07 " is m, and not 3m as it is for {6,3} ¢ m. O

Corollary 9.8. Let m=2%3°p$*-----pg be the prime decomposition of m. There
exist directly regular polytopes in {{6,3}m 0. {3.3}) whose rotation groups are
isomorphic to

(@) PSLy(Z,[@]) if d=0,1, e=0 and p;# —5 (mod 12) for each j,

(b) PSL,(Zn[w]) if d=0,1, e=0 and either pj=1, 5(mod12) for each j or
p;= *1(mod 12) for each j;

() PSLy(Z,[w])o<C, and PSLy(Z,[w])><C,, if d=2, or ex1, or p;=
—5(mod 12) for at least one j.

Proof. Let C<Cy(Z [w]), {+1} <KL CSP(Zu[w]), C<K and
2:SLy(Zu[0])/C—LS P (Znlw])/K

be the canonical homomorphism. Again, C and K will be such that
SL,(Z.[w])nK =C, implying that y is injective. Note that g is surjective if and only if
there exists an element in K with determinant —1.

Let C=Cy(Z,[®]) and K=C§ Y (Z,[w]). Then K is conjugation invariant. By
Theorem 9.7 and Lemma 9.4 if d=0, 1, e=0 and p;# — 5(mod 12) for each j, we have
a polytope with rotation group PSL,(Z,,[w]). Otherwis x is not surjective and the
rotation group of the polytope is PSL,(Z,,[w])><C,, with C,=<{d}K).

Let C={+1}. Under the conditions of (b) for m, let x be a solution of x?=—11in
Z,,[@] such that {x) is conjugation invariant, and let K= (xI}. Then the rotation
group is PSL,(Z[w]). If mis as in (c), choose K ={ £}, so that the rotation group is
PSL,(Z [w])><C3.

Remarks. (a) The groups PSL,(Z,[w]) and PSL,(Z,[w]) of Corollary 9.8
coincide precisely for m=293¢ with d=0,1, or m=2%"* with d=0,1, A>1, and
p;=5, —1(mod 12).

(b) If m=p=—1 (mod 3), then Z,[w]=GF (p*) and PSL,(Z.[w])=PSL,(p*).
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Theorem 9.9. Let m=23p$'« --- - pf* be the prime decomposition of m, and assume e=0, 1
and p,=1 (mod 3) for each j=1,...,k. Let weZ, be such that ®*+w+1=0 (mod m),
and let b, ¢ be the unique pair of positive integers such that m=>b?+bc+c?, (b,c)=1 and
c=wb(mod m). Then for each subgroup K of C$™Y(Z,,) containing { £ 1} there exists
a chiral polytope in <{{6,3}p.)» 13,3} with group isomorphic to L™ (Z,,)/K.

Proof. First recall Lemma 9.5. Since, by Lemma 9.2, the equation xZ4+x+1=
0(modm) is solvable, we have (see Lemma 5.5(b)) the canonical epimorphism
¥,k PLV(Z[w])— L Y (Z,)/K. We use Lemma 9.6 to construct a polytope &2 of
type {6,3,3} from {,,0,,03).

To identify the facets as {6,3} ., we use the remarks preceding Theorem 9.7. With
our choice of b,c the required relation (65 '6,0,01 V(67 05 0,0, =1 holds in
{6y,0;). Since the ‘translation’ ¢; '¢,6,07 ! has order m, the facets must be maps
{6,3} .- Since the facets are chiral, the polytope must be chiral as well. [

Corollary 9.10. Let m=23°p§' - --. - pg* be the prime decomposition of m, and assume that
e=0,1 and p;=1 (mod 3) for each j=1,... k. Let b,c be positive integers such that
m=>b?+bc+c?, (b,c)=1. There exist chiral polytopes in {{6,3}p ,{3,3})> whose
groups are isomorphic to

(a) PSL,(Z,,) and PSL,(Z,), if e=0 and pj=1(mod 12) for each j=1,... k;

(b) PSL;(Z,)><C, and PSLy(Z,,)><C,, if e=1 or p;j=—5 (mod 12) for at least one
j=1,....k

Proof. By our assumptions on b,c¢ there exists a unique weZ, such that
®*+w+1=0(modm), c=wb(modm). Let C<C,(Z,), { +1}<K<C§ V(Z,), C<K
and x:SL,(Z,)/C—~L{ *(Z,)/K be the canonical homomorphism. Again, C and
K will be such that SL,(Z,)nK=C, implying that y is injective. Note that x is
surjective if and only if there exists an element in K with determinant —1.

