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Abstract – Chemical-looping combustion (CLC) of solid fuels is a technology with 

the potential of reducing the costs and energy penalty dramatically for CO2 

capture. The potential for low costs is based on the similarity to coal combustion 

in fluidized beds. However, this assumes reaching high performance with respect 

to fuel and gas conversion, or that inadequate performance can be readily 

mitigated by downstream options. There are uncertainties with respect to the 

performance that can be reached in large-scale units, as well as with the extra 

costs needed to compensate for inadequate performance. Performance will be 

dependent on both reactor design and oxygen carrier properties. The status of 

chemical-looping combustion of solid fuels is discussed with respect to 

performance and experiences from pilot operation.  

1 Introduction  

Chemical-looping combustion (CLC) has emerged as an attractive option for carbon dioxide 

capture because CO2 is inherently separated from the other flue gas components, i.e. N2 and 

unused O2, and thus no energy is expended for the gas separation and no gas separation 

equipment is needed.  The CLC system is composed of two interconnected fluidized bed 

reactors, an air and a fuel reactor, [1], Fig. 1. Oxygen carriers in the form of metal oxide 

particles are used to transfer oxygen transfer between the two reactors.  

CLC research has mainly focused on gaseous fuels, but in the last years important work has 

been dedicated to adapting the process to solid fuels. For more detail a number of reviews 

are available, e.g. [2-5]. First to study solid fuels for CLC was Lewis et al [6] using copper 

and iron oxides and fifty years later new studies emerged [7-9], involving the same oxides. 

Leion et al. investigated different fuels and oxygen carriers in a small laboratory fluidized 

bed, e.g. [10-12], and today there are a number of publications of laboratory work with solid 

fuels, as well as from actual operation in smaller pilots. 

The direct use of solid fuel in CLC could use the circulating fluidized bed (CFB) concept 

outlined in Fig.1, but the fuel reactor system would need to be adapted for addition of solid 

fuels.  When using solid fuels, the reaction between the oxygen-carrier and the char 

remaining after volatiles release is not direct, but involves an intermediate gasification step, 

Fig. 2. This is determinant for the fuel reactor design and the following key targets have been 

identified in relation to fuel reactor performance:  

• High solid fuel conversion, i.e. minimize loss of unconverted char with flue gas 

• High gas conversion, i.e. minimize unconverted gases like H2, CO and CH4  

• High CO2 capture, i.e. minimize loss of char to air reactor 
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As compared to gaseous fuels, CLC with solid fuels will require a different design of the fuel 

reactor, as well as oxygen carriers with other properties:  

• The ash, normally being part of solid fuels, will make a very long lifetime of the oxygen 

carrier unlikely, as the ash removal inevitably causing losses of oxygen carrier. Also, the 

ash might directly affect the oxygen carrier. This means that oxygen carriers should have 

low cost. 

• The gasification of char is a slow process, which means that the fuel reactor needs a 

design that provides sufficient residence time, in order to avoid char particles reaching the 

air reactor. Char burning in the air reactor should be avoided, as it will produce CO2 that 

will not be captured. 

• In order to achieve high conversion of the volatiles, the fuel needs to be fed to the fuel 

reactor in a way that allows good contact between bed material and the volatiles released.  

An advantage for CLC with solid fuels is that most oxygen carriers, including low-cost 

materials, are highly reactive towards the syngas released from gasification. However, the 

syngas is released from char particles inside the fuel reactor, in contrast to gaseous fuels 

which are introduced from below. Thus, some of the syngas released, e.g. in the upper 

regions, will have insufficient contact with the bed material. Thus, complete conversion of the 

gas is difficult to obtain. Measures to reach complete or very high conversion include: 

• Introduction of pure oxygen downstream of the fuel reactor, in order to oxidize the 

remaining unconverted gases H2, CO and CH4, so-called ‘‘oxygen polishing”. 

• The separation of these unconverted gases from the CO2 in connection with CO2 

liquefaction, followed by recirculation of these gases to the fuel reactor. 

• Using two fuel reactors in series, i.e. leading the incompletely converted gas from the first 

fuel reactor to a second fuel reactor. 

