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ABSTRACT

A handful of recent papers has been devoted to proposals of experiments capa-
ble of testing some candidate quantum-gravity phenomena. These lecture notes
emphasize those aspects that are most relevant to the questions that inevitably
come to mind when one is exposed for the first time to these research devel-
opments: How come theory and experiments are finally meeting in spite of all
the gloomy forecasts that pervade traditional quantum-gravity reviews? Is this
a case of theorists having put forward more and more speculative ideas until a
point was reached at which conventional experiments could rule out the proposed
phenomena? Or has there been such a remarkable improvement in experimen-
tal techniques and ideas that we are now capable of testing plausible candidate
quantum-gravity phenomena? These questions are analysed rather carefully for
the recent proposals of tests of space-time fuzziness using modern interferome-
ters and tests of dispersion in the quantum-gravity vacuum using observations
of electromagnetic radiation from distant astrophysical sources. I also briefly
discuss other proposed quantum-gravity experiments, including those exploiting
the properties of the neutral-kaon system for tests of quantum-gravity-induced
decoherence and those using particle-physics accelerators for tests of models with
large extra dimensions. The emerging picture of “quantum-gravity phenomenol-
ogy” suggests that we are finally starting the exploration of a relatively large
class of plausible quantum-gravity effects. However, our chances to obtain pos-
itive (discovery) experimental results still depend crucially on the magnitude of
these effects; in particular, in most cases the level of sensitivity that the relevant
experiments should achieve within a few years corresponds to effects suppressed
only linearly by the Planck length.

1Based on lectures given at the XXXV Karpacz Winter School of Theoretical Physics “From Cosmology
to Quantum Gravity”, Polanica, Poland, 2-12 February, 1999. To appear in the proceedings.
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1 INTRODUCTION

Traditionally the lack of experimental input [1] has been the most important obstacle in
the search for “quantum gravity”, the new theory that should provide a unified description
of gravitation and quantum mechanics. Recently there has been a small, but nonetheless
encouraging, number of proposals [2, 3, 4, 5, 6, 7, 8, 9] of experiments probing the nature of
the interplay between gravitation and quantum mechanics. At the same time the “COW-
type” experiments on quantum mechanics in a strong (classical) gravitational environment,
initiated by Colella, Overhauser and Werner [10], have reached levels of sensitivity [11] such
that even gravitationally induced quantum phases due to local tides can be detected. In
light of these developments there is now growing (although still understandably cautious)
hope for data-driven insight into the structure of quantum gravity.

The primary objective of these lecture notes is the one of giving the reader an intuitive
idea of how far quantum-gravity phenomenology has come. This is somewhat tricky. Tradi-
tionally experimental tests of quantum gravity were believed to be not better than a dream.
The fact that now (some) theory and (some) experiments finally “meet” could have two very
different explanations: it could be that experimental techniques and ideas have improved
so much that now tests of plausible quantum-gravity effects are within reach, but it could
also be that theorists have managed to come up with scenarios speculative enough to allow
testing by conventional experimental techniques. I shall argue that experiments have indeed
progressed to the point were some significant quantum-gravity tests are doable. I shall also
clarify in which sense the traditional pessimism concerning quantum-gravity experiments
was built upon the analysis of a very limited set of experimental ideas, with the significant
omission of the possibility (which we now find to be within our capabilities) of experiments
set up in such a way that very many of the very small quantum-gravity effects are somehow
summed together. Some of the theoretical ideas that can be tested experimentally are of
course quite speculative (decoherence, space-time fluctuations, large extra dimensions, ...)
but this is not so disappointing because it seems reasonable to expect that the new theory
should host a large number of new conceptual/structural elements in order to be capable
of reconciling the (apparent) incompatibility between gravitation and quantum mechanics.
[An example of motivation for very new structures is discussed here in Section 11, which is
a “theory addendum” reviewing some of the arguments [12] in support of the idea [13] that
the mechanics on which quantum gravity is based might not be exactly the one of ordinary
quantum mechanics, since it should accommodate a somewhat different (non-classical) con-
cept of “measuring apparatus” and a somewhat different relationship between “system” and
“measuring apparatus”.]

In giving the reader an intuitive idea of how far quantum-gravity phenomenology has come
it will be very useful to rely on simple phenomenological models of candidate quantum-gravity
effects. The position I am here taking is not that these models should become cornerstones
of theoretical work on quantum gravity (at best they are possible ways in which quantum-
gravity might manifest itself), but rather that these models can be useful in giving an intuitive
description of the level of sensitivity that experiments are finally reaching. Depending on
the reader’s intuition for the quantum-gravity realm these phenomenological models might
or might not appear likely as faithful descriptions of effects actually present in quantum-
gravity, but in any case by the end of these notes the reader should find that these models
are at least useful for the characterization of the level of sensitivity that quantum-gravity
experiments have reached, and can also be useful to describe the progress (past and future)
of these sensitivity levels. In particular, in the “language” set up by these models one can see
an emerging picture suggesting that we are finally ready for the exploration of a relatively
large class of plausible quantum-gravity effects, even though our chances to obtain positive
(discovery) experimental results still depend crucially on the magnitude of these effects: in
most cases the level of sensitivity that the relevant experiments should achieve within a few
years corresponds to effects suppressed only linearly by the Planck length Lp (Lp ∼ 10−35m).
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The bulk of these notes gives brief reviews of the quantum-gravity experiments that can
be done. The reader will be asked to forgive the fact that this review is not very balanced.
The two proposals in which this author has been involved [5, 7] are in fact discussed in
greater detail, while for the experiments proposed in Refs. [2, 3, 4, 8, 9] I just give a very
brief discussion with emphasis on the most important conceptual ingredients.

The students who attended the School might be surprised to find the material presented
with a completely different strategy. While my lectures in Polanica were sharply divided in a
first part on theory and a second part on experiments, here some of the theoretical intuition
is presented while discussing the experiments. It appears to me that this strategy might
be better suited for a written presentation. I also thought it might be useful to start with
the conclusions, which are given in the next two sections. Section 4 reviews the proposal of
using modern interferometers to set bounds on space-time fuzziness. In Section 5 I review
the proposal of using data on GRBs (gamma-ray bursts) to investigate possible quantum-
gravity induced in vacuo dispersion of electromagnetic radiation. In Section 6 I give brief
reviews of other quantum-gravity experiments. In Section 7 I give a brief discussion of the
mentioned “COW-type” experiments testing quantum mechanics in a strong classical-gravity
environment. Section 8 provides a “theory addendum” on various scenarios for bounds on
the measurability of distances in quantum gravity and their possible relation to properties
of the space-time foam. Section 9 provides a theory addendum on an absolute bound on
the measurability of the amplitude of a gravity wave which should hold even if distances are
not fuzzy. Section 10 provides a theory addendum on other works which are in one way or
another related to (or relevant for) the content of these notes. Section 11 gives the mentioned
theory addendum concerning ideas on a mechanics for quantum gravity that be not exactly
of the type of ordinary quantum mechanics. Finally in Section 12 I give some comments on
the outlook of quantum-gravity phenomenology, and I also emphasize the fact that, whether
or not they turn out to be helpful for quantum gravity, most of the experiments considered
in these notes are intrinsically significant as tests of quantum mechanics and/or tests of
fundamental symmetries.

2 FIRST THE CONCLUSIONS: WHAT HAS THIS

PHENOMENOLOGY ACHIEVED?

Let me start with a brief description of the present status of quantum-gravity phenomenology.
Some of the points made in this section are supported by analyses which will be reviewed
in the following sections. The crucial question is: Can we just test some wildly speculative
ideas which have somehow surfaced in the quantum-gravity literature? Or can we test even
some plausible candidate quantum-gravity phenomena?

Before answering these questions it is appropriate to comment on the general expecta-
tions we have for quantum gravity. It has been realized for some time now that by combining
elements of gravity with elements of quantum mechanics one is led to “interplay phenomena”
with rather distinctive signatures, such as quantum fluctuations of space-time [14, 15, 16],
and violations of Lorentz and/or CPT symmetries [17, 18, 19, 20, 21, 22, 23], but the rele-
vant effects are expected to be very small (because of the smallness of the Planck length).
Therefore in this “intuition-building” section the reader must expect from me a description
of experiments with a remarkable sensitivity to the new phenomena.

Let me start from the possibility of quantum fluctuations of space-time. A prediction
of nearly all approaches to the unification of gravitation and quantum mechanics is that at
very short distances the sharp classical concept of space-time should give way to a somewhat
“fuzzy” (or “foamy”) picture, possibly involving virulent geometry fluctuations (sometimes
depicted as wormholes and black holes popping in and out of the vacuum). Although the idea
of space-time foam remains somewhat vague and it appears to have significantly different
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incarnations in different quantum-gravity approaches, a plausible expectation that emerges
from this framework is that the distance between two bodies “immerged” in the space-time
foam would be affected by (quantum) fluctuations. If urged to give a rough description of
these fluctuations at present theorists can only guess that they would be of Planck-length
magnitude and occurring at a frequency of roughly one per Planck time Tp (Tp = Lp/c ∼
10−44s). One should therefore deem significant for space-time-foam research any experiment
that monitors the distances between two bodies with enough sensitivity to test this type of
fluctuations. This is exactly what was achieved by the analysis reported in Refs. [7, 24],
which was based on the observation that the most advanced modern interferometers (the
ones normally used for detection of classical gravity waves) are the natural instruments to
study the fuzziness of distances. While I postpone to Section 4 a detailed discussion of
these interferometry-based tests of fuzziness, let me emphasize already here that modern
interferometers have achieved such a level of sensitivity that we are already in a position to
rule out fluctuations in the distances of their test masses of the type discussed above, i.e.
fluctuations of Planck-length magnitude occurring at a rate of one per each Planck time.
This is perhaps the simplest way for the reader to picture intuitively the type of objectives
already reached by quantum-gravity phenomenology.

Another very intuitive measure of the maturity of quantum-gravity phenomenology comes
from the studies of in vacuo dispersion proposed in Ref. [5] (also see the more recent purely
experimental analyses [25, 26]). Deformed dispersion relations are a rather natural possibil-
ity for quantum gravity. For example, they emerge naturally in quantum gravity scenarios
requiring a modification of Lorentz symmetry. Modifications of Lorentz symmetry could re-
sult from space-time discreteness (e.g. a discrete space accommodates a somewhat different
concept of “rotation” with respect to the one of ordinary continuous spaces), a possibil-
ity extensively investigated in the quantum gravity literature (see, e.g., Ref. [22]), and it
would also naturally result from an “active” quantum-gravity vacuum of the type advocated
by Wheeler and Hawking [14, 15] (such a “vacuum” might physically label the space-time
points, rendering possible the selection of a “preferred frame”). The specific structure of the
deformation can differ significantly from model to model. Assuming that the deformation
admits a series expansion at small energies E, and parametrizing the deformation in terms of
an energy3 scale EQG (a scale characterizing the onset of quantum-gravity dispersion effects,
often identified with the Planck energy Ep = h̄c/Lp ∼ 1019GeV ), for a massless particle one
would expect to be able to approximate the deformed dispersion relation at low energies
according to

c2p2 ' E2

1 + ξ

(
E

EQG

)α

+O

( E

EQG

)α+1
 (1)

where c is the conventional speed-of-light constant. The scale EQG, the power α and the sign
ambiguity ξ = ±1 would be fixed in a given dynamical framework; for example, in some of the
approaches based on dimensionful quantum deformations of Poincaré symmetries [21, 27, 28]

one encounters a dispersion relation c2p2 = E2
QG

[
1− eE/EQG

]2
, which implies ξ = α = 1.

Because of the smallness of 1/EQG it was traditionally believed that this effect could not be
seriously tested experimentally (i.e. that, for EQG ∼ Ep, experiments would only be sensitive
to values of α much smaller than 1), but in Ref. [5] it was observed that recent progress in
the phenomenology of GRBs [29] and other astrophysical phenomena should soon allow us
to probe values of EQG of the order of (or even greater than) Ep for values of α as large as
1. As discussed later in these notes, α = 1 appears to be the smallest value that can be
obtained with plausible quantum-gravity arguments and several of these arguments actually
point us toward the larger value α = 2, which is still very far from present-day experimental

3I parametrize deformations of dispersion relations in terms of an energy scale EQG, while I later
parametrize the proposals for distance fuzziness with a length scale LQG.
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capabilities. While of course it would be very important to achieve sensitivity to both the
α = 1 and the α = 2 scenarios, the fact that we will soon test α = 1 is a significant first
step.

Another recently proposed quantum-gravity experiment concerns possible violations of
CPT invariance. This is a rather general prediction of quantum-gravity approaches, which for
example can be due to elements of nonlocality (locality is one of the hypotheses of the “CPT
theorem”) and/or elements of decoherence present in the approach. At least some level of
non-locality is quite natural for quantum gravity as a theory with a natural length scale which
might play the role of “minimum length” [30, 31, 32, 12, 33]. Motivated by the structure of
“Liouville strings” [19] (a non-critical string approach to quantum gravity which appears to
admit a space-time foam picture) a phenomenological parametrization of quantum-gravity
induced CPT violation in the neutral-kaon system has been proposed in Refs. [17, 34]. (Other
studies of the phenomenology of CPT violation can be found in Ref. [20, 35].) In estimating
the parameters that appear in this phenomenological model the crucial point is as usual
the overall suppression given by some power of the Planck length Lp ∼ 1/Ep. For the
case in which the Planck length enters only linearly in the relevant formulas, experiments
investigating the properties of neutral kaons are already setting significant bounds on the
parameters of this phenomenological approach [2].

In summary, experiments are reaching significant sensitivity with respect to all of the
frequently discussed features of quantum gravity that I mentioned at the beginning of this
section: space-time fuzziness, violations of Lorentz invariance, and violations of CPT invari-
ance. Other quantum-gravity experiments, which I shall discuss later in these notes, can
probe other candidate quantum-gravity phenomena, giving additional breadth to quantum-
gravity phenomenology.