Let C=C,(Z,) and K=C$ V(Z,). By Theorem 9.9 and Lemma 9.3 if e=0 and
p;j=1 (mod 12) for each j, we have a polytope with group PSL,(Z,,). Otherwise, the
group of the polytope is PSL,(Z,)><C, where C,={a}K).

Let C={+I}. Under the conditions in (a) on m choose K=<xI)> with
x?= —1(modm). Then the group of the polytope is PSL,(Z,); otherwise, let
K={+1}, then the group is PSL,(Z,)><C,. [

10. The type {3,6,3}

We recall from Section 6 that [3,6,3]% is a subgroup of index 4 in [6,3,3]". In
matrix notation the generators of [3,6,3]" are represented by

w 0 —0? o? 1 -1
o= 0 o | 0,= 0 o | 63= : ol 21
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Considered as elements in L{™ '’(Z,,[w]) the matrices in (21) generate a subgroup
L (say). The centre of L is { +I}. Then the correspondence of Mébius transformations
and matrices gives us

[3,6,3]*=C-L/C=L/LAC=L/{+I}=4,

where C={AI|1eC*}. Again we use the notation ¢,,0,,03 for the generators of A.
Let Y x: A—LS V(Za[0])/K and ¥, x:A—L{ P(Z,,)/K be the restrictions of
Ymx and ¥, g, respectively, to A. Again, we shall abuse notation by using K to
denote two different groups.

Lemma 10.1. Let R=Z7,[0], x=Vm x> 0Fr R=Zp, x=pn .
(@) If m= +1(mod 3), then y is an epimorphism.
(b) If m=0 (mod 3), then x(A) is a subgroup of index 4 in L§” (R)/K.

Proof. Consider the o;s as elements of L "(R). Let m= +1(mod3) so that 3 is
invertible mod m. Then a suitable power of

1 —37 . 11
oilodoito,= 0 1}glvesa=|:0 1:|€x(/1).

Multiplication of ¢ by

1 —1 1
0,0,6; lo]l= @ ]shows I:O Cf}e;((A).

Also

0 —1
o_la3=|:1 0]ex(A).

Now, as in the proof of Lemma 5.4, we use Lemma 5.3 to prove that the homomor-
phism L—L$§™P(R) is surjective. Then y is surjective.

Let m=0(mod3). Consider the ring homomorphism f:R—Z; given by
u+vw—u+v or u—u if R=2,[w] or R=12Z,, respectively. The induced homomor-
phism f:L{(R)/K—L§ V(Z3)/{+1} is surjective; see the proof of Lemma 5.4,
Now, fmaps {(0;,0,,03) onto

O -1 1 1 -1
<O'1,O'2,O'3>g<1,[ 0 1:|’|:1 0:|>;S3’

which has index 4 in L§1°(Z3)/{£1}. It follows that {o,0,,03) has index 4 in
LS YR)/K. O

Theorem 10.2. Let m=2 be an integer and let K be a conjugation invariant subgroup
of C{V(Z[w]) containing {+1}. Then there exists a directly regular polytope P
such that
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(@ if m=+1(mod3), 2 is self-dual, ? is in {{3,6}mo)16,3}mo0y> and
AHP)=LE D@ [0])/K;

(b) if m=0(mod 3), 2 is in {{3,6}mz.m3)> 16:3}m.0y> and A (P) is a subgroup of
L Y(Z,[w])/K of index 4.

