2 research outputs found

    Low-Impact Profiling of Streaming, Heterogeneous Applications

    Get PDF
    Computer engineers are continually faced with the task of translating improvements in fabrication process technology: i.e., Moore\u27s Law) into architectures that allow computer scientists to accelerate application performance. As feature-size continues to shrink, architects of commodity processors are designing increasingly more cores on a chip. While additional cores can operate independently with some tasks: e.g. the OS and user tasks), many applications see little to no improvement from adding more processor cores alone. For many applications, heterogeneous systems offer a path toward higher performance. Significant performance and power gains have been realized by combining specialized processors: e.g., Field-Programmable Gate Arrays, Graphics Processing Units) with general purpose multi-core processors. Heterogeneous applications need to be programmed differently than traditional software. One approach, stream processing, fits these systems particularly well because of the segmented memories and explicit expression of parallelism. Unfortunately, debugging and performance tools that support streaming, heterogeneous applications do not exist. This dissertation presents TimeTrial, a performance measurement system that enables performance optimization of streaming applications by profiling the application deployed on a heterogeneous system. TimeTrial performs low-impact measurements by dedicating computing resources to monitoring and by aggressively compressing performance traces into statistical summaries guided by user specification of the performance queries of interest

    Chip multi-processor scalability for single-threaded applications

    No full text
    The exponential increase in uniprocessor performance has begun to slow. Designers have been unable to scale performance while managing thermal, power, and electrical effects. Furthermore, design complexity limits the size of monolithic processors that can be designed while keeping costs reasonable. Industry has responded by moving toward chip multi-processor architectures (CMP). These architectures are composed from replicated processors utilizing the die area afforded by newer design processes. While this approach mitigates the issues with design complexity, power, and electrical effects, it does nothing to directly improve the performance of contemporary or future single-threaded applications. This paper examines the scalability potential for exploiting the parallelism in single-threaded applications on these CMP platforms. The paper explores the total available parallelism in unmodified sequential applications and then examines the viability of exploiting this parallelism on CMP machines. Using the results from this analysis, the paper forecasts that CMPs, using the “intrinsic” parallelism in a program, can sustain the performance improvement users have come to expect from new processors for only 6-8 years provided many successful parallelization efforts emerge. Given this outlook, the paper advocates exploring methodologies which achieve parallelism beyond this “intrinsic ” limit of programs. I
    corecore