Before closing this section there is one more answer I should give: how could this hap-
pen in spite of all the gloomy forecasts which one finds in most quantum-gravity review
papers? The answer is actually simple. Those gloomy forecasts were based on the ob-
servation that under ordinary conditions the direct detection of a single quantum-gravity
phenomenon would be well beyond our capabilities if the magnitude of the phenomenon is
suppressed by the smallness of the Planck length. For example, in particle-physics contexts
this is seen in the fact that the contribution from “gravitons” (the conjectured mediators of
quantum-gravity interactions) to particle-physics processes with center-of-mass energy E is
expected to be penalized by overall factors given by some power of the ratio E/(1019GeV ).
However, small effects can become observable in special contexts and in particular one can
always search for an experimental setup such that a very large number of the very small
quantum-gravity contributions are effectively summed together. This later possibility is not
unknown to the particle-physics community, since it has been exploited in the context of in-
vestigations of the particle-physics theories unifying the strong and electroweak interactions,
were one encounters the phenomenon of proton decay. By keeping under observation very
large numbers of protons, experimentalists have managed4 to set highly significant bounds
on proton decay [37], even though the proton-decay probability is penalized by the fourth
power of the small ratio between the proton mass, which is of order 1GeV , and the mass
of the vector bosons expected to mediate proton decay, which is conjectured to be of order
1016GeV . Just like proton-decay experiments are based on a simple way to put together
very many of the small proton-decay effects5 the experiments using modern interferometers
to study space-time fuzziness and the experiments using GRBs to study violations of Lorentz
invariance exploit simple ways to put together very many of the very small quantum-gravity
effects. I shall explain this in detail in Sections 4 and 5.

4This author’s familiarity [36] with the accomplishments of proton-decay experiments has certainly con-
tributed to the moderate optimism for the outlook of quantum-gravity phenomenology which is found in
these notes.

5For each of the protons being monitored the probability of decay is extremely small, but there is a
significantly large probability that at least one of the many monitored protons decay.
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3 ADDENDUM TO CONCLUSIONS: ANY HINTS

TO THEORISTS FROM EXPERIMENTS?

In the preceding section I have argued that quantum-gravity phenomenology, even being as
it is in its infancy, is already starting to provide the first significant tests of plausible candi-
date quantum-gravity phenomena. It is of course just “scratching the surface” of whatever
“volume” contains the full collection of experimental studies we might wish to perform, but
we are finally getting started. Of course, a phenomenology programme is meant to provide
input to the theorists working in the area, and therefore one measure of the achievements
of a phenomenology programme is given by the impact it is having on theory studies. In
the case of quantum-gravity experiments the flow of information from experiments to theory
will take some time. The primary reason is that most quantum-gravity approaches have
been guided (just because there was no alternative guidance from data) by various sorts of
formal intuition for quantum gravity (which of course remain pure speculations as long as
they are not confirmed by experiments). This is in particular true for the two most popular
approaches to the unification of gravitation and quantum mechanics, i.e. “critical super-
strings” [38, 39] and “canonical/loop quantum gravity” [40]. Because of the type of intuition
that went into them, it is not surprising that these “formalism-driven quantum gravity ap-
proaches” are proving extremely useful in providing us new ideas on how gravitation and
quantum mechanics could resolve the apparent conflicts between their conceptual structures,
but they are not giving us any ideas on which experiments could give insight into the nature
of quantum gravity. The hope that these approaches could eventually lead to new intuitions
for the nature of space-time at very short distances has been realized only rather limitedly.
In particular, it is still unclear if and how these formalisms host the mentioned scenarios
for quantum fluctuations of space-time and violations of Lorentz and/or CPT symmetries.
The nature of the quantum-gravity vacuum (in the sense discussed in the preceding section)
appears to be still very far ahead in the critical superstring research programme and its
analysis is only at a very preliminary stage within canonical/loop quantum gravity. In order
for the experiments discussed in these notes to affect directly critical superstring research
and research in canonical/loop quantum gravity it is necessary to make substantial progress
in the analysis of the physical implications of these formalisms.

Still, in an indirect way the recent results of quantum-gravity phenomenology have al-
ready started to have an impact on theory work in these quantum gravity approaches. The
fact that it is becoming clear that (at least a few) quantum-gravity experiments can be done
has reenergized efforts to explore the physical implications of the formalisms. The best ex-
ample of this way in which phenomenology can influence “pure theory” work is provided by
Ref. [41], which was motivated by the results reported in Ref. [5] and showed that canoni-
cal/loop quantum gravity admits (under certain conditions, which in particular involve some
parity breaking) the phenomenon of deformed dispersion relations, with deformation going
linearly with the Planck length.

While the impact on theory work in the formalism-driven quantum gravity approaches
is still quite limited, of course the new experiments are providing useful input for more
intuitive/phenomelogical theoretical work on quantum gravity. For example, the analysis
reported in Refs. [7, 24], by ruling out the scheme of distance fluctuations of Planck length
magnitude occurring at a rate of one per Planck time, has had significant impact [24, 42]
on the line of research which has been deriving intuitive pictures of properties of quantum
space-time from analyses of measurability and uncertainty relations [12, 43, 44, 45]. Similarly
the “Liouville-string” [19] inspired phenomenological approach to quantum gravity [34, 46]
has already received important input from the mentioned studies of the neutral-kaon system
and will receive equally important input from the mentioned GRB experiments, once these
experiments (in a few years) reach Planck-scale sensitivity.

5



4 INTERFEROMETRY AND FUZZY SPACE-TIME

In the preceding two sections I have described the conclusions which I believe to be supported
by the present status of quantum-gravity phenomenology. Let me now start providing some
support for those conclusions by reviewing my proposal [7, 24] of using modern interferom-
eters to set bounds on space-time fuzziness. I shall articulate this in subsections because
some preliminaries are in order. Before going to the analysis of experimental data it is in fact
necessary to give a proper (operative) definition of fuzzy distance and give a description of
the type of stochastic properties one might expect of quantum-gravity-induced fluctuations
of distances.

4.1 Operative definition of fuzzy distance

While nearly all approaches to the unification of gravity and quantum mechanics appear to
lead to a somewhat fuzzy picture of space-time, within the various formalisms it is often
difficult to characterize physically this fuzziness. Rather than starting from formalism, I
shall advocate an operative definition of fuzzy space-time. More precisely for the time being
I shall just consider the concept of fuzzy distance. I shall be guided by the expectation that
at very short distances the sharp classical concept of distance should give way to a somewhat
fuzzy distance. Since interferometers are ideally suited to monitor the distance between test
masses, I choose as operative definition of quantum-gravity-induced fuzziness one which is
expressed in terms of quantum-gravity-induced noise in the read-out of interferometers.

In order to properly discuss this proposed definition it will prove useful to briefly review
some aspects of the physics of modern Michelson-type interferometers. These are schemati-
cally composed [47] of a (laser) light source, a beam splitter and two fully-reflecting mirrors
placed at a distance L from the beam splitter in orthogonal directions. The light beam is
decomposed by the beam splitter into a transmitted beam directed toward one of the mirrors
and a reflected beam directed toward the other mirror; the beams are then reflected by the
mirrors back toward the beam splitter, where [47] they are superposed6. The resulting inter-
ference pattern is extremely sensitive to changes in the positions of the mirrors relative to
the beam splitter. The achievable sensitivity is so high that planned interferometers [48, 49]
with arm lengths L of 3 or 4 Km expect to detect gravity waves of amplitude h as low as
3 ·10−22 at frequencies of about 100Hz. This roughly means that these modern gravity-wave
interferometers should monitor the (relative) positions of their test masses (the beam splitter
and the mirrors) with an accuracy [50] of order 10−18m and better.

In achieving this remarkable accuracy experimentalists must deal with classical-physics
displacement noise sources (e.g., thermal and seismic effects induce fluctuations in the rela-
tive positions of the test masses) and displacement noise sources associated to effects of ordi-
nary quantum mechanics (e.g., the combined minimization of photon shot noise and radiation
pressure noise leads to an irreducible noise source which has its root in ordinary quantum
mechanics [47]). The operative definition of fuzzy distance which I advocate characterizes
the corresponding quantum-gravity effects as an additional source of displacement noise. A
theory in which the concept of distance is fundamentally fuzzy in this operative sense would
be such that even in the idealized limit in which all classical-physics and ordinary-quantum-
mechanics noise sources are completely eliminated the read-out of an interferometer would
still be noisy as a result of quantum-gravity effects.

6Although all modern interferometers rely on the technique of folded interferometer’s arms (the light beam
bounces several times between the beam splitter and the mirrors before superposition), I shall just discuss
the simpler “no-folding” conceptual setup. The readers familiar with the subject can easily realize that the
observations here reported also apply to more realistic setups, although in some steps of the derivations the
length L would have to be understood as the optical length (given by the actual length of the arms multiplied
by the number of foldings).
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Upon adopting this operative definition of fuzzy distance, interferometers are of course
the natural tools for experimental tests of proposed distance-fuzziness scenarios.

I am only properly discussing distance fuzziness although ideas on space-time foam would
also motivate investigations of time fuzziness. It is not hard to modify the definition here
advocated for distance fuzziness to describe time fuzziness by replacing the interferometer
with some device that keeps track of the synchronization of a pair of clocks7. I shall not
pursue this matter further since I seem to understand8 that sensitivity to time fluctuations
is still significantly behind the type of sensitivity to distance fluctuations achievable with
modern Michelson-type experiments.

4.2 Random-walk noise from random-walk models of quantum
space-time fluctuations

As already mentioned in Section 2, it is plausible that a quantum space-time might involve
fluctuations of magnitude Lp occurring at a rate of roughly one per each time interval of
magnitude tp = Lp/c ∼ 10−44s. One can start investigating this scenario by considering the
possibility that experiments monitoring the distance D between two bodies for a time Tobs
(in the sense appropriate, e.g., for an interferometer) could involve a total effect amounting
to nobs ≡ Tobs/tp randomly directed fluctuations9 of magnitude Lp. An elementary analysis
allows to establish that in such a context the root-mean-square deviation σD would be
proportional to

√
Tobs:

σD ∼
√
cLpTobs . (2)

From the type of Tobs-dependence of Eq. (2) it follows [7] that the corresponding quan-
tum fluctuations should have displacement amplitude spectral density S(f) with the f−1

dependence10 typical of “random walk noise” [51]:

S(f) = f−1
√
c Lp . (3)

In fact, there is a general connection between σ ∼ √Tobs and S(f) ∼ f−1, which follows [51]
from the general relation

σ2 =
∫ fmax

1/Tobs

[S(f)]2 df , (4)

7Actually, a realistic analysis of ordinary Michelson-type interferometers is likely to lead to a contribution
from space-time foam to noise levels that is the sum (in some appropriate sense) of the effects due to distance
fuzziness and time fuzziness (e.g. associated to the frequency/time measurements involved).

8This understanding is mostly based on recent conversations with G. Busca and P. Thomann who are in-
volved in the next generation of ultra-precise clocks to be realized in microgravity (outer space) environments.

9One might actually expect even more than Tobs/tp fluctuations of magnitude Lp in a time Tobs depending
on how frequent fluctuations occur in the region of space spanned by the distance D. This and other
possibilities will be later modelled by replacing Lp with a phenomenological scale LQG which could even
depend on D. However, as mentioned in the Introduction, rather than focusing on the details of the physics
of the fuzziness models, I am here discussing models from the point of view of a characterization of the levels
of quantum-gravity sensitivity reached by recent experiments, and the scale LQG will be seen primarily from
this perspective rather than attempting careful estimates in terms of one or another picture of space-time
fluctuations.

10Of course, in light of the nature of the arguments used, one expects that an f−1 dependence of the
quantum-gravity induced S(f) could only be valid for frequencies f significantly smaller than the Planck
frequency c/Lp and significantly larger than the inverse of the time scale over which, even ignoring the gravi-
tational field generated by the devices, the classical geometry of the space-time region where the experiment
is performed manifests significant curvature effects.
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valid for a frequency band limited from below only by the time of observation Tobs.
The displacement amplitude spectral density (3) provides a very useful characterization

of the random-walk model of quantum space-time fluctuations prescribing fluctuations of
magnitude Lp occurring at a rate of roughly one per each time interval of magnitude Lp/c.
If somehow we have been assuming the wrong magnitude of distance fluctuations or the
wrong rate (also see Subsection 4.4) but we have been correct in taking a random-walk
model of quantum space-time fluctuations Eq. (3) should be replaced by

S(f) = f−1
√
c LQG , (5)

where LQG is the appropriate length scale that takes into account the correct values of
magnitude and rate of the fluctuations.

If one wants to be open to the possibility that the nature of the stochastic processes
associated to quantum space-time be not exactly (also see Section 8) the one of a random-
walk model of quantum space-time fluctuations, then the f -dependence of the displacement
amplitude spectral density could be different. This leads one to consider the more general
parametrization

S(f) = f−β cβ−
1
2 (Lβ)

3
2
−β . (6)

In this general parametrization the dimensionless quantity β carries the information on
the nature of the underlying stochastic processes, while the length scale Lβ carries the
information on the magnitude and rate of the fluctuations. I am assigning an index β to Lβ

just in order to facilitate a concise description of experimental bounds; for example, if the
fluctuations scenario with, say, β = 0.6 was ruled out down to values of the effective length
scale of order, say, 10−27m I would just write Lβ=0.6 < 10−27m. As I will discuss in Section 8,
one might be interested in probing experimentally all values of β in the range 1/2 ≤ β ≤ 1,
with special interest in the cases β = 1 (the case of random-walk models whose effective
length scale I denominated with LQG ≡ Lβ=1), β = 5/6, and β = 1/2.

4.3 Comparison with gravity-wave interferometer data

Before discussing experimental bounds on Lβ from gravity-wave interferometers, let us fully
appreciate the significance of these bounds by getting some intuition on the actual magnitude
of the quantum fluctuations I am discussing. One intuition-building observation is that even
for the case β = 1, which among the cases I consider is the one with the most virulent
space-time fluctuations, the fluctuations predicted are truly minute: the β = 1 relation (2)
only predicts fluctuations with standard deviation of order 10−5m on a time of observation
as large as 1010 years (the size of the whole observable universe is about 1010 light years!!).
In spite of the smallness of these effects, the precision [47] of modern interferometers (the
ones whose primary objective is the detection of the classical-gravity phenomenon of gravity
waves) is such that we can obtain significant information at least on the scenarios with
values of β toward the high end11 of the interesting interval 1/2 ≤ β ≤ 1, and in particular
we can investigate quite sensitively the intuitive case of the random-walk model of space-
time fluctuations. The operation of gravity-wave interferometers is based on the detection

11As mentioned, for LQG = Lp the case β = 1 corresponds to a mean-square deviation induced by the
distance fluctuations that is only linearly suppressed by Lp: σ2

D ∼ LpcT . Analogously, values of β in the
interval 1/2 < β < 1 correspond to σ2

D suppressed by a power of Lp between 1 and 2. The fact that we can
only test values of β toward the high end of the interval 1/2 ≤ β ≤ 1 can be intuitively characterized by
stating that the fuzziness models we are able to test have σ2

D that is not much more than linearly suppressed
by the Planck length.
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of minute changes in the positions of some test masses (relative to the position of a beam
splitter). If these positions were affected by quantum fluctuations of the type discussed
above, the operation of gravity-wave interferometers would effectively involve an additional
source of noise due to quantum gravity.