• The use of a CLOU oxygen-carrier able to release oxygen in the fuel reactor, see below. 

1.1 Chemical-looping with oxygen un-coupling (CLOU) 

Chemical-Looping with Oxygen Uncoupling (CLOU) is closely related to chemical-looping 

combustion but differs from CLC through the spontaneous release of oxygen in the fuel 

reactor.  For instance the conversion CuO↔Cu2O has an equilibrium oxygen concentration 

of 2% at 913°C. This means that Cu2O will be oxidized to CuO in the air reactor where 

oxygen concentration is higher, and release oxygen in the fuel reactor where oxygen 

concentration is essentially zero due to the presence of fuel. CLOU using CuO has been 

shown to work, first in laboratory batch fluidized-bed tests with solid fuel, [13, 14] and later in 

continuous operation with solid fuel [15]. This mechanism avoids the slow steam gasification 

of char as the char reacts directly with gas-phase oxygen. Moreover, the direct contact 

between reacting gas and oxygen carrier is not necessary as in CLC which should facilitate 

reaching full gas conversion  

1.2 Oxygen carrier materials for solid fuels 

Important criteria for oxygen-carriers are: i) High reactivity with fuel and oxygen, and ability to 

convert the fuel fully to CO2 and H2O ii)  Low fragmentation and attrition, as well as low 

tendency for agglomeration  iii) Low cost iv) Low risk for health and environment and v) 

Sufficient oxygen transfer capacity. 
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Oxygen carrier research has focussed mainly on oxides of Ni, Fe, Mn and Cu. Nickel oxide is 

less suitable for the solid fuels, being expensive and easily deactivated by sulphur. Iron and 

manganese oxides have the lowest cost and are available in the form of ores and waste 

materials. Copper oxide has a higher cost, but is on the other hand a CLOU material.  

In addition to these monometallic oxides, metal oxides may also be combined forming new 

compounds with new properties. This includes Mn combined with Ca, Mg, Ni and Fe, 

[16],[17], having partial CLOU properties, i.e. with the ability to release some oxygen. 

Moreover, a combination of Mn and Fe was found to release large quantities of oxygen 

rapidly, [18].  With exception of CaMn0.875Ti0.125O3, [19], these materials have not yet been 

tested successfully in operation. Another combined oxide is ilmenite, FeTiO3, a low-cost 

naturally occurring mineral commonly used with solid fuels. 

Contrary to combined oxides, the concept of mixed oxides does not involve the creation of 

new compounds: Instead it builds on synergies of mixing oxygen carrier materials with 

different properties. An example is addition of limestone to ilmenite in solid fuel CLC, [20, 21].   

Studies of low-cost materials for use with solid fuels, include iron ore [22-24], manganese ore 

[25], ilmenite, industrial waste materials [26, 27], as well as comparisons of materials of 

different sources, [28, 29]. Many studies have used ilmenite, e.g. [30-34], being cheap, 

having a reasonably high reactivity towards syngas and showing good fluidization behaviour.  

2 Operational experiences 

Operational experiences from twelve CLC units, most of them using gaseous fuels, have 

previously been reviewed, [4]. Below data from five solid fuel CLCs are presented, Table 1.  

Table 4. Operational experiences in solid fuel chemical-looping combustors 

Location Size Oxides tested,  References Time Fuel Year 
Chalmers  10 kW  ilmenite, Mn ore, [20, 25, 31, 35-37] 90 coal, petcoke  2008 
Nanjing  10 kW NiO, Fe2O3, [38-41] 230 coal, biom. 2009 
Nanjing 1 kW Fe2O3 (ore) , [24, 42, 43] >20 coal, biom. 2010 
CSIC 0.5 kW ilmenite, CuO, Fe2O3, [15, 32, 44, 

45][46] 
164 coal 2011 

IFP 10 kW natural ore [47] 52 coal 2012 
Hamburg 25 kW ilmenite [48] 21 coal 2012 
Ohio 2.5 kW Fe2O3 [49] [50] 300 solid fuels 2012 
Ohio 25 kW Fe2O3 [49] [50]   230 coal 2012 
Chalmers 100 kW ilmenite, [51] [52] [53] 23 coal 2012 

 

Chalmers’ 10 kW CLC combustor has been used in several studies using different solid fuels 

with ilmenite and manganese ore. Gas conversion was poor in the earlier studies, but 

significantly improved with a redesign giving in-bed feeding of fuel, to 77% for coal and 

around 80% for petcoke, [25]. Manganese ore was found to give significantly improved gas 

conversion, around 87% for petcoke, and a dramatic increase in the rate of steam 

gasification of char, [25]. Gas conversion was also improved by addition of limestone.  

