243,538 research outputs found

    Characterizing Smartphone Power Management in the Wild

    Full text link
    For better reliability and prolonged battery life, it is important that users and vendors understand the quality of charging and the performance of smartphone batteries. Considering the diverse set of devices and user behavior it is a challenge. In this work, we analyze a large collection of battery analytics dataset collected from 30K devices of 1.5K unique smartphone models. We analyze their battery properties and state of charge while charging, and reveal the characteristics of different components of their power management systems: charging mechanisms, state of charge estimation techniques, and their battery properties. We explore diverse charging behavior of devices and their users.Comment: Proceedings of 7th International Workshop on Hot Topics in Planet-Scale Measurement, HotPlanet'1

    Accelerating charging dynamics in sub-nanometer pores

    Get PDF
    Having smaller energy density than batteries, supercapacitors have exceptional power density and cyclability. Their energy density can be increased using ionic liquids and electrodes with sub-nanometer pores, but this tends to reduce their power density and compromise the key advantage of supercapacitors. To help address this issue through material optimization, here we unravel the mechanisms of charging sub-nanometer pores with ionic liquids using molecular simulations, navigated by a phenomenological model. We show that charging of ionophilic pores is a diffusive process, often accompanied by overfilling followed by de-filling. In sharp contrast to conventional expectations, charging is fast because ion diffusion during charging can be an order of magnitude faster than in bulk, and charging itself is accelerated by the onset of collective modes. Further acceleration can be achieved using ionophobic pores by eliminating overfilling/de-filling and thus leading to charging behavior qualitatively different from that in conventional, ionophilic pores

    Analysis of differential and active charging phenomena on ATS-5 and ATS-6

    Get PDF
    Spacecraft charging on the differential charging and artificial particle emission experiments on ATS 5 and ATS 6 were studied. Differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The time dependence of the charging behavior was explained by the relatively large capacitance for differential charging in comparison to the small spacecraft to space capacitance. A daylight charging event on ATS 6 was shown to have a charging behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Ion engine operations and plasma emission experiments on ATS 6 were shown to be an effective means of controlling the spacecraft potential in eclipse and sunlight. Elimination of barrier effects around the detectors and improving the quality of the particle data are discussed

    Electrochemical hydrogen charging of duplex stainless steel

    Get PDF
    This study evaluates the electrochemical hydrogen charging behavior and interaction between hydrogen and the microstructure of a duplex stainless steel. A saturation level of approximately 650 wppm is reached after 10 d of charging. The data are compared with a model resulting in a diffusion coefficient of 2.1 x 10(-14) m(2)/s. A two-step increase of the concentration is observed and ascribed to saturation of ferrite followed by charging of austenite grains. Microstructural changes are observed during charging, i.e., formation and interaction of dislocations, as a result of the high residual stresses inherent to the production process of duplex stainless steels

    Ion implanted Si:P double-dot with gate tuneable interdot coupling

    Full text link
    We report on millikelvin charge sensing measurements of a silicon double-dot system fabricated by phosphorus ion implantation. An aluminum single-electron transistor (SET) is capacitively coupled to each of the implanted dots enabling the charging behavior of the double-dot system to be studied independently of current transport. Using an electrostatic gate, the interdot coupling can be tuned from weak to strong coupling. In the weak interdot coupling regime, the system exhibits well-defined double-dot charging behavior. By contrast, in the strong interdot coupling regime, the system behaves as a single-dot.Comment: 11 pages, 5 figure

    Recharging Probably Keeps Batteries Alive

    Full text link
    The kinetic battery model is a popular model of the dynamic behavior of a conventional battery, useful to predict or optimize the time until battery depletion. The model however lacks certain obvious aspects of batteries in-the-wild, especially with respect to (i) the effects of random influences and (ii) the behavior when charging up to capacity bounds. This paper considers the kinetic battery model with bounded capacity in the context of piecewise constant yet random charging and discharging. The resulting model enables the time-dependent evaluation of the risk of battery depletion. This is exemplified in a power dependability study of a nano satellite mission

    Scaling Of The Coulomb Energy Due To Quantum Fluctuations In The Charge Of A Quantum Dot

    Get PDF
    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy scales quadratically with the reflection probability of the barriers. In a second experiment we study the transition from a single to a double-dot which exhibits a scaling behavior linear in the reflection probability. The observed power-laws agree with a recent theory.Comment: 5 pages, uuencoded and compressed postscript file, with figure

    Current-voltage characteristics of a tunnel junction with resonant centers

    Full text link
    We calculate the I-V characteristics of a tunnel junction containing impurities in the barrier. We consider the indirect resonant tunneling involving the impurities. The Coulomb repulsion energy EcE_c between two electrons with opposite spins simultaneously residing on the impurity is introduced by an Anderson Hamiltonian. At low temperatures TEcT \ll E_c the I-V characteristic is linear in VV both for VEcVE_c and changes slope at V=EcV=E_c. This behavior reflects the energy spectrum of the impurity electrons - the finite value of the charging energy EcE_c. At TEcT \sim E_c the junction reveals an ohmic-like behavior as a result of the smearing out of the charging effects by the thermal fluctuations.Comment: 9 pages, REVTEX 3.0, 2 .ps figures from [email protected], NUB-308

    Effect of pulsed current charging on the performance of nickel-cadium cells

    Get PDF
    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements
    corecore