This observation allows to set interesting bounds already using existing noise-level data
obtained at the Caltech 40-meter interferometer, which has achieved [50] displacement noise

levels with amplitude spectral density lower than 10−18m/
√
Hz for frequencies between 200

and 2000Hz. While this is still very far from the levels required in order to probe significantly
the lowest values of β (for Lβ=1/2 ∼ Lp and f ∼ 1000Hz the quantum-gravity noise induced

in the β = 1/2 scenario is only of order 10−36m/
√
Hz), these sensitivity levels clearly rule

out all values of LQG (i.e. Lβ=1) down to the Planck length. Actually, even values of
LQG significantly smaller than the Planck length are inconsistent with the data reported

in Ref. [50]; in particular, from the observed noise level of 3 · 10−19m/
√
Hz near 450 Hz,

which is the best achieved at the Caltech 40-meter interferometer, one obtains [7] the bound
LQG ≤ 10−40m. As discussed above, the random-walk model of distance fuzziness with
fluctuations of magnitude Lp occurring at a rate of one per each tp time interval, would
correspond to the prediction LQG ∼ Lp ∼ 10−35m and it is therefore ruled out by these
data. This experimental information implies that, if one was to insist on this type of
models, realistic random-walk models of quantum space-time fluctuations would have to be
significantly less noisy (smaller prediction for LQG) than the intuitive one which is now ruled
out. Since, as I shall discuss, there are rather plausible scenarios for significantly less noisy
random-walk models, it is important that experimentalists keep pushing forward the bound
on LQG. More stringent bounds on LQG are within reach of the LIGO/VIRGO [48, 49]
generation of gravity-wave interferometers.12

In planning future experiments, possibly taylored to test these effects (unlike LIGO and
VIRGO which were tailored around the properties needed for gravity-wave detection), it is
important to observe that an experiment achieving displacement noise levels with amplitude
spectral density S∗ at frequency f ∗ will set a bound on Lβ of order

Lβ <
[
S∗ (f ∗)β c(1−2β)/2

]2/(3−2β)
, (7)

which in particular for random-walk models takes the form

Lβ <

[
S∗ f ∗√

c

]2

. (8)

The structure of Eq. (7) (and Eq. (8)) shows that there can be instances in which a very
large interferometer (the ideal tool for low-frequency studies) might not be better than a
smaller interferometer, if the smaller one achieves a very small value of S∗.

The formula (7) can also be used to describe as a function of β the bounds on Lβ achieved
by the data collected at the Caltech 40-meter interferometer. Using again the fact that a

12Besides allowing an improvement on the bound on LQG intended as a universal property of quantum
gravity, the LIGO/VIRGO generation of interferometers will also allow us to explore the idea that LQG might
be a scale that depends on the experimental context in such a way that larger interferometers pick up more
of the space-time fluctuations. Based on the intuition coming from the Salecker-Wigner limit (here reviewed
in Section 8), or just simply on phenomenological models in which distance fluctuations affect equally each
Lp-long segment of a given distance, it would not be surprising if LQG was a growing function of the length
of the arms of the interferometer. This gives added significance to the step from the 40-meter arms of the
existing Caltech interferometer to the few-Km arms of LIGO/VIRGO interferometers.

9



noise level of only S∗ ∼ 3 · 10−19m/
√
Hz near f ∗ ∼ 450 Hz was achieved [50], one obtains

the bounds

[Lβ]caltech <

[
3 · 10−19m√

Hz
(450Hz)β c(1−2β)/2

]2/(3−2β)

. (9)

Let me comment in particular on the case β = 5/6 which might deserve special attention
because of its connection (which was derived in Refs. [7, 24] and will be reviewed here in
Section 8) with certain arguments for bounds on the measurability of distances in quantum
gravity [24, 45, 43]. From Eq. (9) we find that Lβ=5/6 is presently bound to the level
Lβ=5/6 ≤ 10−29m. This bound is remarkably stringent in absolute terms, but is still quite
far from the range of values one ordinarily considers as likely candidates for length scales
appearing in quantum gravity. A more significant bound on Lβ=5/6 should be obtained by the
LIGO/VIRGO generation of gravity-wave interferometers. For example, it is plausible [48]
that the “advanced phase” of LIGO achieve a displacement noise spectrum of less than
10−20m/

√
Hz near 100 Hz and this would probe values of Lβ=5/6 as small as 10−34m.

Interferometers are our best long-term hope for the development of this phenomenology,
and that is why the analysis in this Section focuses on interferometers. However, it should be
noted that among detectors already in operation the best bound on Lβ (if taken as universal)
comes from resonant-bar detectors such as NAUTILUS [52], which achieved displacement

sensitivity of about 10−21m/
√
Hz near 924Hz. Correspondingly, one obtains the bound

[Lβ]bars <

[
10−21m√

Hz
(924Hz)β c(1−2β)/2

]2/(3−2β)

. (10)

In closing this subsection on interferometry data analysis relevant for space-time fuzzi-
ness scenarios, let me clarify how it happened that such small effects could be tested. As I
already mentioned, one of the viable strategies for quantum-gravity experiments is the one
finding ways to put together very many of the very small quantum-gravity effects. In these
interferometric studies that I proposed in Ref. [7] one does indeed effectively sum up a large
number of quantum space-time fluctuations. In a time of observation as long as the inverse
of the typical gravity-wave interferometer frequency of operation an extremely large number
of minute quantum fluctuations could affect the distance between the test masses. Although
these fluctuations average out, they do leave traces in the interferometer. These traces grow
with the time of observation: the standard deviation increases with the time of observation,
while the displacement noise amplitude spectral density increases with the inverse of fre-
quency (which again effectively means that it increases with the time of observation). From
this point of view it is not surprising that plausible quantum-gravity scenarios (1/2 ≤ β ≤ 1)
all involve higher noise at lower frequencies: the observation of lower frequencies requires
longer times and is therefore affected by a larger number of quantum-gravity fluctuations.

4.4 Less noisy random-walk models of distance fluctuations?

The most intuitive result obtained in Refs. [7, 24] and reviewed in the preceding subsection
is that we can rule out the picture in which the distances between the test masses of the
interferometer are affected by fluctuations of magnitude Lp occurring at a rate of one per
each tp time interval. Does this rule out completely the possibility of a random-walk model
of distance fluctuations? or are we just learning that the most intuitive/naive example of
such a model does not work, but there are other plausible random-walk models?

Without wanting to embark on a discussion of the plausibility of less noisy random-walk
models, I shall nonetheless discuss some ideas which could lead to this noise reduction.
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Let me start by observing that certain studies of measurability of distances in quantum
gravity (see Ref. [24] and the brief review of those arguments which is provided in parts of
Section 8) can be interpreted as suggesting that LQG might not be a universal length scale,
i.e. it might depend on some specific properties of the experimental setup (particularly the
energies/masses involved), and in some cases LQG could be significantly smaller than Lp.

Another possibility one might want to consider [24] is the one in which the quantum
properties of space-time are such that fluctuations of magnitude Lp would occur with fre-
quency somewhat lower than 1/tp. This might happen for various reasons, but a particularly
intriguing possibility13 is the one of theories whose fundamental objects are not pointlike,
such as the popular string theories. For such theories it is plausible that fluctuations occur-
ring at the Planck-distance level might have only a modest impact on extended fundamental
objects characterized by a length scale significantly larger than the Planck length (e.g. in
string theory the string size, or “length”, might be an order of magnitude larger than the
Planck length). This possibility is interesting in general for quantum-gravity theories with
a hierarchy of length scales, such as certain “M-theory motivated” scenarios with an extra
length scale associated to the compactification from 11 to 10 dimensions.

Yet another possibility for a random-walk model to cause less noise in interferometers
could emerge if somehow the results of the schematic analysis adopted here and in Refs. [7, 24]
turned out to be significantly modified once we become capable of handling all of the details
of a real interferometer. To clarify which type of details I have in mind let me mention
as an example the fact that in my analysis the structure of the test masses was not taken
into account in any way: they were essentially treated as point-like. It would not be too
surprising if we eventually became able to construct theoretical models taking into account
the interplay between the binding forces that keep together (“in one piece”) a macroscopic
test mass as well as some random-walk-type fundamental fluctuations of the space-time in
which these macroscopic bodies “live”. The interference pattern observed in the laboratory
reflects the space-time fluctuations only filtered through their interplay with the mentioned
binding forces of the macroscopic test masses. These open issues are certainly important and
a lot of insight could be gained through their investigation, but there is also some confusion
that might easily result14 from simple-minded considerations (possibly guided by intuition
developed using rudimentary table-top interferometers) concerning the macroscopic nature of
the test masses used in modern interferometers. In closing this section let me try to offer a few
relevant clarifications. I need to start by adding some comments on the stochastic processes
I have been considering. In most physical contexts a series of random steps does not lead
to
√
Tobs dependence of σ because often the context is such that through the fluctuation-

dissipation theorem the source of
√
Tobs dependence is (partly) compensated (some sort of

restoring effect). The hypothesis explored in these discussions of random-walk models of
space-time fuzziness is that the type of underlying dynamics of quantum space-time be such
that the fluctuation-dissipation theorem be satisfied without spoiling the

√
Tobs dependence

of σ. This is an intuition which apparently is shared by other authors; for example, the
study reported in Ref. [55] (which followed by a few months Ref. [7], but clearly was the
result of completely independent work) also models some implications of quantum space-time
(the ones that affect clocks) with stochastic processes whose underlying dynamics does not

13This possibility emerged in discussions with Gabriele Veneziano. In response to my comments on the
possibility of fluctuations with frequency somewhat lower than 1/tp Gabriele made the suggestion that
extended fundamental objects might be less susceptible than point particles to very localized space-time
fluctuations. It would be interesting to work out in some detail an example of dynamical model of strings in
a fuzzy space-time.

14In particular, as I emphasized in Ref. [53], these and other elements of confusion are responsible for
the incorrect conclusions on the Salecker-Wigner measurability limit which were drawn in the very recent
Ref. [54].
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produce any dissipation and therefore the “fluctuation contribution” to the Tobs dependence
is left unmodified, although the fluctuation-dissipation theorem is fully taken into account.

Since a mirror of an interferometer of LIGO/VIRGO type is in practice an extremity
of a pendulum, another aspect that the reader might at first find counter-intuitive is the
fact that the

√
Tobs dependence of σ, although coming in with a very small prefactor, for

extremely large Tobs would seem to give values of σ too large to be consistent with the
structure of a pendulum. This is a misleading intuition which originates from the experience
with ordinary (non-quantum-gravity) analyses of the pendulum. In fact, the dynamics of
an ordinary pendulum has one extremity “fixed” to a very heavy macroscopic and rigid
body, while the other extremity is fixed to a much lighter (but, of course, still macroscopic)
body. The usual stochastic processes considered in the study of the pendulum affect the
heavier body in a totally negligible way, while they have strong impact on the dynamics of
the lighter body. A pendulum analyzed according to a random-walk model of space-time
fluctuations would be affected by stochastic processes which are of the same magnitude both
for its heavier and its lighter extremity. [The bodies are fluctuating along with the intrinsic
space-time fluctuations, rather than fluctuating as a result of, say, collisions with material
particles occurring in a conventional space-time.] In particular, in the directions orthogonal
to the vertical axis the stochastic processes affect the position of the center of mass of the
entire pendulum just as they would affect the position of the center of mass of any other
body (the spring that connects the two extremities of the pendulum would not affect the
motion of the overall center of mass of the pendulum). With respect to the application of
some of these considerations to modern gravity-wave interferometers it is also important to
keep in mind that the measurement strategy of these interferometers requires that their test
masses be free-falling.

5 GAMMA-RAY BURSTS AND IN-VACUO

DISPERSION

Let me now discuss the proposal put forward in Ref. [5] (also see Ref. [56]), which exploits
the recent confirmation that at least some gamma-ray bursters are indeed at cosmological
distances [57, 58, 59, 60], making it possible for observations of these to provide interesting
constraints on the fundamental laws of physics. In particular, such cosmological distances
combine with the short time structure seen in emissions from some GRBs [61] to provide ideal
features for tests of possible in vacuo dispersion of electromagnetic radiation from GRBs, of
the type one might expect based on the intuitive quantum-gravity arguments reviewed in
Section 2. As mentioned, a quantum-gravity-induced deformation of the dispersion relation
for photons would naturally take the form c2p2 = E2 [1 + F(E/EQG)], where EQG is an
effective quantum-gravity energy scale and F is a model-dependent function of the dimen-
sionless ratio E/EQG. In quantum-gravity scenarios in which the Hamiltonian equation of
motion ẋi = ∂ H/∂ pi is still valid (at least approximately valid; valid to an extent sufficient
to justify the analysis that follows) such a deformed dispersion relation would lead to energy-
dependent velocities for massless particles, with implications for the electromagnetic signals
that we receive from astrophysical objects at large distances. At small energies E � EQG,
it is reasonable to expect that a series expansion of the dispersion relation should be appli-
cable leading to the formula (1). For the case α = 1, which is the most optimistic (largest
quantum-gravity effect) among the cases discussed in the quantum-gravity literature, the
formula (1) reduces to

c2p2 ' E2

(
1 + ξ

E

EQG

)
. (11)
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Correspondingly one would predict the energy-dependent velocity formula

v =
∂E

∂p
∼ c

(
1− ξ

E

EQG

)
. (12)

To elaborate a bit more than I did in Section 2 on the intuition that leads to this type of can-
didate quantum-gravity effect let me observe that [5] velocity dispersion such as described in
(12) could result from a picture of the vacuum as a quantum-gravitational ‘medium’, which
responds differently to the propagation of particles of different energies and hence velocities.
This is analogous to propagation through a conventional medium, such as an electromag-
netic plasma [62]. The gravitational ‘medium’ is generally believed to contain microscopic
quantum fluctuations, such as the ones considered in the previous sections. These may [63]
be somewhat analogous to the thermal fluctuations in a plasma, that occur on time scales
of order t ∼ 1/T , where T is the temperature. Since it is a much ‘harder’ phenomenon
associated with new physics at an energy scale far beyond typical photon energies, any
analogous quantum-gravity effect could be distinguished by its different energy dependence:
the quantum-gravity effect would increase with energy, whereas conventional medium effects
decrease with energy in the range of interest [62].

Also relevant for building some quantum-gravity intuition for this type of in vacuo disper-
sion and deformed velocity law is the observation [46, 23] that this has implications for the
measurability of distances in quantum gravity that fit well with the intuition emerging from
heuristic analyses [12] based on a combination of arguments from ordinary quantum mechan-
ics and general relativity. [This connection between dispersion relations and measurability
bounds will be here reviewed in Section 8.]