A 10 kW unit in Nanjing has been operated with coal and biomass using nickel- and iron-

based oxygen carriers. Further work with iron ore has been done in a smaller 1 kW solid fuel 

unit in Nanjing. The ratio of carbon containing gases from the FR was typically 1% CH4, 4% 

CO and 95% CO2.  
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At CSIC a 0.5 kW solid fuel unit was used in comprehensive studies of the effect of operating 

conditions using coal and ilmenite. Gas conversion was in the range 70-95% with coal, and 

close to 100% using char. Furthermore, the unit demonstrated the first successful operation 

of CLOU with 100% gas conversion, [15].  

At IFP a 10 kW pilot with three reactors, i.e. two air reactors in series, was operated with coal 

and a natural ore, [47]. Gas conversion was around 90%,  

At Hamburg University of Technology, an Australian ilmenite was operated with lignite dust in 

a 25 kW unit, [48]. The fuel reactor was a two-stage reactor, and CO2 concentrations above 

90% were reached in the gas from the fuel reactor.  

Two units of 2.5 and 25 kW using moving beds with supported iron oxides were operated 

with coals and other solid fuels at Ohio State University. CO2 concentrations above 99% 

were reported, [49].  

A 100 kW solid fuel unit at Chalmers was operated with bituminous coal and ilmenite, Fig. 3. 

With bituminous coal gas conversions up to 84% were reported, and the CO2 capture was 

around to 98%, [52]. Gas conversion increased with bed height in fuel reactor, as well as with 

reduced volatiles content.  

Totally, more than 1000 h of solid fuel operation in five 8 units of sizes 0.5 to 100 kW, using 

different oxygen-carriers and fuels has been accomplished. This demonstrates both that the 

process works, and that there are suitable oxygen-carriers for this new combustion 

technology.  

2.1 Performance optimisation and modelling 

The performance targets previously given can be modelled separately:   

i) Solid fuel conversion may be incomplete because of the loss of unconverted char from 

the fuel reactor by exiting gas. As steam gasification of char is slower compared to normal 

combustion, a fuel reactor can be expected to lose more unconverted char in comparison to 

a normal CFB boiler. Char conversion can be improved by increased reactor height, 

improved cyclone efficiency or use of an additional cyclone. The results available from small 

units are not really relevant and at present no modelling attempts have been made to predict 

solid fuel conversion in larger units.  

ii) Gas conversion reflects the how well the gases released from the solid fuel, i.e. volatiles 

and syngas, have been oxidized to CO2 and H2O by the oxygen carrier. The operation in the 

CLC units presented above showed a gas conversion around 75-95%, depending on fuel, 

oxygen carrier and solids inventory. Fuels with no or low volatiles show higher gas 

conversion. For the volatiles, the modelling would be similar to that for gaseous fuels, 

assuming that the fuel is fed in such a way that the volatiles are released in the bottom bed. 

For the syngas produced by the char particles, a simple approach is to assume that the char 

is well-mixed with the oxygen carrier, i.e. that the syngas is evenly produced inside the dense 

phase. This approach gives a transparent analytical solution, [54]. Other approches include 

two-phase models [55] and CFC models, [56]. Modelling of conversion of syngas from char 

indicates higher conversion than is seen in actual operation,  [54].  Both modelling, [55], and 

pilot plant testing indicate that full gas conversion is not possible, i.e. unless CLOU oxygen 

carriers are used.   

iii) CO2 capture may be incomplete as a result of char reaching the air reactor with the 

circulation flow. The minimum circulation flow is given by the need to transfer sufficient heat 

and oxygen to the fuel reactor.  From the residence time distribution in the fuel reactor, and 
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the char conversion rate, the loss of char to the air reactor and thus the CO2 capture can be 

predicted [55, 57, 58]. To reach adequate CO2 capture a carbon stripper, both separating 

char particles from oxygen carrier and giving additional time for conversion, can be inserted 

between fuel reactor and air reactor.  