Proof. Modulo the intersection property (which we prove later) the subgroup
{01,05,03) of L V(Z,[w])/K (of index 1 or 4) is the rotation group of a chiral or
a directly regular polytope 2. The polytope £ is indeed regular, since conjugation of
Z.[w] induces an involutory group automorphism of 4 *(#) that maps o,,0,,03
onto o1 ',06%0,,05, respectively.

To identify the facets of 2, we must (see the presentation (5)) consider

(22)

1 o(l—w)(b—cw)
0 1 ’

(0102—10'1_10'2)b(02010'2_10'1-1)c=|:

which is the identity if and only if (1 —w)(b —cw)=0in Z,,[w]. Let m= + 1 (mod 3), so
that 3 is invertible mod m. Then multiplication by 1 —@ shows that (1 —w)(b—cw)=0
if and only if b—cw=0. Hence, the facets are maps {3, 6}, m OF {3,6}m o). Since the
order of

11 1 w-1
0,010 01 = 0 1

is m (and not 3m), the facets must be maps {3,6},, o). The polytope is self-dual, since
conjugation by the matrix

-1 -
o 1
induces an involutory group automorphism of A * () interchanging o, with g3 ! and
o, with g5 '. It follows that the vertex-figures are maps {6,3}, o). To complete the
proof of (a) we use Lemma 10.1.

Let m=0 (mod 3). From 0=(1 —w)(b—cw)=b—c—w(2c + b) we see that the facets
must be maps (3, 6} n/3,m/3) OF {3,6}(m 0. However, the transformation

1 3w?
ertoriai=} ]

has order m/3, so that the facets are maps {3,6} 3, m/3). INOte here that this trans-
formation shifts a Petrie 2-chain of {3, 6} two steps along itself; here a Petrie 2-chain is
a zig-zag along the edges of {3, 6} which leaves at each vertex two faces to the right or
left, in an alternating fashion.
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To identify the vertex-figures {6, 3}, ., consider

_ - - I+o 1 [1-0® -o [
(031020'30'2l)'i("'21‘3-31020-3)e=[—w2 l—w:l[ 1 1+w2:|

[ 1+dw d l—ew?® —ew
| —do?* 1-dw e 1+ ew?

=|:1+(d—ew)w d—ew ]

~(d—ew)w® 1—(d—ew)w @3)

For this to be the identity we must have d —ew=0in Z,,[ w]. Hence, the vertex-figures
are maps {6, 3}(m, 0 OT {6, 3}(m,m- Since o3 '3 7,05 has order m, they must in fact be
maps {6, 3}, o). Now part (b) of the theorem follows from Lemma 10.1(b).

Finally, the proof of the intersection property {g,,0;>N{06;,63) =<0, is similar
to that in the proof of Theorem 8.2. Here the ‘translation subgroups’ of {(¢,,0,) and
{6,,05) are given by

2_
T1=<0'102_10'1_1¢72,0'2010'510'1_1>={|:(1) @ ll)tx] !XEZ,,,[(U]}
and
_ 1 4 1+ Bw 1
T,=<{o; 1‘720302 1,02 10'3 10’20'3>={|: —ﬁfuz l—ﬂﬂwd Bezm[w]},

respectively, so that

T, T,= {|: ! +Bw:;i(21 +20) ,B—OC(Z _i_la_).);afﬂ(w_ 1)— a,ﬂEZm[w]}.

Now the proof of the intersection property follows as in the proof of Theorem 8.2. [
The next corollary is an immediate consequence of the proof of Corollary 9.8.

Corollary 10.3. Let m=2%p$t- ..« pg* be the prime decomposition of m, and assume
that p;=5 for j=1,...,k. Then there exist self-dual directly regular polytopes in
{{3,6}(m, 0y, {6, 3}m, 0y Whose rotation groups are isomorphic to

(@) PSLy(Z,[w]) if d=0,1 and p;# —5 (mod 12) for each j;

(b) PSLy(Z,[0]) if d=0,1, and either p;=1,5(mod12) for each j or
p;= +1(mod 12) for each j;

(¢} PSLy(Znp[0])e<C, and PSLy(Z.[0w])><C,, if d=2 or p;=—5(mod 12) for at

least one j.

