118,840 research outputs found

    Optimality-preserving Reduction of Chemical Reaction Networks

    Full text link
    Across many disciplines, chemical reaction networks (CRNs) are an established population model defined as a system of coupled nonlinear ordinary differential equations. In many applications, for example, in systems biology and epidemiology, CRN parameters such as the kinetic reaction rates can be used as control inputs to steer the system toward a given target. Unfortunately, the resulting optimal control problem is nonlinear, therefore, computationally very challenging. We address this issue by introducing an optimality-preserving reduction algorithm for CRNs. The algorithm partitions the original state variables into a reduced set of macro-variables for which one can define a reduced optimal control problem from which one can exactly recover the solution of the original control problem. Notably, the reduction algorithm runs with polynomial time complexity in the size of the CRN. We use this result to reduce reachability and control problems of large-scale protein-interaction networks and vaccination models with hundreds of thousands of state variables

    A Chemistry-Inspired Framework for Achieving Consensus in Wireless Sensor Networks

    Full text link
    The aim of this paper is to show how simple interaction mechanisms, inspired by chemical systems, can provide the basic tools to design and analyze a mathematical model for achieving consensus in wireless sensor networks, characterized by balanced directed graphs. The convergence and stability of the model are first proven by using new mathematical tools, which are borrowed directly from chemical theory, and then validated by means of simulation results, for different network topologies and number of sensors. The underlying chemical theory is also used to derive simple interaction rules that may account for practical issues, such as the estimation of the number of neighbors and the robustness against perturbations. Finally, the proposed chemical solution is validated under real-world conditions by means of a four-node hardware implementation where the exchange of information among nodes takes place in a distributed manner (with no need for any admission control and synchronism procedure), simply relying on the transmission of a pulse whose rate is proportional to the state of each sensor.Comment: 12 pages, 10 figures, submitted to IEEE Sensors Journa

    Finding weakly reversible realizations of chemical reaction networks using optimization

    Full text link
    An algorithm is given in this paper for the computation of dynamically equivalent weakly reversible realizations with the maximal number of reactions, for chemical reaction networks (CRNs) with mass action kinetics. The original problem statement can be traced back at least 30 years ago. The algorithm uses standard linear and mixed integer linear programming, and it is based on elementary graph theory and important former results on the dense realizations of CRNs. The proposed method is also capable of determining if no dynamically equivalent weakly reversible structure exists for a given reaction network with a previously fixed complex set.Comment: 18 pages, 9 figure

    An Inter-molecular Adaptive Collision Scheme for Chemical Reaction Optimization

    Full text link
    Optimization techniques are frequently applied in science and engineering research and development. Evolutionary algorithms, as a kind of general-purpose metaheuristic, have been shown to be very effective in solving a wide range of optimization problems. A recently proposed chemical-reaction-inspired metaheuristic, Chemical Reaction Optimization (CRO), has been applied to solve many global optimization problems. However, the functionality of the inter-molecular ineffective collision operator in the canonical CRO design overlaps that of the on-wall ineffective collision operator, which can potential impair the overall performance. In this paper we propose a new inter-molecular ineffective collision operator for CRO for global optimization. To fully utilize our newly proposed operator, we also design a scheme to adapt the algorithm to optimization problems with different search space characteristics. We analyze the performance of our proposed algorithm with a number of widely used benchmark functions. The simulation results indicate that the new algorithm has superior performance over the canonical CRO
    • …
    corecore