Notably, recent work [41] has provided evidence for the possibility that the popular
canonical/loop quantum gravity [40] might be among the theoretical approaches that admit
the phenomenon of deformed dispersion relations with the deformation going linearly with
the Planck length (Lp ∼ 1/Ep). Similarly, evidence for this type of dispersion relations
has been found [46] in Liouville (non-critical) strings [19], whose development was partly
motivated by an intuition concerning the “quantum-gravity vacuum” that is rather close to
the one traditionally associated to the works of Wheeler [14] and Hawking [15]. Moreover,
the phenomenon of deformed dispersion relations with the deformation going linearly with
the Planck length fits rather naturally within certain approaches based on non-commutative
geometry and deformed symmetries. In particular, there is growing evidence [23, 27, 28]
for this phenomenon in theories living in the non-commutative Minkowski space-time pro-
posed in Refs. [64, 65, 21], which involves a dimensionful (presumably Planck-length related)
deformation parameter.

Equation (12) encodes a minute modification for most practical purposes, since EQG is
believed to be a very high scale, presumably of order the Planck scale Ep. Nevertheless, such
a deformation could be rather significant for even moderate-energy signals, if they travel
over very long distances. According to (12) two signals respectively of energy E and E+∆E
emitted simultaneously from the same astrophysical source in traveling a distance L acquire
a “relative time delay” |δt| given by

|δt| ∼ ∆E

EQG

L

c
. (13)

Such a time delay can be observable if ∆E and L are large while the time scale over which the
signal exhibits time structure is small. As mentioned, these are the respects in which GRBs
offer particularly good prospects for such measurements. Typical photon energies in GRB
emissions are in the range 0.1− 100 MeV [61], and it is possible that the spectrum might in
fact extend up to TeV energies [66]. Moreover, time structure down to the millisecond scale
has been observed in the light curves [61], as is predicted in the most popular theoretical
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models [67] involving merging neutron stars or black holes, where the last stages occur on
the time scales associated with grazing orbits. Similar time scales could also occur in models
that identify GRBs with other cataclysmic stellar events such as failed supernovae Ib, young
ultra-magnetized pulsars or the sudden deaths of massive stars [68]. We see from equations
(12) and (13) that a signal with millisecond time structure in photons of energy around
10 MeV coming from a distance of order 1010 light years, which is well within the range of
GRB observations and models, would be sensitive to EQG of order the Planck scale.

In order to set a definite bound on EQG it is necessary to measure L and to measure the
time of arrival of different energy/wavelength components of a sharp peak within the burst.
From Eq. (13) it follows that one could set a bound

EQG > ∆E
L

c |τ | (14)

by establishing the times of arrival of the peak to be the same up to an uncertainty τ in two
energy channels E and E + ∆E. Unfortunately, at present we have data available only on
a few GRBs for which the distance L has been determined (the first measurements of this
type were obtained only in 1997), and these are the only GRBs which can be reliably used
to set bounds on the new effect. Moreover, mostly because of the nature of the relevant
experiments (particularly the BATSE detector on the Compton Gamma Ray Observatory),
for a large majority of the GRBs on record only the portion of the burst with energies up to
the MeV energy scale was observed, whereas higher energies would be helpful for the study
of the phenomenon of quantum-gravity-induced dispersion here considered (which increases
linearly with energy). We expect significant improvements in these coming years. The
number of observed GRBs with associated distance measurement should rapidly increase.
A new generation of orbiting spectrometers, e.g. AMS [69] and GLAST [70], are being
developed, whose potential sensitivities are very impressive. For example, assuming a E−2

energy spectrum, GLAST would expect to observe about 25 GRBs per year at photon
energies exceeding 100 GeV, with time resolution of microseconds. AMS would observe a
similar number at E > 10 GeV with time resolution below 100 nanoseconds.

While we wait for these new experiments, preliminary bounds can already be set with
available data. Some of these bounds are “conditional” in the sense that they rely on
the assumption that the relevant GRB originated at distances corresponding to redshift
of O(1) (corresponding to a distance of ∼ 3000 Mpc), which appears to be typical. Let
me start by considering the “conditional” bound (first considered in Ref. [5]) which can be
obtained from data on GRB920229. GRB920229 exhibited [71] micro-structure in its burst
at energies up to ∼ 200 KeV. In Ref. [5] it was estimated conservatively that a detailed time-
series analysis might reveal coincidences in different BATSE energy bands on a time-scale
∼ 10−2 s, which, assuming redshift of O(1) (the redshift of GRB920229 was not measured)
would yield sensitivity to EQG ∼ 1016 GeV (it would allow to set a bound EQG > 1016 GeV).

As observed in Ref. [56], a similar sensitivity might be obtainable with GRB980425,
given its likely identification with the unusual supernova 1998bw [72]. This is known to have
taken place at a redshift z = 0.0083 corresponding to a distance D ∼ 40 Mpc (for a Hubble
constant of 65 km sec−1Mpc−1) which is rather smaller than a typical GRB distance. However
GRB980425 was observed by BeppoSAX at energies up to 1.8 MeV, which gains back an
order of magnitude in the sensitivity. If a time-series analysis were to reveal structure at the
∆ t ∼ 10−3 s level, which is typical of many GRBs [73], it would yield the same sensitivity
as GRB920229 (but in this case, in which a redshift measurement is available, one would
have a definite bound, whereas GRB920229 only provides a “conditional” bound of the type
discussed above).

Ref. [56] also observed that an interesting (although not very “robust”) bound could
be obtained using GRB920925c, which was observed by WATCH [74] and possibly in high-
energy γ rays by the HEGRA/AIROBICC array above 20 TeV [75]. Several caveats are in
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order: taking into account the appropriate trial factor, the confidence level for the signal seen
by HEGRA to be related to GRB920925c is only 99.7% (∼ 2.7σ), the reported directions
differ by 90, and the redshift of the source is unknown. Nevertheless, the potential sensitivity
is impressive. The events reported by HEGRA range up to E ∼ 200 TeV, and the correlation
with GRB920925c is within ∆ t ∼ 200 s. Making the reasonably conservative assumption
that GRB920925c occurred no closer than GRB980425, viz. ∼ 40Mpc, one finds a minimum
sensitivity to EQG ∼ 1019 GeV, modulo the caveats listed above. Even more spectacularly,
several of the HEGRA GRB920925c candidate events occurred within ∆ t ∼ 1 s, providing
a potential sensitivity even two orders of magnitude higher.

As illustrated by this discussion, the GRBs have remarkable potential for the study of in
vacuo dispersion, which will certainly lead to impressive bounds/tests as soon as improved
experiments are put into operation, but at present the best GRB-based bounds are either
“conditional” (example of GRB92022) or “not very robust”(example of GRB920925c). As a
result, at present the best (reliable) bound has been extracted [26, 76] using data from the
Whipple telescope on a TeV γ-ray flare associated with the active galaxy Mrk 421. This
object has a redshift of 0.03 corresponding to a distance of ∼ 100 Mpc. Four events with γ-
ray energies above 2 TeV have been observed within a period of 280 s. These provide [26, 76]
a definite limit EQG > 4× 1016 GeV.

In passing let me mention that (as observed in Ref. [5, 46]) pulsars and supernovae, which
are among the other astrophysical phenomena that might at first sight appear well suited for
the study of in vacuo dispersion, do not actually provide interesting sensitivities. Although
pulsar signals have very well-defined time structure, they are at relatively low energies and
are presently observable over distances of at most 104 light years. If one takes an energy
of order 1 eV and postulates generously a sensitivity to time delays as small as 1 µsec, one
nevertheless reaches only an estimated sensitivity to EQG ∼ 109 GeV. With new experiments
such as AXAF it may be possible to detect X-ray pulsars out to 106 light years, but this
would at best push the sensitivity up to EQG ∼ 1011 GeV. Concerning supernovae, it is
important to take into account that neutrinos15 from Type II events similar to SN1987a,
which should have energies up to about 100 MeV with a time structure that could extend
down to milliseconds, are likely to be detectable at distances of up to about 105 light years,
providing sensitivity to EQG ∼ 1015 GeV, which is remarkable in absolute terms, but is
still significantly far from the Planck scale and anyway cannot compete with the type of
sensitivity achievable with GRBs.

It is rather amusing that GRBs can provide such a good laboratory for investigations
of in vacuo dispersion in spite of the fact that the short-time structure of GRB signals is
still not understood. The key point of the proposal in Ref. [5] is that sensitive tests can be
performed through the serendipitous detection of short-scale time structure [71] at different
energies in GRBs which are established to be at cosmological distances. Detailed features of
burst time series enable (as already shown in several examples) the emission times in different
energy ranges to be put into correspondence. Any time shift due to quantum-gravity would
increase with the photon energy, and this characteristic dependence is separable from more
conventional in-medium-physics effects, which decrease with energy. To distinguish any
quantum-gravity induced shift from effects due to the source, one can use the fact that the
quantum-gravity effect here considered is linear in the GRB distance.

This last remark applies to all values of α, but most of the observations and formulas in
this section are only valid in the case α = 1 (linear suppression). The generalization to cases

15Of course, at present we should be open to the possibility that the velocity law (12) might apply to
all massless particles, but it is also plausible that the correct quantum-gravity velocity law would depend
on the spin of the particle. It would therefore be important to set up a phenomenological programme that
studies neutrinos with the same level of sensitivies that GRBs and other astrophysical phenomena allow for
the study of the velocity law of the photon.
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with α 6= 1 is however rather simple; for example, Eq. (14) takes the form (up to coefficients
of order 1)

EQG >

[
[(E + ∆E)α −Eα]

L

c |τ |
]1/α

. (15)

Notice that here, because of the non-linearity, the right-hand side depends both on E and
∆E.

Before moving on to other experiments let me clarify what is the key ingredient of this
experiment using observations of gamma rays from distant astrophysical sources (the ingredi-
ent that allowed to render observable the minute quantum-gravity effects). This ingredient is
very similar to the one relevant for the studies of space-time fuzziness using modern interfer-
ometers which I discussed in the preceding section; in fact, the gamma rays here considered
are affected by a very large number of the minute quantum-gravity effects. Each of the
dispersion-inducing quantum-gravity effect is very small, but the gamma rays emitted by
distant astrophysical sources travel for a very long time before reaching us and can therefore
be affected by an extremely large number of such effects.

6 OTHER QUANTUM-GRAVITY EXPERIMENTS

In this section I provide brief reviews of some other quantum-gravity experiments. The fact
that the discussion here provided for these experiments is less detailed than the preceding
discussions of the interferometry-based and GRB-based experiments is not to be interpreted
as indicating that these experiments are somehow less significant: it is just that a detailed
discussion of a couple of examples was sufficient to provide to the reader some general
intuition on the strategy behind quantum-gravity experiments and it was natural for me to
use as examples the ones I am most familiar with. For the experiments discussed in this
section I shall just give a rough idea of the quantum-gravity scenarios that could be tested
and of the experimental procedures which have been proposed.

6.1 Neutral kaons and CPT violation

One of the formalisms that has been proposed [17, 2] for the evolution equations of particles
in the space-time foam relies on a density-matrix picture. The foam is seen as providing a
sort of environment inducing quantum decoherence even on isolated systems (i.e. systems
which only interact with the foam). A given non-relativistic system (such as the neutral
kaons studied by the CPLEAR collaboration at CERN) is described by a density matrix ρ
that satisfies an evolution equation analogous to the one ordinarily used for the quantum
mechanics of certain open systems:

∂tρ = i[ρ,H ] + δH ρ (16)

where H is the ordinary Hamiltonian and δH , which has a non-commutator structure [2],
represents the effects of the foam. δH is expected to be extremely small, suppressed by
some power of the Planck length. The precise form of δH (which in particular would set
the level of the new physics by establishing how many powers of the Planck length suppress
the effect) has not yet been derived from some full-grown quantum gravity16, and therefore
phenomenological parametrizations have been introduced (see Refs. [17, 77, 20, 35]). For

16Within the quantum-gravity approach here reviewed in Subsection 11.2, which only attempts to model
certain aspects of quantum gravity, such a direct calculation might soon be performed.
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the case in which the effects are only suppressed by one power of the Planck length (linear
suppression) recent neutral-kaon experiments, such as the ones performed by CPLEAR,
have set significant bounds [2] on the associated CPT-violation effects and forthcoming
experiments are likely to push these bounds even further.

Like the interferometry-based and the GRB-based experiments, these experiments (which
have the added merit of having started the recent wave of quantum-gravity proposals) also
appear to provide significant quantum-gravity tests. As mentioned, the effect of quantum-
gravity-induced decoherence certainly qualifies as a traditional quantum-gravity subject, and
the level of sensitivity reached by the neutral-kaon studies is certainly significant (as in the
case of in vacuo dispersion and GRBs, one would like to be able to explore also the case
of a quadratic Planck-length suppression, but it is nonetheless very significant that we have
at least reached the capability to test the case of linear suppression). Also in this case it
is natural to ask: how come we could manage this? What strategy allowed this neutral-
kaon studies to evade the traditional gloomy forecasts for quantum-gravity phenomenology?
While, as discussed above, in the interferometry-based and the GRB-based experiments
the crucial element in the experimental proposal is the possibility to put together many
quantum gravity effects, in the case of the neutral-kaon experiments the crucial element in
the experimental proposal is provided by the very delicate balance of scales that characterizes
the neutral-kaon system. In particular, it just happens to be true that the dimensionless
ratio setting the order of magnitude of quantum-gravity effects in the linear suppression
scenario, which is c2ML,S/Ep ∼ 2 ·10−19, is not much smaller than some of the dimensionless
ratios characterizing the neutral-kaon system, notably the ratio |ML−MS|/ML,S ∼ 7 · 10−15

and the ratio |ΓL − ΓS|/ML,S ∼ 1.4 · 10−14. This renders possible for the quantum-gravity
effects to provide observably large corrections to the physics of neutral kaons.

6.2 Interferometry and string cosmology

Up to this point I have only reviewed experiments probing foamy properties of space-time
in the sense of Wheeler and Hawking. A different type of quantum-gravity effect which
might produce a signature strong enough for experimental testing has been discussed in the
context of studies of a cosmology based on critical superstrings [78]. While for a description
of this cosmology and of its physical signatures I must only refer the reader to the recent
reviews in Ref. [79], I want to briefly discuss here the basic ingredients of the proposal [3]
of interferometry-based tests of the stochastic gravity-wave background predicted by string
cosmology.

