5,116 research outputs found

    Trajectory and Policy Aware Sender Anonymity in Location Based Services

    Full text link
    We consider Location-based Service (LBS) settings, where a LBS provider logs the requests sent by mobile device users over a period of time and later wants to publish/share these logs. Log sharing can be extremely valuable for advertising, data mining research and network management, but it poses a serious threat to the privacy of LBS users. Sender anonymity solutions prevent a malicious attacker from inferring the interests of LBS users by associating them with their service requests after gaining access to the anonymized logs. With the fast-increasing adoption of smartphones and the concern that historic user trajectories are becoming more accessible, it becomes necessary for any sender anonymity solution to protect against attackers that are trajectory-aware (i.e. have access to historic user trajectories) as well as policy-aware (i.e they know the log anonymization policy). We call such attackers TP-aware. This paper introduces a first privacy guarantee against TP-aware attackers, called TP-aware sender k-anonymity. It turns out that there are many possible TP-aware anonymizations for the same LBS log, each with a different utility to the consumer of the anonymized log. The problem of finding the optimal TP-aware anonymization is investigated. We show that trajectory-awareness renders the problem computationally harder than the trajectory-unaware variants found in the literature (NP-complete in the size of the log, versus PTIME). We describe a PTIME l-approximation algorithm for trajectories of length l and empirically show that it scales to large LBS logs (up to 2 million users)

    The Environment for Microdata Access in Japan: A Comparison with the United States and Britain and Future Issues

    Get PDF
    For most of the post]war period, Japan's administration of statistics was governed by the framework provided by the Statistics Act from 1947. However, because the Act remained largely unchanged since it was originally introduced, it increasingly failed to reflect important changes in economic and social circumstances over time, resulting in various problems, including with regard to the secondary use of various kinds of microdata. To help resolve these problems, the New Statistics Act was enacted in 2007 and came fully into force in April 2009. Among other things, the New Statistics Act provides for a substantial revision of the system of secondary data use. An important element of this is a change in the basic philosophy underlying the legal framework from "statistics for the purpose of administration" to "statistics as an information resource for society." A central aim is ensuring the gusefulnessh of public statistics, and regulations concerning the use of statistics, such as provisions for secondary use, were incorporated in the Act. One important change is that the system of approval by the Minister of Internal Affairs and Communications for secondary data use was abolished. Instead, secondary data use can now be directly approved by the survey implementer and procedures have been simplified, so in the new system secondary data use now is considerably easier. Moreover, the New Statistics Act now allows for the provision of anonymized data and for custom tabulations for the purpose of academic research and higher education.

    Seeking Anonymity in an Internet Panopticon

    Full text link
    Obtaining and maintaining anonymity on the Internet is challenging. The state of the art in deployed tools, such as Tor, uses onion routing (OR) to relay encrypted connections on a detour passing through randomly chosen relays scattered around the Internet. Unfortunately, OR is known to be vulnerable at least in principle to several classes of attacks for which no solution is known or believed to be forthcoming soon. Current approaches to anonymity also appear unable to offer accurate, principled measurement of the level or quality of anonymity a user might obtain. Toward this end, we offer a high-level view of the Dissent project, the first systematic effort to build a practical anonymity system based purely on foundations that offer measurable and formally provable anonymity properties. Dissent builds on two key pre-existing primitives - verifiable shuffles and dining cryptographers - but for the first time shows how to scale such techniques to offer measurable anonymity guarantees to thousands of participants. Further, Dissent represents the first anonymity system designed from the ground up to incorporate some systematic countermeasure for each of the major classes of known vulnerabilities in existing approaches, including global traffic analysis, active attacks, and intersection attacks. Finally, because no anonymity protocol alone can address risks such as software exploits or accidental self-identification, we introduce WiNon, an experimental operating system architecture to harden the uses of anonymity tools such as Tor and Dissent against such attacks.Comment: 8 pages, 10 figure

    Local and global recoding methods for anonymizing set-valued data

    Get PDF
    In this paper, we study the problem of protecting privacy in the publication of set-valued data. Consider a collection of supermarket transactions that contains detailed information about items bought together by individuals. Even after removing all personal characteristics of the buyer, which can serve as links to his identity, the publication of such data is still subject to privacy attacks from adversaries who have partial knowledge about the set. Unlike most previous works, we do not distinguish data as sensitive and non-sensitive, but we consider them both as potential quasi-identifiers and potential sensitive data, depending on the knowledge of the adversary. We define a new version of the k-anonymity guarantee, the k m-anonymity, to limit the effects of the data dimensionality, and we propose efficient algorithms to transform the database. Our anonymization model relies on generalization instead of suppression, which is the most common practice in related works on such data. We develop an algorithm that finds the optimal solution, however, at a high cost that makes it inapplicable for large, realistic problems. Then, we propose a greedy heuristic, which performs generalizations in an Apriori, level-wise fashion. The heuristic scales much better and in most of the cases finds a solution close to the optimal. Finally, we investigate the application of techniques that partition the database and perform anonymization locally, aiming at the reduction of the memory consumption and further scalability. A thorough experimental evaluation with real datasets shows that a vertical partitioning approach achieves excellent results in practice. © 2010 Springer-Verlag.postprin
    • …
    corecore