23 research outputs found

    Characterizing the Synchronizability of Small-World Dynamical Networks

    Full text link

    Network synchronizability analysis: the theory of subgraphs and complementary graphs

    Full text link
    In this paper, subgraphs and complementary graphs are used to analyze the network synchronizability. Some sharp and attainable bounds are provided for the eigenratio of the network structural matrix, which characterizes the network synchronizability, especially when the network's corresponding graph has cycles, chains, bipartite graphs or product graphs as its subgraphs.Comment: 13 pages, 7 figure

    Synchronization in an array of linearly stochastically coupled networks with time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Elsevier LtdIn this paper, the complete synchronization problem is investigated in an array of linearly stochastically coupled identical networks with time delays. The stochastic coupling term, which can reflect a more realistic dynamical behavior of coupled systems in practice, is introduced to model a coupled system, and the influence from the stochastic noises on the array of coupled delayed neural networks is studied thoroughly. Based on a simple adaptive feedback control scheme and some stochastic analysis techniques, several sufficient conditions are developed to guarantee the synchronization in an array of linearly stochastically coupled neural networks with time delays. Finally, an illustrate example with numerical simulations is exploited to show the effectiveness of the theoretical results.This work was jointly supported by the National Natural Science Foundation of China under Grant 60574043, the Royal Society of the United Kingdom, the Natural Science Foundation of Jiangsu Province of China under Grant BK2006093, and International Joint Project funded by NSFC and the Royal Society of the United Kingdom

    A Time-Varying Complex Dynamical Network Model And Its Controlled Synchronization Criteria

    Full text link
    Today, complex networks have attracted increasing attention from various fields of science and engineering. It has been demonstrated that many complex networks display various synchronization phenomena. In this paper, we introduce a time-varying complex dynamical network model. We then further investigate its synchronization phenomenon and prove several network synchronization theorems. Especially, we show that synchronization of such a time-varying dynamical network is completely determined by the inner-coupling matrix, and the eigenvalues and the corresponding eigenvectors of the coupling configuration matrix of the network.Comment: 13 page

    State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the problem of state estimation for a class of discrete-time coupled uncertain stochastic complex networks with missing measurements and time-varying delay. The parameter uncertainties are assumed to be norm-bounded and enter into both the network state and the network output. The stochastic Brownian motions affect not only the coupling term of the network but also the overall network dynamics. The nonlinear terms that satisfy the usual Lipschitz conditions exist in both the state and measurement equations. Through available output measurements described by a binary switching sequence that obeys a conditional probability distribution, we aim to design a state estimator to estimate the network states such that, for all admissible parameter uncertainties and time-varying delays, the dynamics of the estimation error is guaranteed to be globally exponentially stable in the mean square. By employing the Lyapunov functional method combined with the stochastic analysis approach, several delay-dependent criteria are established that ensure the existence of the desired estimator gains, and then the explicit expression of such estimator gains is characterized in terms of the solution to certain linear matrix inequalities (LMIs). Two numerical examples are exploited to illustrate the effectiveness of the proposed estimator design schemes
    corecore