In string cosmology the universe starts from a state of very small curvature, then goes
through a long phase of dilaton-driven inflation reaching nearly Plankian energy density, and
then eventually reaches the standard radiation-dominated cosmological evolution [78, 79].
The period of nearly Plankian energy density plays a crucial role in rendering the quantum-
gravity effects observable. In fact, this example based on string cosmology is quite different
from the experiments I discussed earlier in these lectures also because it does not involve
small quantum-gravity effects which are somehow amplified (in the sense for example of the
amplification provided when many effects are somehow put together). The string cosmology
involves a period in which the quantum-gravity effects are actually quite large. As clarified
in Refs. [78, 79] planned gravity-wave detectors such as LIGO might be able to detect the
faint residual traces of these strong effects occurred in a far past.

As mentioned, the quantum-gravity effects that, within string cosmology, leave a trace
in the gravity-wave background are not of the type that requires an active Wheeler-Hawking
foam. The relevant quantum-gravity effects live in the more familiar vacuum which we are
used to encounter in the context of ordinary gauge theory. (Actually, for the purposes of
the analyses reported in Refs. [78, 79] quantum gravity could be seen as an ordinary gauge
theory, although with unusual gauge-field content.) In the case of the Wheeler-Hawking
foam one is tempted to visualize the vacuum as reboiling with (virtual) worm-holes and
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black-holes. Instead the effects relevant for the gravity-wave background predicted by string
cosmology are more conventional field-theory-type fluctuations, although carrying gravita-
tional degrees of freedom, like the graviton. Also from this point of view the experimental
proposal discussed in Refs. [78, 79] probes a set of candidate quantum-gravity phenomena
which is complementary to the ones I have reviewed earlier in these notes.

6.3 Matter interferometry and primary state diffusion

The studies reported in Ref. [4] (and references therein) have considered how certain effec-
tively stochastic properties of space-time would affect the evolution of quantum-mechanical
states. The stochastic properties there considered are different from the ones discussed
here in Sections 2, 3 and 4, but were introduced within a similar viewpoint, i.e. stochas-
tic processes as effective description of quantum space-time processes. The implications of
these stochastic properties for the evolution of quantum-mechanical states were modeled via
the formalism of “primary state diffusion”, but only rather crude models turned out to be
treatable.

The approach proposed in Ref. [4] actually puts together some of the unknowns of space-
time foam and the specific properties of “primary state diffusion”. The structure of the
predicted effects cannot be simply discussed in terms of elementary properties of space-time
foam and a simple interpretation in terms of symmetry deformations does not appear to be
possible. Those effects appear to be the net result of the whole formalism that goes into
the approach. Moreover, as also emphasized by the authors, the crudeness of the models
is such that all conclusions are to be considered as tentative at best. Still, the analysis
reported in Ref. [4] is very significant as an independent indication of a mechanism, based
on matter-interferometry experiments, that could unveil Planck-length-suppressed effects.

6.4 Colliders and large extra dimensions

It was recently suggested [80, 81] that the characteristic quantum-gravity length scale might
be given by a length scale LD much larger than the Planck length in theories with large
extra dimensions. It appears plausible that there exist models that are consistent with
presently-available experimental data and have LD as large as the (TeV )−1 scale and (some
of) the extra dimensions as large as a millimiter [81]. In such models the smallness of the
Planck length is seen as the result of the fact that the strength of gravitation in the ordinary
3+1 space-time dimensions would be proportional to the square-root of the inverse of the
large volume of the external compactified space multiplied by an appropriate (according to
dimensional analysis) power of LD.

Several studies have been motivated by the proposal put forward in Ref. [81], but only a
small percentage of these studies considered the implications for quantum-gravity scenarios.
Among these studies the ones reported in Refs. [8, 9] are particularly significant for the
objectives of these lectures, since they illustrate another completely different strategy for
quantum-gravity experiments. It is there observed that within the realm of the ordinary 3+1
dimensional space-time an important consequence of the existence of large extra dimensions
would be the presence of a tower of Kaluza-Klein modes associated to the gravitons. The
weakness of the coupling between gravitons and other particles can be compensated by
the large number of these Kaluza-Klein modes when the experimental energy resolution
is much larger than the mass splitting between the modes, which for a small number of
very large extra dimensions can be a weak requirement (e.g. for 6 millimiter-wide extra
dimensions [81, 8] the mass splitting is of a fewMeV ). This can lead to observably large [8, 9]
effects at planned particle-physics colliders, particularly CERN’s LHC.

In a sense, the experimental proposal put forward in Refs. [8, 9] is another example of
experiment in which the smallness of quantum gravity effects is compensated by putting
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together a large number of such effects (putting together the contributions of all of the
Kaluza-Klein modes).

Concerning the quantum-gravity aspects of the models with large extra dimensions pro-
posed in Ref. [81], it is important to realize that, as emphasized in Ref. [24], if anything like
the space-time foam here described in Sections 2, 3, 4 and 5 was present in such models the
effective reduction of the quantum-gravity scale would naturally lead to foamy effects that
are too large for consistency with available experimental data. Preliminary estimates based
solely on dimensional considerations appear to suggest that [24] linear suppression by the
reduced quantum-gravity scale would certainly be ruled out and even quadratic suppression
might not be sufficient for consistency with available data. These arguments should lead
to rather stringent bounds on space-time foam especially in those models in which some of
the large extra dimensions are accessible to non-gravitational particles (see, e.g., Ref. [82]),
and should have interesting (although smaller) implications also for the popular scenario in
which only the gravitational degrees of freedom have access to the large extra dimensions.
Of course, a final verdict must await detailed calculations analysing space-time foam in these
models with large extra dimensions. The first examples of this type of computations are given
by the very recent studies in Refs. [83, 84], which considered the implications of foam-induced
light-cone deformation for certain examples of models with large extra dimensions.

7 CLASSICAL-SPACE-TIME-INDUCED QUANTUM

PHASES IN MATTER INTERFEROMETRY

While of course the quantum properties of space-time are the most exciting effects we expect
of quantum gravity, and probably the ones which will prove most useful in gaining insight
into the fundamental structure of the theory, it is important to investigate experimentally
all aspects of the interplay between gravitation and quantum mechanics. Among these
experiments the ones that could be expected to provide fewer surprises (and less insight into
the structure of quantum gravity) are the ones concerning the interplay between strong-
but-classical gravitational fields and quantum matter fields. However, this is not necessarily
true as I shall try to clarify within this section’s brief review of the experiment performed
nearly a quarter of a century ago by Colella, Overhauser and Werner [10], which, to my
knowledge, was the first experiment probing some aspect of the interplay between gravitation
and quantum mechanics. That experiment has been followed by several modifications and
refinements (often labeled “COW experiments” from the initials of the scientists involved in
the first experiment) all probing the same basic physics, i.e. the validity of the Schrödinger
equation [

−
(

h̄2

2MI

)
~∇2 +MG φ(~r)

]
ψ(t, ~r) = i h̄

∂ ψ(t, ~r)

∂t
(17)

for the description of the dynamics of matter (with wave function ψ(t, ~r)) in presence of the
Earth’s gravitational potential φ(~r). [In (17)MI andMG denote the inertial and gravitational
mass respectively.]

The COW experiments exploit the fact that the Earth’s gravitational potential puts
together the contribution of so many particles (all of those composing the Earth) that it
ends up being large enough to introduce observable effects in rotating table-top interferom-
eters. This was the first example of a physical context in which gravitation was shown to
have an observable effect on a quantum-mechanical system in spite of the weakness of the
gravitational force.

The fact that the original experiment performed by Colella, Overhauser and Werner
obtained results in very good agreement [10] with Eq. (17) might seem to indicate that, as
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generally expected, experiments on the interplay between strong-but-classical gravitational
fields and quantum matter fields should not lead to surprises and should not provide insight
into the structure of quantum gravity. However, the confirmation of Eq. (17) does raise
some sort of a puzzle with respect to the Equivalence Principle of general relativity; in fact,
even for MI = MG the mass does not cancel out in the quantum evolution equation (17).
This is an observation that by now has also been emphasized in textbooks [85], but to my
knowledge it has not been fully addressed even within the most popular quantum-gravity
approaches, i.e. critical superstrings and canonical/loop quantum gravity. Which role should
be played by the Equivalence Principle in quantum gravity? Which version/formulation of
the Equivalence Principle should/could hold in quantum gravity?

Additional elements for consideration in quantum-gravity models will emerge if the small
discrepancy between (17) and data reported in Ref. [86] (a refined COW experiment) is
confirmed by future experiments. The subject of gravitationally induced quantum phases is
also expanding in new directions [6, 87], which are likely to provide additional insight.

8 ESTIMATES OF SPACE-TIME FUZZINESS FROM

MEASURABILITY BOUNDS

In the preceding Sections 4, 5, 6 and 7 I have discussed the experimental proposals that
support the conclusions anticipated in Sections 2 and 3. This Section 8 and the following
three sections each provide a “theoretical-physics addendum”. In this section I discuss some
arguments that appear to suggest properties of the space-time foam. These arguments are
based on analyses of bounds on the measurability of distances in quantum gravity. The
existence of measurability bounds has attracted the interest of several theorists, because
these bounds appear to capture an important novel element of quantum gravity. In or-
dinary (non-gravitational) quantum mechanics there is no absolute limit on the accuracy
of the measurement of a distance. [Ordinary quantum mechanics allows δA = 0 for any
single observable A, since it only limits the combined measurability of pairs of conjugate
observables.]

The quantum-gravity bound on the measurability of distances (whatever final form it
actually takes in the correct theory) is of course intrinsically interesting, but here (as in
previous works [7, 24, 12, 88, 13]) I shall be interested in the possibility that it might
reflect properties of the space-time foam. This is of course not necessarily true: a bound
on the measurability of distances is not necessarily associated to space-time fluctuations,
but guided by the Wheeler-Hawking intuition on the nature of space-time one is tempted
to interpret any measurability bound (which might be obtained with totally independent
arguments) as an indicator of the type of irreducible fuzziness that characterizes space-
time. One has on one hand some intuition about quantum gravity which involves stochastic
fluctuations of distances and on the other hand some different arguments lead to intuition
for absolute bounds on the measurability of distances; it is natural to explore the possibility
that the two might be related, i.e. that the intrinsic stochastic fluctuations should limit
the measurability just to the level suggested by the independent measurability arguments.
Different arguments appear to lead to different measurability bounds, which in turn could
provide different intuition for the stochastic properties of space-time foam.

8.1 Minimum-length noise

In many quantum-gravity approaches there appears to be a length scale Lmin, often identified
with the Planck length or the string length Lstring (which, as mentioned, should be somewhat
larger than the Planck length, plausibly in the neighborhood of 10−34m), which sets an
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absolute bound on the measurability of distances (a minimum uncertainty):

δD ≥ Lmin . (18)

This property emerges in approaches based on canonical quantization of Einstein’s grav-
ity when analyzing certain gedanken experiments (see, e.g., Refs. [30, 33] and references
therein). In critical superstring theories, theories whose mechanics is still governed by the
laws of ordinary quantum mechanics but with one-dimensional (rather than point-like) fun-
damental objects, a relation of type (18) follows from the stringy modification of Heisenberg’s
uncertainty principle [31]

δx δp ≥ 1 + L2
string δp

2 . (19)

In fact, whereas Heisenberg’s uncertainty principle allows δx = 0 (for δp→∞), for all choices
of δp the uncertainty relation (19) gives δx ≥ Lstring. The relation (19) is suggested by certain
analyses of string scattering [31], but it might have to be modified when taking into account
the non-perturbative solitonic structures of superstrings known as Dirichlet branes [38]. In
particular, evidence has been found [89] in support of the possibility that “Dirichlet particles”
(Dirichlet 0 branes) could probe the structure of space-time down to scales shorter than the
string length. In any case, all evidence available on critical superstrings is consistent with a
relation of type (18), although it is probably safe to say that some more work is still needed
to firmly establish the string-theory value of Lmin.

Having clarified that a relation of type (18) is a rather common prediction of theoretical
work on quantum gravity, it is then natural to wonder whether such a relation is suggestive
of stochastic distance fluctuations of a type that could significantly affect the noise levels
of an interferometer. As mentioned, relations such as (18) do not necessarily encode any
fuzziness; for example, relation (18) could simply emerge from a theory based on a lattice
of points with spacing Lmin and equipped with a measurement theory consistent with (18).
The concept of distance in such a theory would not necessarily be affected by the type of
stochastic processes that lead to noise in an interferometer. However, if one does take as
guidance the Wheeler-Hawking intuition on space-time foam it makes sense to assume that
relation (18) might encode the net effect of some underlying physical processes of the type
one would qualify as quantum space-time fluctuations. This (however preliminary) network
of intuitions suggests that (18) could be the result of fuzziness for distances D of the type
associated with stochastic fluctuations with root-mean-square deviation σD given by

σD ∼ Lmin . (20)

The associated displacement amplitude spectral density Smin(f) should roughly have a 1/
√
f

behaviour

Smin(f) ∼ Lmin√
f
, (21)

which (using notation set up in Section 4) can be concisely described stating that Lmin ∼Lβ=1/2. Eq. (21) can be justified using the general relation (4). Substituting the Smin(f)
of Eq. (21) for the S(f) of Eq. (4) one obtains a σ that approximates the σD of Eq. (20)
up to small (logarithmic) Tobs-dependent corrections. A more detailed description of the
displacement amplitude spectral density associated with Eq. (20) can be found in Refs. [90,
91]. For the objectives of these lectures the rough estimate (21) is sufficient since, if indeed
Lmin ∼ Lp, from (21) one obtains Smin(f) ∼ 10−35m/

√
f , which is still very far from the

sensitivity of even the most advanced modern interferometers, and therefore I shall not be
concerned with corrections to Eq. (21).
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8.2 Random-walk noise motivated by the analysis of a Salecker-
Wigner gedanken experiment

Let me now consider a measurability bound which is encountered when taking into account
the quantum properties of devices. It is well understood (see, e.g., Refs. [12, 13, 92, 44,
45, 32]) that the combination of the gravitational properties and the quantum properties
of devices can have an important role in the analysis of the operative definition of gravita-
tional observables. Since the analyses [30, 33, 31, 89] that led to the proposal of Eq. (18)
only treated the devices in a completely idealized manner (assuming that one could ignore
any contribution to the uncertainty in the measurement of D due to the gravitational and
quantum properties of devices), it is not surprising that analyses taking into account the
gravitational and quantum properties of devices found more significant limitations to the
measurability of distances.