Theorem 10.4. Let m=3°p$ - .- - p§ be the prime decomposition of m, and assume that
e=0,1 and p;=1 (mod 3) for each j=1,...,k. Let weZ,, be such that ol+o+l=
0(mod m), and let b, ¢ be the unique pair of positive integers such that m=b?+bc+c?,
(b, ¢)=1 and c=wb(mod m). Let K be a subgroup of C$ '’(Z,,) containing { +1}. Then
there exists a chiral polytope P such that
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@) if m=1(mod3), 2 is self-dual, # is in {{3,6}c.p){6:3}c.ryy and A(P)=
LY P(Zn)/K;

(b) ifm=0(mod 3), 2 is in {{3,6}s.0» {6,3}c.0)) With a=(c—b)/3 and d=(2b+0)/3,
and A(P) is a subgroup of LS Y(Z,,)/K of index 4.

Proof. Again we write ¢,,0,,0; for the images of the generators of A under the
homomorphism p: A—L§ (Z,,)/K, the restriction of ¥, x in (20) to A. Modulo the
intersection property, the subgroup <o,,d,,03) of L§ **(Z,)/K (of index 1 or 4) is
the rotation group of a chiral or directly regular polytope 2.

To find the structure of the facets consider (as in (22))

1 ad —w)(k—lw):|

(‘7102_1‘71_102)4(0'2010'2_10f1)’=[0 i

This leads to the equation (1 —w)(k —lw)=0 over Z,,. By our choice of b and ¢, k=c
and /=5 is one possible solution.

If m=1(mod 3), then (w— 1)(w? —1)=3 shows that w—1 is invertible modulo m, so
that the order of

PR 1 w-—1
020102 01 = 0 1

is m. It follows that the facets are maps {3,6} . As in the proof of Theorem 10.2
conjugation by

-1 —ow
T
gives a group automorphism interchanging ¢, with ¢3! and o, with g5 !. Hence, 2 is
self-dual. The vertex-figures are maps {6,3} ., as can be seen either by self-duality
arguments or by computations as in the next case. To complete the proof of (a) we use
Lemma 10.1(a).

Let m=0 (mod 3). First note that ¢c=wb implies that a,deZ and a=wd. Now the
order of 6,0,05 'o1 ! is m/3=a*+ad+d?, so that the facets are maps {3, 6}, 4, To
find the structure of the vertex-figure we need to consider an equation like (23) over
Z,,. This shows that the relation (63 '0,0305 1Y (65 63 16,05)°=1 holds in A(2P).
However, the order of

-1 4 {1t 1
G3 020303 = —w? l—w

is m, so that the vertex-figures are maps {6, 3},;. By Lemma 10.1(b) the index of
A(P)in L{ V(Z,)/K is 4.

Finally, the proof of the intersection property carries over from the proof of
Theorem 10.2, but now with a, feZ,,. This completes the proof. O
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Corollary 10.5. Let m=p$-----pi be the prime decomposition of m, and let
pj=1(mod 3) for each j=1, ... k. Let b, c be positive integers such that m=b?+bc +c?,
(b,c)=1. There exist self~dual chiral polytopes in {{3,6}, s, {6,3} .5 > Whose rotation
groups are isomorphic to

(a) PSLy(Z,) and PSLy(Z,), if p;=1(mod 12) for each j=1,...,k;

(b) PSLy(Z,,)><C, and ISSLZ(Z,,‘)><C2, if pj=—5(mod12) for at least one
j=1,...,k

Proof. Follows from that of Corollary 9.10.

Note that the results of this and the next section could also be derived from the
results of the previous section by employing suitable mixing operations in the sense of
[20] to the (rotation) groups. As in Section 8 this does not lead to shorter proofs.

