151 research outputs found

    A Tale of Two Genomes: The Complex Interplay Between the Mitochondrial and the Nuclear Genomes

    Get PDF
    Mitochondria, the product of an ancient endosymbiotic event are pivotal to eukaryotic cells by synthesizing the majority of the cell’s ATP output. However, modern- day mitochondria are completely dependent on more than one thousand nuclear-encoded products for their function and the maintenance of their genomes. The fundamentally different ways in which the mitochondrial (mtDNA) and the nuclear (nucDNA) genomes are replicated and inherited lead to captivating coevolutionary dynamics between them. The aims of this dissertation are to investigate the coevolutionary dynamics between the mitochondrial and nuclear genomes at three distinct biological scales. At the organismal level, we use a Drosophila strain with a characterized mitochondrial-nuclear incompatibility to test for the functional effects of mitochondrial-nuclear interactions on male reproductive fitness, in the context of both gene-environment interactions and the female-specific selective sieve that operates on mtDNA. We find that the mitochondrial- nuclear incompatibility negatively affects male fertility, although these effects are largely context-dependent. At the molecular level, using sequence and structural comparisons, we classify and characterize mutations associated with human mitochondrial disorders in the mtDNA and nucDNA as compensated or uncompensated based on whether the mutant amino acid is observed in a non-human species. We find that mtDNA, relative to nucDNA harbors a higher proportion of compensated mutations and this pattern is likely driven by the higher mtDNA background substitution rate. At the phylogenomic level, we estimate rates of evolutionary change for mtDNA- and nucDNA-encoded genes and compare correlations between the rates of mtDNA-encoded genes and three nuclear- encoded gene sets with differing extent of overlapping interactions with the mtDNA genes. We find that the patterns of rate correlations are consistent with the extent of overlap between the mtDNA and nucDNA genes with nucDNA genes that directly interact with mtDNA exhibiting the strongest correlations. In summary, we find that the higher rate of mutation in mtDNA appears to be driving mitochondrial-nuclear coevolutionary dynamics with the effects of mitochondrial-nuclear interactions being largely context-dependent. Advisors: Kristi L. Montooth & Colin D. Meiklejoh

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    A sign-theoretic approach to biotechnology

    Get PDF

    The role of visual adaptation in cichlid fish speciation

    Get PDF
    D. Shane Wright (1) , Ole Seehausen (2), Ton G.G. Groothuis (1), Martine E. Maan (1) (1) University of Groningen; GELIFES; EGDB(2) Department of Fish Ecology & Evolution, EAWAG Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum AND Institute of Ecology and Evolution, Aquatic Ecology, University of Bern.In less than 15,000 years, Lake Victoria cichlid fishes have radiated into as many as 500 different species. Ecological and sexual sel ection are thought to contribute to this ongoing speciation process, but genetic differentiation remains low. However, recent work in visual pigment genes, opsins, has shown more diversity. Unlike neighboring Lakes Malawi and Tanganyika, Lake Victoria is highly turbid, resulting in a long wavelength shift in the light spectrum with increasing depth, providing an environmental gradient for exploring divergent coevolution in sensory systems and colour signals via sensory drive. Pundamilia pundamila and Pundamilia nyererei are two sympatric species found at rocky islands across southern portions of Lake Victoria, differing in male colouration and the depth they reside. Previous work has shown species differentiation in colour discrimination, corresponding to divergent female preferences for conspecific male colouration. A mechanistic link between colour vision and preference would provide a rapid route to reproductive isolation between divergently adapting populations. This link is tested by experimental manip ulation of colour vision - raising both species and their hybrids under light conditions mimicking shallow and deep habitats. We quantify the expression of retinal opsins and test behaviours important for speciation: mate choice, habitat preference, and fo raging performance

    Evolvability and organismal architecture:The blind watchmaker and the reminiscent architect

    Get PDF
    Organisms are constantly faced with the challenge of adapting to new circumstances. In this thesis, I argue that the ability to adapt to new circumstances, “evolvability”, is deeply ingrained in the genetic, developmental, morphological, and physiological architecture of organisms. Using a blend of conceptual research, theoretical modelling, and multidisciplinary studies, I demonstrate how organismal architecture can evolve so that organisms can cope better and better with future environmental challenges. As a first step, I systematically classify the many factors contributing to evolvability. Then I use a simulation approach to show how evolvability-enhancing structures can readily evolve in gene-regulatory networks. This happens via the evolution of "mutational transformers" - structural elements that convert random mutations at the genetic level into adaptation-enhancing mutations at the phenotypic level. In another thesis chapter, I demonstrate that even if selection acts only sporadically, complex adaptations can evolve and persist over long time periods. In other words, complex adaptations do not require constant selection pressure. In an interdisciplinary contribution, I apply biological insights regarding the properties of an evolvability-enhancing mutation structure to the design of algorithms used in Artificial Intelligence. The result is the “Facilitated Mutation” method which enhances the performance of the algorithms in various respects, highlighting the potential for leveraging biological principles in computational sciences. Finally, I embed my research findings in a philosophical context. I emphasise the importance of organismal architecture in retaining evolutionary memories and suggest future research directions to further enhance our understanding of evolvability
    • …
    corecore