Actually, by ignoring the way in which the gravitational properties and the quantum
properties of devices combine in measurements of geometry-related physical properties of a
system one misses some of the fundamental elements of novelty we should expect for the
interplay of gravitation and quantum mechanics; in fact, one would be missing an element of
novelty which is deeply associated to the Equivalence Principle. In measurements of physical
properties which are not geometry-related one can safely resort to an idealized description of
devices. For example, in the famous Bohr-Rosenfeld analysis [93] of the measurability of the
electromagnetic field it was shown that the accuracy allowed by the formalism of ordinary
quantum mechanics could only be achieved using idealized test particles with vanishing
ratio between electric charge and inertial mass. Attempts to generalize the Bohr-Rosenfeld
analysis to the study of gravitational fields (see, e.g., Ref. [92]) are of course confronted
with the fact that the ratio between gravitational “charge” (mass) and inertial mass is fixed
by the Equivalence Principle. While ideal devices with vanishing ratio between electric
charge and inertial mass can be considered at least in principle, devices with vanishing ratio
between gravitational mass and inertial mass are not admissible in any (however formal)
limit of the laws of gravitation. This observation provides one of the strongest elements in
support of the idea [13] that the mechanics on which quantum gravity is based must not be
exactly the one of ordinary quantum mechanics, since it should accommodate a somewhat
different relationship between “system” and “measuring apparatus” and should not rely on
the idealized “measuring apparatus” which plays such a central role in the mechanics laws
of ordinary quantum mechanics (see, e.g., the “Copenhagen interpretation”).

In trying to develop some intuition for the type of fuzziness that could affect the concept
of distance in quantum gravity, it might be useful to consider the way in which the interplay
between the gravitational and the quantum properties of devices affects the measurability
of distances. In Refs. [12, 13] I have argued17 that a natural starting point for this type of
analysis is provided by the procedure for the measurement of distances which was discussed in
influential work18 by Salecker and Wigner [94]. These authors “measured” (in the “gedanken”
sense) the distance D between two bodies by exchanging a light signal between them. The

17I shall comment later in these notes on the measurability analysis reported in Ref. [45], which also took
as starting point the mentioned work by Salecker and Wigner, but advocated a different viewpoint and
reached different conclusions.

18The classic Salecker-Wigner work [94] is criticized in the recent paper [54]. As I explain in detail in
Ref. [53], the analysis reported in Ref. [54] is incorrect. Whereas Salecker and Wigner sought an operative
definition of distances suitable for the Planck regime, the analysis in Ref. [54] relies on several assumptions
that appear to be natural in the context of most present-day experiments but are not even meaningful in
the Planck regime. Moreover, contrary to the claim made in Ref. [54], the source of

√
Tobs-uncertainty used

in the Salecker-Wigner derivation cannot be truly eliminated; unsurprisingly, it can only be traded [53] for
another comparable contribution to the total uncertainty in the measurement. In addition to this incorrect
criticism of the limit derived by Salecker and Wigner, Ref. [54] also misrepresented the role of the Salecker-
Wigner limit in providing motivation for the interferometric studies here considered (and originally proposed
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measurement procedure requires attaching19 a light-gun (i.e. a device capable of sending a
light signal when triggered), a detector and a clock to one of the two bodies and attaching
a mirror to the other body. By measuring the time Tobs (time of observation) needed by
the light signal for a two-way journey between the bodies one also obtains a measurement
of the distance D. For example, in flat space and neglecting quantum effects one simply
finds that D = cTobs/2. Within this setup it is easy to realize that the interplay between
the gravitational and the quantum properties of devices leads to an irreducible contribution
to the uncertainty δD. In order to see this it is sufficient to consider the contribution to
δD coming from the uncertainties that affect the motion of the center of mass of the system
composed by the light-gun, the detector and the clock. Denoting with x∗ and v∗ the position
and the velocity of the center of mass of this composite device relative to the position of the
body to which it is attached, and assuming that the experimentalists prepare this device in
a state characterised by uncertainties δx∗ and δv∗, one easily finds [94, 13]

δD ≥ δx∗ + Tobsδv
∗ ≥ δx∗ +

(
1

Mb
+

1

Md

)
h̄Tobs

2 δx∗
≥
√
h̄Tobs

2

1

Md
, (22)

where Mb is the mass of the body, Md is the total mass of the device composed of the
light-gun, the detector, and the clock, and I also used the fact that Heisenberg’s Uncertainty
Principle implies δx∗δv∗ ≥ (1/Mb+1/Md)h̄/2. [The reduced mass (1/Mb+1/Md)

−1 is relevant
for the relative motion.] Clearly, from (22) it follows that in order to reduce the contribution
to the uncertainty coming from the quantum properties of the devices it is necessary to take
the formal “classical-device limit,” i.e. the limit20 of infinitely large Md.

Up to this point I have not yet taken into account the gravitational properties of the
devices and in fact the “classical-device limit” encountered above is fully consistent with the

in Refs. [7, 24]): the reader could come out of reading Ref. [54] with the impression that such interferometry-
based tests would only be sensitive to quantum-gravity ideas motivated by the Salecker-Wigner limit. As
emphasized in Sections 4 and 8 of these notes (and in Ref. [24]) motivation for this phenomenological
programme also comes from a long tradition of ideas (developing independently of the ideas related to the
Salecker-Wigner limit) on foamy/fuzzy space-time, and from recent work on the possibility that quantum-
gravity might induce a deformation of the dispersion relation that characterizes the propagation of the
massless particles used as space-time probes in the operative definition of distances. This is already quite
clear at least to a portion of the community; for example, in recent work [84] on foamy space-times (without
any reference to the Salecker-Wigner related literature) the type of modern-interferometer sensitivity exposed
in Refs. [7, 24] was used to constrain certain novel candidate quantum-gravity effects.

19Of course, for consistency with causality, in such contexts one assumes devices to be “attached non-
rigidly,” and, in particular, the relative position and velocity of their centers of mass continue to satisfy the
standard uncertainty relations of quantum mechanics.

20A body of finite mass can acquire a nearly-classical behaviour when immerged in a suitable environ-
ment (environment-induced decoherence). However, one of the central hypothesis of the work of Salecker
and Wigner and followers is that the quantum properties of devices should not be negligible in quantum
gravity, and that in particular the in-principle operative definition of distances (which we expect to lie at
the foundations of quantum gravity) should not rely on environment-induced decoherence. It appears worth
exploring the implications of this hypothesis not only because quantum gravity could be a truly fundamental
theory (rather than the effective large-distance description of a more fundamental theory) but also because
the operative definition of distances in quantum gravity should be applicable all the way down to the Planck
length. It is even plausible [94, 95] that quantum gravity should accommodate an operative definition of
a material reference system composed of a network of free-falling particles with relative distances compa-
rable to the Planck length. Within the framework of these intuitions it is indeed quite hard to imagine a
decoherence-inducing environment suitable for the in-principle operative definition of distances in quantum
gravity. As emphasized in Ref. [53], the analysis reported in Ref. [54] missed this important conceptual
element of the Salecker-Wigner approach.
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laws of ordinary quantum mechanics. From a physical/phenomenological and conceptual
viewpoint it is well understood that the formalism of quantum mechanics is only appropriate
for the description of the results of measurements performed by classical devices. It is
therefore not surprising that the classical-device (infinite-mass) limit turns out to be required
in order to match the prediction minδD = 0 of ordinary quantum mechanics.

If one also takes into account the gravitational properties of the devices, a conflict with
ordinary quantum mechanics immediately arises because the classical-device (infinite-mass)
limit is in principle inadmissible for measurements concerning gravitational effects.21 As the
devices get more and more massive they increasingly disturb the gravitational/geometrical
observables, and well before reaching the infinite-mass limit the procedures for the mea-
surement of gravitational observables cannot be meaningfully performed [12, 13, 45]. In the
Salecker-Wigner measurement procedure the limit Md → ∞ is not admissible when grav-
itational interactions are taken into account. At the very least the value of Md is limited
by the requirement that the apparatus should not turn into a black hole (which would not
allow the exchange of signals required by the measurement procedure).

These observations render unavoidable the
√
Tobs-dependence of Eq. (22). It is important

to realize that this
√
Tobs-dependence of the bound on the measurability of distances comes

simply from combining elements of quantum mechanics with elements of classical gravity.
As it stands it is not to be interpreted as a quantum-gravity effect. However, as clarified
in the opening of this section, if one is interested in modeling properties of the space-time
foam it is natural to explore the possibility that the foam be such that distances be af-
fected by stochastic fluctuations with this typical

√
Tobs-dependence. The logic is here the

one of observing that stochastic fluctuations associated to the foam would anyway lead to
some form of dependence on Tobs and in guessing the specific form of this dependence the
measurability analysis reviewed in this subsection can be seen as providing motivation for a√
Tobs-dependence. From this point of view the measurability analysis reviewed in this sub-

section provides additional motivation for the study of random-walk-type models of distance
fuzziness, whose fundamental stochastic fluctuations are characterized (as already discussed
in Section 4) by root-mean-square deviation σD given by22

σD ∼
√
LQG c Tobs (23)

and by displacement amplitude spectral density S(f) given by

S(f) = f−1
√
LQG c . (24)

21This conflict between the infinite-mass classical-device limit (which is implicit in the applications of the
formalism of ordinary quantum mechanics to the description of the outcome of experiments) and the nature of
gravitational interactions has not been addressed within any of the most popular quantum gravity approaches,
including critical superstrings [38, 39] and canonical/loop quantum gravity [40]. In a sense somewhat similar
to the one appropriate for Hawking’s work on black holes [96], this “classical-device paradox” appears to
provide an obstruction [13] for the use of the ordinary formalism of quantum mechanics for a description of
quantum gravity.

22As discussed in Refs. [12, 13, 24], this form of σD also implies that in quantum gravity any measurement
that monitors a distance D for a time Tobs is affected by an uncertainty δD ≥ √LQG c Tobs. This must be
seen as a minimum uncertainty that takes only into account the quantum and gravitational properties of
the measuring apparatus. Of course, an even tighter bound can emerge when taking into account also the
quantum and gravitational properties of the system under observation. According to the estimates provided
in Refs. [30, 33] the contribution to the uncertainty coming from the system is of the type δD ≥ Lp, so
that the total contribution (summing the system and the apparatus contributions) might be of the type
δD ≥ Lp +

√
LQG c Tobs.
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Here the scale LQG plays exactly the same role as in Section 4 (in particular LQG ≡ Lβ=1

in the sense of Section 4). However, seeing LQG as the result of Planck-length fluctuations
occurring at a rate of one per Planck time can suggest LQG ∼ Lp, whereas the different
intuition which has gone into the emergence of LQG in this subsection leaves room for different
predictions. As already emphasized, by mixing elements of quantum mechanics and elements
of gravitation one can only conclude that there could be some

√
Tobs-dependent irreducible

contribution to the uncertainty in the measurement of distances. One can then guess that
space-time foam might reflect this

√
Tobs-dependence and one can parametrize our ignorance

by introducing LQG in the formula
√
LQG c Tobs. Within such an argument the estimate

LQG ∼ Lp could only be motivated on dimensional grounds (Lp is the only length scale
available), but there is no direct estimate of LQG within the argument advocated in this
subsection. We only have (in the specific sense intended above) a lower limit on LQG which
is set by the bare analysis using straightforward combination of elements of ordinary quantum
mechanics and elements of ordinary gravity. As seen above, this lower limit on LQG is set
by the minimum allowed value of 1/Md. Our intuition for LQG might benefit from trying
to establish this minimum allowed value of 1/Md. As mentioned, a conservative (possibly
very conservative) estimate of this minimum value can be obtained by enforcing that Md

be at least sufficiently small to avoid black hole formation. In leading order (e.g., assuming
corresponding spherical symmetries) this amounts to the requirement that Md < h̄Sd/(cL

2
p),

where the length Sd characterizes the size of the region of space where the matter distribution
associated to Md is localized. This observation implies

1

Md
>
cL2

p

h̄

1

Sd
, (25)

which in turn suggests [12] that LQG ∼ min[L2
p/Sd]:

δD ≥ min

√
1

Sd

L2
p c Tobs

2
. (26)

Of course, this estimate is very preliminary since a full quantum gravity would be needed
here; in particular, the way in which black holes were handled in my argument might have
missed important properties which would become clear only once we have the correct theory.
However, it is nevertheless striking to observe that the guess LQG ∼ Lp appears to be very
high with respect to the lower limit on LQG which we are finding from this estimate; in fact,
LQG ∼ Lp would correspond to the maximum admissible value of Sd being of order Lp. Since
my analysis only holds for devices that can be treated as approximately rigid23 and any
non-rigidity could introduce additional contributions to the uncertainties, it is reasonable

23The fact that I have included only one contribution from the quantum properties of the devices, the
one associated with the quantum properties of the motion of the center of mass, implicitly relies on the
assumption that the devices and the bodies can be treated as approximately rigid. Any non-rigidity of
the devices could introduce additional contributions to the uncertainty in the measurement of D. This
is particularly clear in the case of detector screens and mirrors, whose shape plays a central role in data
analysis. Uncertainties in the shape (the relative position of different small parts) of a detector screen or
of a mirror would lead to uncertainties in the measured quantity. For large devices some level of non-
rigidity appears to be inevitable in quantum gravity. Causality alone (without any quantum mechanics)
forbids rigid attachment of two bodies (e.g., two small parts of a device), but is still consistent with rigid
motion (bodies are not really attached but because of fine-tuned initial conditions their relative position
and relative orientation are constants of motion). When Heisenberg’s Uncertainty Principle is introduced
rigid motion becomes possible only for bodies of infinite mass (otherwise the relative motion inevitably has
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to assume that max[Sd] be some small length (small enough that any non-rigidity would
negligibly affect the measurement procedure), but it appears unlikely that max[Sd] ∼ Lp.
This observation might provide some encouragement for values of LQG smaller than Lp,
which after all is the only way to obtain random-walk models consistent with the data
analysis reported in Refs. [7, 24].

Later in this section I will consider a particular class of estimates for max[Sd]: if the
correct quantum gravity is such that something like (26) holds but with max[Sd] that de-
pends on δD and/or Tobs, one would have a different Tobs-dependence (and corresponding
f -dependence), as I shall show in one example.

8.3 Random-walk noise motivated by linear deformation of
dispersion relations

Besides the analysis of the Salecker-Wigner measurement procedure also the mentioned pos-
sibility of quantum-gravity-induced deformation of dispersion relations [5, 46, 41, 21, 27]
would be consistent with the idea of random-walk distance fuzziness. The sense in which
this is true is clarified by the arguments that follow.

