120,039 research outputs found
Chemotaxis When Bacteria Remember: Drift versus Diffusion
{\sl Escherichia coli} ({\sl E. coli}) bacteria govern their trajectories by
switching between running and tumbling modes as a function of the nutrient
concentration they experienced in the past. At short time one observes a drift
of the bacterial population, while at long time one observes accumulation in
high-nutrient regions. Recent work has viewed chemotaxis as a compromise
between drift toward favorable regions and accumulation in favorable regions. A
number of earlier studies assume that a bacterium resets its memory at tumbles
-- a fact not borne out by experiment -- and make use of approximate
coarse-grained descriptions. Here, we revisit the problem of chemotaxis without
resorting to any memory resets. We find that when bacteria respond to the
environment in a non-adaptive manner, chemotaxis is generally dominated by
diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is
dominated by a bias in the motion. In the adaptive case, favorable drift occurs
together with favorable accumulation. We derive our results from detailed
simulations and a variety of analytical arguments. In particular, we introduce
a new coarse-grained description of chemotaxis as biased diffusion, and we
discuss the way it departs from older coarse-grained descriptions.Comment: Revised version, journal reference adde
Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
Global Existence and Asymptotic Behavior of Solutions to a Chemotaxis-Fluid System on General Bounded Domain
In this paper, we investigate an initial-boundary value problem for a
chemotaxis-fluid system in a general bounded regular domain (), not necessarily being convex. Thanks to the
elementary lemma given by Mizoguchi & Souplet [10], we can derive a new type of
entropy-energy estimate, which enables us to prove the following: (1) for
, there exists a unique global classical solution to the full
chemotaxis-Navier-Stokes system, which converges to a constant steady state
as , and (2) for , the existence of a
global weak solution to the simplified chemotaxis-Stokes system. Our results
generalize the recent work due to Winkler [15,16], in which the domain
is essentially assumed to be convex
Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant
- …