11. The type {6, 3,6}

Recall from Section 6 that [6,3,6] * is a subgroup of index 6 in [6,3,3]*. Hence, to
construct the polytopes of type {6, 3,6} we proceed as in Section 10. We first represent
the generators of [6,3,6]* as

- 0 0* o—w? o*—w o
61=[ 0 wz]y 02=[ 0 w :|’ 0'3=[ wz Ojl (24)

Considered as elements in L§ *>(Z[w]) the matrices in (24) generate a subgroup
L (say) whose centre is { +1}. Then

[6,3,6]" ~C-L/C=L/LNC=L/{+1}=:4,
with C={1I|4€C*}. Again we write 6,,0,,0; for the generators of A. Let $m,K:

A— L{V(Z[w])/K and P, x: A—>L§ V(Z,,)/K be the restrictions of ,, x and ¥, x,
respectively, to A.

Lemma 11.1. Let R=Z,,[&], x=¥m x, 0F R=Zp, 1= x.
(@) If m= +1(mod3), then yx is an epimorphism.
(b) If m=0 (mod 3), then x(A) is a subgroup of index 6 in L{™V(R)/K.

Proof. The proof is similar to that of Lemma 10.1. For (a), first note that

-1 - 1 -3 . . 1 1
0'%02101202=[0 1] 1mpllesa=[0 1]e;((A)

and
w

1
265,1= A).
0010, [0 1 ]EX( )
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Also
G203 0 1 GX‘la

and since

200 e e o] s

we can use arguments such as in the proof of Lemma 5.4 to complete the proof of (a).
For (b), note that over Z, the matrices of (24) generate a subgroup of L{™ 1 (Z5)/{ £ 1}
which is isomorphic to C;, x C, and thus has index 6. As in the proof of Lemma 10.1 it
follows that y(A) has index 6 in L™ (R)/K.

Theorem 11.2. Let m>>3 be an integer and let K be a conjugation invariant subgroup of
C$V(Z[w]) containing {+1}. Then there exists a self-dual directly regular polytope
P such that

(@) if m=x1(mod3), then P is in <{{6,3}moy{3:6}moyy and A*(P)=
LS P(Zu[w])/K;

(b) if m=0 (mod3), then 2 is in {{6,3}ma.m3) {36 m3.m3y and A*(P) is
a subgroup of LS Y (Z,,[w])/K of index 6.

Proof. Modulo the intersection property, the subgroup <{o,,0,,05)> of
L V(Znu[w])/K (of index 1 or 6) is the rotation group of a chiral or a directly regular
polytope 2 of type {6,3,6}; note for this that m>3. Define the involutory group
automorphism p of {(6,,0,,03) by

DL el e

where conjugation of Z,,[w] is given by u +vw=u+vw?. Then p maps ¢,,0,, 03 onto
61',0%0,,0,, respectively, and hence 2 is indeed regular. Furthermore, conjugation
by the matrix

1 w?
1 -1
induces an involutory group automorphism of {6y, 0;,65> which interchanges

61 with 63! and o, with o3 L. It follows that 2 must be self-dual.
To identify the facets of 2 consider

K

1 (w—l)(—k+lw):|. 25)

(02_lalazol‘l)"(afla{lalaz)’=I:O 1
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This is the identity if and only if (w— 1)k ~Ilw)=0 in Z,[w]. Also

4 4 1 1-w
0, 010,01 = 0 1

has order m.

Now, if m= +1 (mod 3), then (w— 1){(w?—1)=3 shows that w—1 is invertible in
Z,[w], so that the facets must be maps {6,3}0. If m=0(mod3), then
Im(w—1)*=im(@w*—2w+1)= —mw=0 and so we must have facets {6,3}m3,m3)-
Together with Lemma 11.1 this proves (a) and (b).

Finally, for the proof of the intersection property note that in the group of the
vertex-figure we have

(0'20'3_10'2_10'3)'(0'30'20'3_10'2_1)8"‘

[—r(w+2)+s(w—1)—l r(w+2)—s(w—1) ] 26)

—rw+2)+s(w—1) row+2)—s(w—1)—1

This can be used to complete the proof as in Theorem 10.2. [

Corollary 11.3. Corollary 10.3 remains true if the class {{3,6}m,o0){6,3}(m0)> is
replaced by the class {{6,3}m, 0 {3,6}m 0)-