Let me start by going back to the general relation (already discussed in Section 2):

c2p2 ' E2

[
1 + ξ

(
E

EQG

)α]
. (27)

Scenarios (27) with α = 1 are consistent with random-walk noise, in the sense that an
experiment involving as a device (as a probe) a massless particle satisfying the dispersion
relation (27) with α = 1 would be naturally affected by a device-induced uncertainty that
grows with

√
Tobs. From the deformed dispersion relation (27) one is led to energy-dependent

velocities [24]

v ' c

[
1−

(
1 + α

2

)
ξ

(
E

EQG

)α]
, (28)

and consequently when a time Tobs has lapsed from the moment in which the observer
(experimentalist) set off the measurement procedure the uncertainty in the position of the
massless probe is given by

δx ' c δt+ δv Tobs ' c δt+
1 + α

2
α
Eα−1 δE

Eα
QG

c Tobs , (29)

where δt is the uncertainty in the time of emission of the probe, δv is the uncertainty in
the velocity of the probe, δE is the uncertainty in the energy of the probe, and I used the
relation between δv and δE that follows from (28). Since the uncertainty in the time of

some irreducible uncertainty). Rigid devices are still available in ordinary quantum mechanics but they
are peculiar devices, with infinite mass. [Alternatively, in ordinary quantum mechanics one can take a less
fundamental viewpoint on measurement (which does not appear to be natural in the Planck regime [53])
in which the trajectory of the different components/parts of a device are classical because the device is
immerged in a decoherence-inducing environment.] When both gravitation and quantum mechanics are
introduced rigid devices are no longer available since the infinite-mass limit is then inconsistent with the
nature of gravitational devices.
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emission of a particle and the uncertainty in its energy are related24 by δt δE ≥ h̄, Eq. (29)
can be turned into an absolute bound on the uncertainty in the position of the massless probe
when a time Tobs has lapsed from the moment in which the observer set off the measurement
procedure [24]

δx ≥ c
h̄

δE
+

1 + α

2
α
Eα−1 δE

Eα
QG

Tobs ≥
√√√√(α+ α2

2

)(
E

EQG

)α−1
c2h̄Tobs

EQG

. (30)

For α = 1 the E-dependence on the right-hand side of Eq. (30) disappears and one is led
again to a δx of the type (constant) · √Tobs:

δx ≥
√√√√c2h̄Tobs

EQG

. (31)

When massless probes are used in the measurement of a distance D the uncertainty (31)
in the position of the probe translates directly into an uncertainty on D:

δD ≥
√√√√c2h̄Tobs

EQG
. (32)

This was already observed in Refs. [46, 23, 27] which considered the implications of deformed
dispersion relations (27) with α = 1 for the operative definition of distances.

Since deformed dispersion relations (27) with α = 1 have led us to the same measura-
bility bound already encountered both in the analysis of the Salecker-Wigner measurement
procedure and the analysis of simple-minded random-walk models of quantum space-time
fluctuations, if we assume again that such measurability bounds emerge in a full quantum
gravity as a result of corresponding quantum fluctuations (fuzziness), we are led once again
to random-walk noise:

σD ∼
√√√√c2h̄Tobs

EQG
. (33)

8.4 Noise motivated by quadratic deformation of dispersion

relations

In the preceding subsection I observed that quantum-gravity deformed dispersion relations
(27) with α = 1 can also motivate random-walk noise σD ∼ (constant) · √Tobs. If we use
the same line of reasoning that connects a measurability bound to a scenario for fuzziness
when α 6= 1 we appear to find σD ∼ G(E/EQG) ·√Tobs, where G(E/EQG) is a (α-dependent)
function of E/EQG. However, in these cases with α 6= 1 clearly the connection between
measurability bound and fuzzy-distance scenario cannot be this simple; in fact, the energy of
the probe E which naturally plays a role in the context of the derivation of the measurability

24It is well understood that the δt δE ≥ h̄ relation is valid only in a weaker sense than, say, Heisenberg’s
Uncertainty Principle δx δp ≥ h̄. This has its roots in the fact that the time appearing in quantum-mechanics
equations is just a parameter (not an operator), and in general there is no self-adjoint operator canonically
conjugate to the total energy, if the energy spectrum is bounded from below [97, 55]. However, δt δE ≥ h̄
does relate δt intended as uncertainty in the time of emission of a particle and δE intended as uncertainty
in the energy of that same particle.
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bound does not have an obvious counter-part in the context of the conjectured fuzzy-distance
scenario.

In order to preserve the conjectured connection between measurability bounds and fuzzy-
distance scenarios one can be tempted to envision that if α 6= 1 the interferometer noise levels
induced by space-time fuzziness might be of the type [24]

σD ∼
√√√√(α + α2

2

)(
E∗

EQG

)α−1
c2h̄Tobs

EQG

, (34)

where E∗ is some energy scale characterizing the physical context under consideration. [For
example, at the intuitive level one might conjecture that E∗ could characterize some sort
of energy density associated with quantum fluctuations of space-time or an energy scale
associated with the masses of the devices used in the measurement process.]

Since α ≥ 1 in all quantum-gravity approaches believed to support deformed dispersion
relations, it appears likely that the factor (E∗/EQG)α−1 would suppress the random-walk
noise effect in all contexts with E∗ < EQG. Besides the case α = 1 (linear deformation) also
the case α = 2 (quadratic deformation) deserves special interest since it can emerge quite
naturally in quantum-gravity approaches (see, e.g., Ref. [22]).

8.5 Noise with f−5/6 amplitude spectral density

In Subsection 8.2 a bound on the measurability of distances based on the Salecker-Wigner
procedure was used as additional motivation for experimental tests of interferometer noise of
random-walk type, with f−1 amplitude spectral density and

√
Tobs root-mean-square devia-

tion. In this subsection I shall pursue further the observation that the relevant measurability
bound could be derived by simply insisting that the devices do not turn into black holes.
That observation allowed to derive Eq. (26), which expresses the minimum uncertainty δD
on the measurement of a distance D (i.e. the measurability bound for D) as proportional to√
Tobs and

√
1/Sd. Within that derivation the minimum uncertainty is obtained in correspon-

dence of max[Sd], the maximum value of Sd consistent with the structure of the measurement
procedure. I was therefore led to consider how large Sd could be while still allowing to disre-
gard any non-rigidity in the quantum motion of the device (which could introduce additional
contributions to the uncertainties). Something suggestive of the random-walk noise scenario
emerged by simply assuming that max[Sd] be independent of Tobs and independent of the
accuracy δD that the observer would wish to achieve. However, as mentioned, the same
physical intuition that motivates some of the fuzzy space-time scenarios here considered also
suggests that quantum gravity might require a novel measurement theory, possibly involving
a new type of relation between system and measuring apparatus. Based on this intuition, it
seems reasonable to contemplate the possibility that max[Sd] might actually depend on δD.

It is such a scenario that I want to consider in this subsection. In particular I want to
consider the case max[Sd] ∼ δD, which, besides being simple, has the plausible property
that it allows only small devices if the uncertainty to be achieved is small, while it would
allow correspondingly larger devices if the observer was content with a larger uncertainty.
This is also consistent with the idea that elements of non-rigidity in the quantum motion
of extended devices could be neglected if anyway the measurement is not aiming for great
accuracy, while they might even lead to the most significant contributions to the uncertainty
if all other sources of uncertainty are very small. [Salecker and Wigner [94] would also argue
that “large” devices are not suitable for very accurate space-time measurements (they end
up being “in the way” of the measurement procedure) while they might be admissible if
space-time is being probed rather softly.]
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In this scenario with max[Sd] ∼ δD, Eq. (26) takes the form

δD ≥
√

1

Sd

L2
p c Tobs

2
≥
√
L2

p c Tobs

2 δD
, (35)

which actually gives

δD ≥
(

1

2
L2

p c Tobs

)1/3

. (36)

As done with the other measurability bounds, I have proposed [7, 24] to take Eq. (36) as
motivation for the investigation of a corresponding fuzziness scenario characterised by

σD ∼
(
L̃2

QG c Tobs

)1/3
. (37)

Notice that in this equation I replaced Lp with a generic length scale L̃QG, since it is possible
that the heuristic argument leading to Eq. (37) might have captured the qualitative structure
of the phenomenon while providing an incorrect estimate of the relevant length scale. Also
notice that Eq. (36) has the same form as the relations emerged in other measurability
analyses [45, 43], even though those analyses adopted a very different viewpoint (and even
the physical interpretation of the elements of Eq. (36) was different, as explained in the next
section).

As observed in Refs. [7, 24] the T
1/3
obs dependence of σD is associated with displacement

amplitude spectral density with f−5/6 behaviour:

S(f) = f−5/6(L̃2
QG c)

1/3 . (38)

Therefore the measurability analyses discussed in this subsection provides motivation for the
investigation of the case β = 5/6 (using again the notation set up in Section 4).

9 ABSOLUTE MEASURABILITY BOUND FOR

THE AMPLITUDE OF A GRAVITY WAVE

The bulk of this Article (presented in the previous three sections) concerns the implica-
tions of distance fuzziness for interferometry. Various scenarios for distance fuzziness were
motivated either by a general Wheeler-Hawking-inspired phenomenological parametrization
or by intuitive arguments based on the possibility of quantum-gravity-induced deforma-
tions of dispersion relations or quantum-gravity25 distance-measurability analyses within

25My observations within the Salecker-Wigner setup do pertain to the quantum-gravity realm because I
took into account the gravitational properties of the devices and I also, like Salecker and Wigner, removed
the assumption of classicality of the devices. If one was only putting together some properties of gravitation
and quantum mechanics one could at best probe a simple limiting behaviour of quantum gravity, but by
removing one of the conceptual ingredients of ordinary quantum mechanics it is plausible that we get a
glimpse of a true property of quantum gravity. The Salecker-Wigner study [94] (just like the Bohr-Rosenfeld
analysis [93]) suggests that among the conceptual elements of quantum mechanics the one that is most
likely (although there are of course no guarantees) to succumb to the unification of gravitation and quantum
mechanics is the requirement for devices to be treated as classical.
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the Salecker-Wigner setup. My observation that distance fuzziness would be felt by interfer-
ometers as a fundamental additional source of noise (i.e. as some sort of fundamental source
of stochastic gravity-wave background) also implies that, if indeed quantum gravity hosts
distance fuzziness, there would be a quantum-gravity induced bound on the measurability
of gravity waves. This section is parenthetical, within the logical line of this Article, in the
sense that I will assume in this section that there is no distance fuzziness. The objective
is one of showing that even without distance fuzziness it appears that the measurability of
gravity waves should be limited in quantum gravity.

The strategy I will use to derive this bound is an adaptation of the Salecker-Wigner
framework to the analysis of gravity-wave measurability. Basically, while the Salecker-Wigner
framework concerns the measurement of a distance D, I shall here apply the same reasoning
to the measurement of “distance displacements” in interferometers arms (of length L) of the
type that could be induced by a gravity wave.

Having clarified in which sense this section represents a deviation from the main bulk of
observations reported in the present Article, let me start the discussion by reminding the
reader of the fact that, as already mentioned in Section 2, the interference pattern generated
by a modern interferometer can be remarkably sensitive to changes in the positions of the
mirrors relative to the beam splitter, and is therefore sensitive to gravitational waves (which,
as described in the proper reference frame [47], have the effect of changing these relative posi-
tions). With just a few lines of simple algebra one can show that an ideal gravitational wave
of amplitude h and reduced26 wavelength λo

gw propagating along the direction orthogonal
to the plane of the interferometer would cause a change in the interference pattern as for a
phase shift of magnitude ∆φ = DL/λ

o, where λo is the reduced wavelength of the laser beam
used in the measurement procedure and [47, 98]

DL ∼ 2 hλo
gw

∣∣∣∣∣sin
(

L

2λo
gw

)∣∣∣∣∣ , (39)

is the magnitude of the change caused by the gravitational wave in the length of the arms
of the interferometer. (The changes in the lengths of the two arms have opposite sign [47].)

As already mentioned in Section 2, modern techniques allow to construct gravity-wave
interferometers with truly remarkable sensitivity; in particular, at least for gravitational
waves with λo

gw of order 103Km, the next LIGO/VIRGO generation of detectors should
be sensitive to h as low as 3 · 10−22. Since h ∼ 3 · 10−22 causes a DL of order 10−18m
in arms lengths L of order 3Km, it is not surprising that in the analysis of gravity-wave
interferometers, in spite of their huge size, one ends up having to take into account [47] the
type of quantum effects usually significant only for the study of processes at or below the
atomic scale. In particular, there is the so-called standard quantum limit on the measurability
of h that results from the combined minimization of photon shot noise and radiation pressure
noise. While a careful discussion of these two noise sources (which the interested reader can
find in Ref. [47]) is quite insightful, here I shall rederive this standard quantum limit in an
alternative27 and straightforward manner (also discussed in Ref. [98]), which relies on the

26I report these results in terms of reduced wavelengths λo (which are related to the wavelengths λ by
λo = λ/(2π)) in order to avoid cumbersome factors of π in some of the formulas.

27While the standard quantum limit can be equivalently obtained either from the combined minimization of
photon shot noise and radiation pressure noise or from the application of Heisenberg’s uncertainty principle
to the position and momentum of the mirror, it is this author’s opinion that there might actually be a
fundamental difference between the two derivations. In fact, it appears (see, e.g., Ref. [90] and references
therein) that the limit obtained through combined minimization of photon shot noise and radiation pressure
noise can be violated by careful exploitation of the properties of squeezed light, whereas the limit obtained
through the application of Heisenberg’s uncertainty principle to the position and momentum of the mirror
is truly fundamental.
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application of Heisenberg’s uncertainty principle to the position and momentum of a mirror
relative to the position of the beam splitter. This can be done along the lines of my analysis
of the Salecker-Wigner procedure for the measurement of distances. Since the mirrors and
the beam splitter are macroscopic, and therefore the corresponding momenta and velocities
are related non-relativistically, Heisenberg’s uncertainty principle implies that 28

δx δv ≥ h̄

2

(
1

Mm
+

1

Mb

)
≥ h̄

2Mm
, (40)

where δx and δv are the uncertainties in the relative position and relative velocity, Mm is
the mass of the mirror, Mb is the mass of the beam splitter. [Again, the relative motion is
characterised by the reduced mass, which is given in this case by (1/Mm + 1/Mb)

−1.]
Clearly, the high precision of the planned measurements requires [47, 98] that the position

of the mirrors be kept under control during the whole time 2L/c that the beam spends in
between the arms of the detector before superposition. When combined with (40) this leads
to the finding that, for any given value of Mm, the DL induced by the gravitational wave can
be measured only up to an irreducible uncertainty, the so-called standard quantum limit:

δDL ≥ δx+ δv 2
L

c
≥ δx+

h̄L

cMmδx
≥
√

h̄L

cMm
. (41)

The case of gravity-wave measurements is a canonical example of my general argument
that the infinite-mass classical-device limit underlying ordinary quantum mechanics is in-
consistent with the nature of gravitational measurements. As the devices get more and more
massive they not only increasingly disturb the gravitational/geometrical observables, but
eventually (well before reaching the infinite-mass limit) they also render impossible [12, 13]
the completion of the procedure of measurement of gravitational observables. In trying to
asses how this observation affects the measurability of the properties of a gravity wave let
me start by combining Eqs. (39) and (41):

δh = δ
(
DL

L

)
= h

δDL

DL

≥
√

h̄L
cMm

2 λo
gw

∣∣∣∣sin( L
2λo

gw

)∣∣∣∣ . (42)

In complete analogy with some of the observations made in Section 3 concerning the mea-
surability of distances, I observe that, when gravitational effects are taken into account, the
limit of infinite mirror mass is of course inadmissable. At the very least Mm must be small
enough that the mirror does not turn into a black hole.29 In order for the mirror not to
be a black hole one requires Mm < h̄Sm/(cL

2
p), where Sm is the size of the region of space

occupied by the mirror. This observation combined with (42) implies that one would have
obtained a bound on the measurability of h if one found a maximum allowed mirror size Sm.
In estimating this maximum Sm one can be easily led to some extreme and incorrect assump-
tions. In particular, one could suppose that in order to achieve a sensitivity to DL as low as
10−18m it might be necessary to “accurately position” each 10−36m2 surface element of the
mirror. If this was really necessary, our line of argument would then lead to a rather large

28Note that in the setup of gravity-wave interferometers the test masses are required to be free-falling [47].
In such a context the type of observations reported in Ref. [54] is not only inadequate for in-principle analyses
of measurability in the full quantum-gravity regime but in most cases, as a result of the free-fall requirement,
it will also be inapplicable in the ordinary context of present-day interferometers.