2.2 Cost and energy penalties 

CLC of solid fuels clearly has a potential for a dramatic reduction of energy penalty and costs 

for CO2 capture. Thus, the energy penalty for chemical-looping combustion would ideally be 

equal to the power needed for CO2 compression of around 2.5%-units.  

A power plant using solid fuel CLC would have significant similarities to a CFB power plant, 

which is a commercial technology for plants up to 460 MWe. The air reactor would be very 

similar to a CFB, with some notable differences, such as the need for higher solids 

circulation, and a somewhat smaller gas flow as the oxygen is consumed and no combustion 

products are released. The gas flow through the fuel reactor is the flow that is not going 

through the air reactor, i.e the combustion products CO2 and steam, typically 20-25% of the 

total gas flow, plus the extra flow of gas for fluidization. Thus, the fuel reactor should be 

considerably smaller than the air reactor. The fuel reactor would also be adiabatic. Clearly, in 

comparison to a conventional CFB power plant, a CLC plant with an air reactor and a fuel 

reactor would involve additional costs. Nevertheless, the similarities would be significant, and 

the cost of the boiler system is typically 30-40% of the total cost of a power plant. So, in all, 

the additional costs for such an ideal CLC system would be expected to be moderate in 

comparison to other CO2 capture technologies.  

In the EU project ENCAP a first design of a 455 MWe CLC solid fuel power plant was made. 

A comparison to a similar fluidized bed combustion power plant indicated a very low 

efficiency penalty as well as a very low capture cost, 10 €/tonne of CO2, [59]. The major 

additional costs were associated with the CO2 compression. This work was likely optimistic 

with the CLC performance, as incomplete gas conversion will likely add more to the costs. 

The measures and extra costs needed to reach adequate performance with respect to char 

conversion, gas conversion and CO2 capture, are not yet fully understood.  

An additional advantage with CLC is that the gas coming out from the air reactor can be 

expected to be essentially free from harmful emissions such as NOx and SO2. Compounds 

formed from nitrogen and sulphur in the fuel will be concentrated in the smaller gas stream 

from the fuel reactor, which could facilitate separation.  

Although more development work is needed, especially with respect to finding the best 

design of the fuel reactor system, it is clear that the CLC technology provides a unique 

potential for avoiding the large costs and energy penalties inherent in gas separation.   

3 Conclusions 

The following conclusions can be made  

• The technology is similar to established combustion of coal in circulating fluidized bed.  

• There is a unique potential for dramatic reduction in cost and energy penalty for CO2 

capture.  
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• CLC operation with low-cost mineral ilmenite works well, but to reach high performance 

additional development is needed, either with regards to reactor system or the oxygen 

carrier material used.  

• Oxygen carrier materials other than ilmenite could provide significant improvement of 

performance, but it is not clear if are they available at reasonable costs.  

• The following options to have a complete conversion of the gas to CO2/H2O in the fuel 

reactor are available: i) oxygen polishing, ii) separation/recycling of unconverted gas iii) 

using two fuel reactors in series and iv) CLOU oxygen carriers  

• For scale-up, a more detailed understanding of the processes in the fuel reactor is 

needed to design and optimize the fuel reactor system, in order to assess how the 

performance will be affected by the properties of the oxygen carrier and the reactor 

design.  

• The optimization of the fuel reactor system will primarily need to consider three costs, i.e. 

costs for oxygen carrier, costs for the fuel reactor system, and costs downstream of the 

fuel reactor to accommodate for incomplete conversion, e.g. oxygen polishing. 

Consequently, a good understanding of these costs is needed to find the optimal solution, 

and realize the great potential of this technology.  
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Fig. 1. Example of CLC reactor system for gas 1) air reactor and riser, 2) cyclone, 3) fuel 

reactor, 4) loop seals 

 

 

 

 

 

 

Fig. 2. Sold fuel reactions in CLC 
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Fig 3. Chalmers’  100 kW CLC 


