13,166 research outputs found

    Are we at the dawn of quantum-gravity phenomenology?

    Get PDF
    A handful of recent papers has been devoted to proposals of experiments capable of testing some candidate quantum-gravity phenomena. These lecture notes emphasize those aspects that are most relevant to the questions that come to mind when one is exposed for the first time to these research developments: How come theory and experiments are finally meeting in spite of all the gloomy forecasts that pervade traditional reviews? Is this a case of theorists having put forward more and more speculative ideas until a point was reached at which conventional experiments could rule out the proposed phenomena? Or has there been such a remarkable improvement in experimental techniques and ideas that we are now capable of testing plausible candidate quantum-gravity phenomena? These questions are analysed rather carefully for the recent proposals of interferometry-based tests and tests using observations of gamma rays of astrophysical origin. I also briefly discuss other proposed experiments (including tests of quantum-gravity-induced decoherence using the neutral-kaon system and accelerator tests of models with large extra dimensions). The emerging picture suggests that we are finally starting the exploration of a large class of plausible quantum-gravity effects. However, our chances to obtain positive (discovery) experimental results depend crucially on the magnitude of these effects. In most cases the level of sensitivity that the relevant experiments should achieve within a few years corresponds to effects suppressed only linearly by the Planck length.Comment: 47 pages, Latex. Based on lectures given at the XXXV Karpacz Winter School of Theoretical Physics "From Cosmology to Quantum Gravity", Polanica, Poland, 2-12 February, 1999. To appear in the proceeding

    Measuring Software Process: A Systematic Mapping Study

    Get PDF
    Context: Measurement is essential to reach predictable performance and high capability processes. It provides support for better understanding, evaluation, management, and control of the development process and project, as well as the resulting product. It also enables organizations to improve and predict its process’s performance, which places organizations in better positions to make appropriate decisions. Objective: This study aims to understand the measurement of the software development process, to identify studies, create a classification scheme based on the identified studies, and then to map such studies into the scheme to answer the research questions. Method: Systematic mapping is the selected research methodology for this study. Results: A total of 462 studies are included and classified into four topics with respect to their focus and into three groups based on the publishing date. Five abstractions and 64 attributes were identified, 25 methods/models and 17 contexts were distinguished. Conclusion: capability and performance were the most measured process attributes, while effort and performance were the most measured project attributes. Goal Question Metric and Capability Maturity Model Integration were the main methods and models used in the studies, whereas agile/lean development and small/medium-size enterprise were the most frequently identified research contexts.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2- RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Mathematical Basis for Physical Inference

    Full text link
    While the axiomatic introduction of a probability distribution over a space is common, its use for making predictions, using physical theories and prior knowledge, suffers from a lack of formalization. We propose to introduce, in the space of all probability distributions, two operations, the OR and the AND operation, that bring to the space the necessary structure for making inferences on possible values of physical parameters. While physical theories are often asumed to be analytical, we argue that consistent inference needs to replace analytical theories by probability distributions over the parameter space, and we propose a systematic way of obtaining such "theoretical correlations", using the OR operation on the results of physical experiments. Predicting the outcome of an experiment or solving "inverse problems" are then examples of the use of the AND operation. This leads to a simple and complete mathematical basis for general physical inference.Comment: 24 pages, 4 figure

    Probability and nonclassical logic

    Get PDF

    State-space Correlations and Stabilities

    Full text link
    The state-space pair correlation functions and notion of stability of extremal and non-extremal black holes in string theory and M-theory are considered from the viewpoints of thermodynamic Ruppeiner geometry. From the perspective of intrinsic Riemannian geometry, the stability properties of these black branes are divulged from the positivity of principle minors of the space-state metric tensor. We have explicitly analyzed the state-space configurations for (i) the two and three charge extremal black holes, (ii) the four and six charge non-extremal black branes, which both arise from the string theory solutions. An extension is considered for the D6D_6-D4D_4-D2D_2-D0D_0 multi-centered black branes, fractional small black branes and two charge rotating fuzzy rings in the setup of Mathur's fuzzball configurations. The state-space pair correlations and nature of stabilities have been investigated for three charged bubbling black brane foams, and thereby the M-theory solutions are brought into the present consideration. In the case of extremal black brane configurations, we have pointed out that the ratio of diagonal space-state correlations varies as inverse square of the chosen parameters, while the off diagonal components vary as inverse of the chosen parameters. We discuss the significance of this observation for the non-extremal black brane configurations, and find similar conclusion that the state-space correlations extenuate as the chosen parameters are increased.Comment: 35 pages, Keywords: Black Hole Physics, Higher-dimensional Black Branes, State-space Correlations and Statistical Configurations. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related object

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page
    • …
    corecore