9,949 research outputs found

    The mOxy-CaL Process: Integration of Membrane Separation, Partial Oxy-combustion and Calcium Looping for CO2 Capture

    Get PDF
    CO2 capture and storage (CCS) is considered as a key strategy in the short to medium term to mitigate global warming. The Calcium-Looping process, based on the reversible carbonation/calcination of CaO particles, is a promising technology for post-combustion CO2 capture because of the low cost and non-toxicity of natural CaO precursors and the minor energy penalty on the power plant in comparison with amines capture based technologies (4-9 % compared to 8-12 %). Another interesting process to reduce CO2 emissions in power plants is oxy-combustion, which is based on replacing the air used for combustion by a highly concentrated (~95 % v/v) O2 stream. This work proposes a novel process (mOxy-CaL) for post-combustion CO2 capture based on the integration of membrane separation, partial oxy-combustion and the Calcium-Looping process. An oxygenenriched air stream, which is obtained from air separation by using highly permeable polymeric membranes, is used to carry out partial oxy-combustion. The flue gas exiting partial oxy-combustion shows a CO2 concentration of ~30 % v/v (higher than 15 % v/v typical in coal power plants). After that, the flue gas is passed to the CaL process where the CO2 reacts with CaO solids according to the carbonation reaction. Thermogravimetric analysis show that the multicycle CaO conversion is enhanced as the CO2 concentration in the flue gas stream is increased. Process simulations show that the mOxy-CaL process has a high CO2 capture efficiency (~95%) with lower energy consumption per kg of CO2 avoided than previously proposed post-combustion CO2 capture technologies. Moreover, the overall system size is significantly lower that state-of-the-art CaL systems, which allows for an important reduction in the capital cost of the technology

    Chemical-looping combustion of solid fuels - Status of development

    Get PDF
    Chemical-looping combustion (CLC) of solid fuels is a technology with the potential of reducing the costs and energy penalty dramatically for CO2 capture. The potential for low costs is based on the similarity to coal combustion in fluidized beds. However, this assumes reaching high performance with respect to fuel and gas conversion, or that inadequate performance can be readily mitigated by downstream options. There are uncertainties with respect to the performance that can be reached in large-scale units, as well as with the extra costs needed to compensate for inadequate performance. Performance will be dependent on both reactor design and oxygen carrier properties. The status of chemical-looping combustion of solid fuels is discussed with respect to performance and experiences from pilot operation. (C) 2013 Elsevier Ltd. All rights reserved

    Advanced chemical looping materials for CO2 utilization : a review

    Get PDF
    : Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping

    Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Get PDF
    Calcium looping (CaL) is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC) are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG) before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE), 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh). The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2

    Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone

    Get PDF
    The low cost and wide availability of natural limestone (CaCO3) is at the basis of the industrial competitiveness of the Ca-looping (CaL) technology for postcombustion CO2 capture as already demonstrated by ~1Mwt scale pilot projects. A major focus of studies oriented towards further improving the efficiency of the CaL technology is how to prevent the gradual loss of capture capacity of limestone derived CaO as the number of carbonation/calcination cycles is increased. Natural dolomite (MgCa(CO3)2) has been proposed as an alternative sorbent precursor to limestone. Yet, carbonation of MgO is not thermodynamically favorable at CaL conditions, which may hinder the capture performance of dolomite. In the work described in this paper we carried out a thermogravimetric analysis on the multicyclic capture performance of natural dolomite under realistic regeneration conditions necessarily implying high calcination temperature, high CO2 concentration and fast transitions between the carbonation and calcination stages. Our study demonstrates that the sorbent derived from dolomite has a greater capture capacity as compared to limestone. SEM analysis shows that MgO grains in the decomposed dolomite are resistant to sintering under severe calcination conditions and segregate from CaO acting as a thermally stable support which mitigates the multicyclic loss of CaO conversion. Moreover, full decomposition of dolomite is achieved at significantly lower calcination temperatures as compared to limestone, which would help improving further the industrial competitiveness of the technology.Junta de Andalucía FQM-5735, TEP-7858, TEP-1900Ministerio de Economía y Competitividad FIS2011-25161, CTQ2011- 2762

    Thermodynamic analysis of a dual power-hydrogen production system based on chemical-looping combustion

    Get PDF
    Chemical-looping hydrogen generation (CLHG) is a chemical-looping combustion variant that allows simultaneous production of power and hydrogen. A thermodynamic analysis from the exergy method point of view of an integrated syngas-fueled CLHG cycle is carried out with the aim of contributing to the conceptual understanding and development of CLHG systems. The cycle working point is optimized in a range of conditions. The proposed system shows a very interesting potential for power, hydrogen and process heating coproduction with high efficiency

    CFD Applications in Energy Engineering Research and Simulation: An Introduction to Published Reviews

    Get PDF
    Computational Fluid Dynamics (CFD) has been firmly established as a fundamental discipline to advancing research on energy engineering. The major progresses achieved during the last two decades both on software modelling capabilities and hardware computing power have resulted in considerable and widespread CFD interest among scientist and engineers. Numerical modelling and simulation developments are increasingly contributing to the current state of the art in many energy engineering aspects, such as power generation, combustion, wind energy, concentrated solar power, hydro power, gas and steam turbines, fuel cells, and many others. This review intends to provide an overview of the CFD applications in energy and thermal engineering, as a presentation and background for the Special Issue “CFD Applications in Energy Engineering Research and Simulation” published by Processes in 2020. A brief introduction to the most significant reviews that have been published on the particular topics is provided. The objective is to provide an overview of the CFD applications in energy and thermal engineering, highlighting the review papers published on the different topics, so that readers can refer to the different review papers for a thorough revision of the state of the art and contributions into the particular field of interest
    corecore