Proof. See the proof of Corollary 9.8. [

Theorem 11.4. Let m=3¢p§'.--- - pt* be the prime decomposition of m=4, and assume
that e=0,1 and p;=1(mod 3) for each j=1,...,k. Let weZ, be such that
w?*+w+1=0(modm), and let b,c be the unique pair of positive integers such that
m=b2+bc+c?, (b,c)=1 and c=wb(modm). Let K be a subgroup of C§5 V(Z,)
containing { +1}. Then there exists a self-dual chiral polytope P such that

(@) if m=1(mod3), then 2 is in <{6,3}c.0{3,6}c.0p) and A(P)=L§ V(Z,n)/K;

(b) if m=0(mod3), then ? is in {{6,3}.5)13:6}@.ayy With a=(c—b)/3 and
d=(2b+c)/3, and A(P) is a subgroup of Ly V(Z,,)/K of index 6.

Proof. Modulo the intersection property, the subgroup <oy,6,,03) of L (Z,)/K
(of index 1 or 6) is the rotation group of a chiral or regular polytope 2 of type {6,3,6};
note that m > 4. By the same arguments as in the proof of Theorem 11.2, £ is self-dual.

To find the facets of 2 we consider (25) over Z,,. A similar analysis as in the proof of
Theorem 10.4 shows that the facets are maps {6, 3}, if m=1 (mod 3), or {6,3}, 4 if
m=0 (mod 3). Since the facets are chiral, & is chiral too. The sclf-duality of £ and
considerations involving (26) over Z,, imply that the vertex-figures are maps {3, 6},
and {3,6} 4, respectively. Then (a) and (b) follow from Lemma 11.1. Finally, the
proof of the intersection property is similar to that of Theorem 11.2. [
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Corollary 11.5. Corollary 10.5 remains true if the class {{3,6}¢.5,{6,3}c.0y> IS
replaced by the class {{6,3}.5,{3.6}(c.5)>-

12. Petrie polygons

For a regular or a chiral polytope it is sometimes useful to know the length of its
Petrie polygons. For the definition of the Petrie polygon for a regular polytope, we
refer to [25, pp. 315-316]. This definition naturally extends to chiral polytopes, but in
this case (since there are two orbits on the flags of the polytope) there are two ‘kinds’ of
Petrie polygons: left- and right-handed. The right-handed Petrie polygon is shifted
one step along itself by ¢,65, and the left-handed one by a; *a;. We proceed to find
the orders of these transformations. For example, for the polytopes of type {4,4,3} in
Section 7 we can do the following. Note that

[=i i1 [0 il 1 o0
9= 1 o071 0| o of
0 i 10
A= - .
[1 o] a”dB[o 0}

Then 6,03 =A—iB. We may allow (5,063)*=a,(4 —iB)+ b1, for some a, and b,. Then

Let

(61030 Y =(by—ia)(A—iB)+ial.
Hence, by =iax and a,, , =b,—ia,, and we have the following recursive formula:
a():O, a1=1, ak+1+iak_iak_1=0.

In conclusion, if 2 is a polytope described in Theorem 7.3 or 7.6, the order of 7,03
is the smallest integer k such that ¢, =0 in Z,[i] or Z,, respectively, and a,_,IcH.
Here the condition on a,_I is automatically satisfied if H=C{ (Z,[i]) or
H=C§ Y(Z,), respectively.

To find the order of

1 i —i
Gy 03= 1 ol

we see that it is sufficient to replace i by —i in the above recursion formula. With

0 —i 1 0
C: = =
o) el o)

6{'0s=C+iB and o{ lo5=c, (C+iB)+d.I,
this leads to the recursion

C0=0, C1=1, Ck+1—iCk+iCk71=O.
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Now, for Z,,[i] the change i~ — i correspond to conjugation in Z,,[i], so that the two
recursions are conjugate. Also, by assumption H is invariant under conjugation. It
follows that the orders of 1 o5 and 6,065 are the same, in agreement with the fact that
the polytope of Theorem 7.3 is regular. However, this is no longer true in the chiral
case of Theorem 7.6.

Similar remarks extend to the polytopes in Sections 8-11.
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