29This is of course a very conservative bound, since a mirror stops being useful as a device well before it
turns into a black hole, but even this conservative approach leads to an interesting conclusion.
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measurability bound. Fortunately, the phase of the wavefront of the reflected light beam is
determined by the average position of all the atoms across the beam’s width, and microscopic
irregularities in the structure of the mirror only lead to scattering of a small fraction of light
out of the beam. This suggests that in our analysis the size of the mirror should be assumed
to be of the order of the width of the beam [47]. So Sm cannot be too small, but on the other
hand in light of this observation, and taking into account the in-principle nature30 of the
analysis I am performing, it is clear that Sm could not be too large either, and in particular
it appears safe to assume that Sm should be smaller than the λo

gw of the gravity wave which
one is planning to observe. If Sm is indeed the width of the beam (and therefore the effective
size of the mirror), then one must exclude the possibility Sm > λo

gw because otherwise the
same gravity wave which one is intending to observe would cause phenomena preventing the
proper completion of the measurement procedure (e.g. deforming the mirror and leading to
a nonlinear relation between DL and h). The conservative bound Sm < λo

gw also appears o
be safe with respect to the expectations of another type of intuition, usually resulting from
experience with table-top interferometers. Within this assumption one is always tempted to
think of the mirror as attached to a very massive body. Even setting aside the limitations on
this type of idealized attachements that are set by the uncertainty principle and causality, it
appears that the bound Sm < λo

gw should be safe because of the requirement that the mirror
be free-falling. [It actually seems extremely conservative to just demand of such a free-falling
interferometer mirror that the sum of its mass and the mass of any body “attached” to it
should not exceed the mass of a black hole of size λo

gw.]
In summary, it looks very safe to assume that Mm should be smaller than h̄λo

gw/(cL
2
p),

and this can be combined with (42) to obtain the measurability bound

δh >
Lp

2 λo
gw

√
L/λo

gw∣∣∣∣sin( L
2λo

gw

)∣∣∣∣ . (43)

This result not only sets a lower bound on the measurability of h with given arm’s length L,
but also encodes an absolute (i.e. irrespective of the value of L) lower bound, as a result of the
fact that the function

√
x/| sin(x/2)| has an absolute minimum: min[

√
x/ sin(x/2)] ∼ 1.66.

This novel measurability bound is a significant departure from the principles of ordinary
quantum mechanics, especially in light of the fact that it describes a limitation on the
measurability of a single observable (the amplitude h of a gravity wave), and that this
limitation turns out to depend on the value (not the associated uncertainty) of another
observable (the reduced wavelength λo

gw of the same gravity wave). It is also significant that
this new bound (43) encodes an aspect of a novel type of interplay between system and
measuring apparatus in quantum-gravity regimes; in fact, in deriving (43) a crucial role was
played by the fact that in accurate measurements of gravitational/geometrical observables
it is no longer possible [13] to advocate an idealized description of the devices.

Also the Tobs-dependent bound on the measurability of distances which I reviewed in Sec-
tion 3 encodes a departure from ordinary quantum mechanics and a novel type of interplay
between system and measuring apparatus, but the bound (43) on the measurability of the
amplitude of a gravity wave (which is one of the new results reported in the present Arti-
cle) should provide even stronger motivation for the search of formalisms in which quantum

30For the gravitational waves to which LIGO/VIRGO will be most sensitive, which have λo
gw of order

103Km, the requirement Sm < λo
gw simply states that the size of mirrors should be smaller than 103Km.

This bound might appear very conservative, but I am trying to establish an in-principle limitation on the
measurability of h. Since such a bound was not previously established, in this first study I just want to
clarify that the bound exists, rather than dwell on the exact magnitude of the bound. I therefore prefer to
be very conservative in my estimates.
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gravity is based on a new mechanics, not exactly given by ordinary quantum mechanics. In
fact, while one might still hope to find alternatives to the Salecker-Wigner measurement pro-
cedure that allow to measure distances evading the corresponding measurability bounds, it
appears hard to imagine that there could be anything (even among “gedanken laboratories”)
better than an interferometer for measurements of the amplitude of a gravity wave.

It is also important to realize that the bound (43) cannot be obtained by just assuming
that the Planck length Lp provides the minimum uncertainty for distances (and distance
variations). In fact, if the only limitation was δDL ≥ Lp the resulting uncertainty on h,
which I denote with δh(Lp), would have the property

min[δh(Lp)] = min

 Lp

2 λo
gw

∣∣∣∣sin( L
2λo

gw

)∣∣∣∣
 =

Lp

2 λo
gw

, (44)

whereas, exploiting the above-mentioned properties of the function
√
x/| sin(x/2)|, from (43)

one finds31

min[δh] > min

 Lp

2 λo
gw

√
L/λo

gw∣∣∣∣sin( L
2λo

gw

)∣∣∣∣
 > min[δh(Lp)] . (45)

In general, the dependence of δh(Lp) on λo
gw is different from the one of δh. Actually, in light

of the comparison of (44) with (45) it is amusing to observe that the bound (43) could be
seen as the result of a minimum length Lp combined with an λo

gw-dependent correction. This
would be consistent with some of the ideas mentioned in Section 3 (the energy-dependent
effect of in vacuo dispersion and the corresponding proposal (33) for distance fuzziness)
in which the magnitude of the quantum-gravity effect depends rather sensitively on some
energy-related aspect of the problem under investigation (just like λo

gw for the gravity wave).
It is easy to verify that the bound (43), would not observably affect the operation of even

the most sophisticated planned interferometers. However, in the spirit of what I did in the
previous sections considering the operative definition of distances, also for the amplitudes
of gravity waves the fact that we have encountered an obstruction in the measurement
analysis based on ordinary quantum mechanics (and the fact that by mixing gravitation
and quantum mechanics we have obtained some intuition for novel qualitative features of
such gravity-wave amplitudes in quantum gravity) could be used as starting point for the
proposal of novel quantum-gravity effects possibly larger than the estimate (43). Although
possibly very interesting, these fully quantum-gravity scenarios for the properties of gravity-
wave amplitudes will not be explored in these notes. I just want to observe that the strain
sensitivity (Sh(f) ≡ S(f)/L) of order 10−22/

√
Hz which is soon going to be achieved by

several detectors [48, 49, 52, 79] corresponds to a rather natural scale for a fundamental

quantum-gravity-induced stochastic-gravity-wave-like noise; in fact, 10−22/
√
Hz '

√
Lp/c.

31I am here (for “pedagogical” purposes) somewhat simplifying the comparison between δh and δh(Lp).
As mentioned, in principle one should take into account both uncertainties inherent in the “system” under
observation, which are likely to be characterized exclusively by the Planck-length bound, and uncertainties
coming from the “measuring apparatus”, which might easily involve other length (or time) scales besides the
Planck length. It would therefore be proper to compare δh(Lp), which would be the only contribution present
in the conventional idealization of “classical devices”, with the sum δh + δh(Lp), which, as appropriate for
quantum gravity, provides a sum of system-inherent uncertainties plus apparatus-induced uncertainties.
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10 RELATIONS WITH OTHER

QUANTUM-GRAVITY APPROACHES

In this section I comment on the connections and the differences between some of the ideas
that I reviewed in these notes and other quantum-gravity ideas.

10.1 Canonical Quantum Gravity

One of the most popular quantum-gravity approaches is the one in which the ordinary
canonical formalism of quantum mechanics is applied to (some formulation of) Einstein’s
Gravity. In spite of the fact that [13] some of the observations reviewed in the previous
sections suggest that quantum gravity should require a new mechanics, not exactly given by
ordinary quantum mechanics, it is very interesting32 that some of the phenomena considered
in the previous sections have also emerged in studies of canonical quantum gravity.

As mentioned, the most direct connection was found in the study reported in Ref. [41],
which was motivated by Ref. [5]. In fact, Ref. [41] shows that the popular canonical/loop
quantum gravity [40] admits the phenomenon of deformed dispersion relations, with the
deformation going linearly with the Planck length.

Concerning the bounds on the measurability of distances it is probably fair to say that the
situation in canonical/loop quantum gravity is not yet clear because the present formulations
do not appear to lead to a compelling candidate “length operator.” This author would like
to interpret the problems associated with the length operator as an indication that perhaps
something unexpected might actually emerge in canonical/loop quantum gravity as a length
operator, possibly something with properties fitting the intuition of some of the scenarios
for fuzzy distances which I reviewed. Actually, the random-walk space-time fuzziness model
might have a (somewhat weak, but intriguing) connection with “quantum mechanics applied
to gravity” at least to the level seen by comparison with the scenario discussed in Ref. [100],
which was motivated by the intuition that is emerging from investigations of canonical/loop
quantum gravity. The “moves” of Ref. [100] share many of the properties of the “random
steps” of the random-walk models here considered.

10.2 Critical and non-critical String Theories

Unfortunately, in the popular quantum-gravity approach based on critical superstrings33 not
many results have been derived concerning directly the quantum properties of space-time.
Perhaps the most noticeable such results are the ones on limitations on the measurability
of distances emerged in the scattering analyses reported in Refs. [31, 89], which I already
mentioned.

A rather different picture is emerging (through the difficult technical aspects of this rich
formalism) in Liouville (non-critical) strings [19], whose development was partly motivated

32I am here taking a viewpoint that might be summarized rephrasing a comment by B.S. De Witt in
Ref. [99]. While some of the arguments reviewed here appear to indicate that ordinary quantum mechanics
cannot suffice for quantum gravity, it is still plausible that the language of ordinary quantum mechanics
might be a useful tool for the description of its own demise. This would be analogous to something we have
learned in the study of special relativity: one could [99] insist on describing the observed Lorentz-Fitzgerald
contraction as the result of relativistic modifications in the force law between atoms, but in order to capture
the true essence of the new regime it is necessary to embrance the new conceptual framework of special
relativity.

33As already mentioned the mechanics of critical superstrings is just an ordinary quantum mechanics.
All of the new structures emerging in this exciting formalism are the result of applying ordinary quantum
mechanics to the dynamics of extended fundamental objects, rather than point-like objects (particles).
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by intuition concerning the quantum-gravity vacuum that is rather close to the one tradi-
tionally associated with the mentioned works of Wheeler and Hawking. Evidence has been
found [46] in Liouville strings supporting the validity of deformed dispersion relations, with
the deformation going linearly with the Planck/string length. In the sense clarified in Sub-
section 8.3 this approach might also host a bound on the measurability of distances which
grows with

√
Tobs.

10.3 Other types of measurement analyses

Because of the lack of experimental input, it is not surprising that many authors have
been seeking some intuition on quantum gravity by formal analyses of the ways in which the
interplay between gravitation and quantum mechanics could affect measurement procedures.
A large portion of these analyses produced a “min[δD]” withD denoting a distance; however,
the same type of notation was used for structures defined in significantly different ways. Also
different meanings have been given by different authors to the statement “absolute bound
on the measurability of an observable.” Quite important for the topics here discussed are
the differences (which might not be totally transparent as a result of this unfortunate choice
of overlapping notations) between the approach advocated in Refs. [7, 12, 13, 24] and the
approaches advocated in Refs. [94, 44, 45, 43]. In Refs. [7, 12, 13, 24] “min[δD]” denotes an
absolute limitation on the measurability of a distance D. The studies [94, 44, 43] analyzed
the interplay of gravity and quantum mechanics in defining a net of time-like geodesics,
and in those studies “min[δD]” characterizes the maximum “tightness” achievable for the
net of time-like geodesics. Moreover, in Refs. [94, 44, 45, 43] it was required that the
measurement procedure should not affect/modify the geometric observable being measured,
and “absolute bounds on the measurability” were obtained in this specific sense. Instead, in
Refs. [12, 13, 24] it was envisioned that the observable which is being measured might depend
also on the devices (the underlying view is that observables in quantum gravity would always
be, in a sense, shared properties of “system” and “apparatus”), and it was only required that
the nature of the devices be consistent with the various stages of the measurement procedure
(for example if a device turned into a black hole some of the exchanges of signals needed for
the measurement would be impossible). The measurability bounds of Refs. [12, 13, 24] are
therefore to be intended from this more fundamental perspective, and this is crucial for the
possibility that these measurability bounds be associated to a fundamental quantum-gravity
mechanism for “fuzziness” (quantum fluctuations of space-time). The analyses reported in
Refs. [94, 44, 45, 43] did not include any reference to fuzzy space-times of the type operatively
defined in terms of stochastic processes in Section 4 (and in Ref. [24]).

The more fundamental nature of the bounds obtained in Refs. [12, 13, 24] is also crucial for
the arguments suggesting that quantum gravity might require a new mechanics, not exactly
given by ordinary quantum mechanics. The analyses reported in Refs. [94, 44, 45, 43] did
not include any reference to this possibility.

Having clarified that there is a “double difference” (different “min” and different “δD”)
between the meaning of min[δD] adopted in Refs. [7, 12, 13, 24] and the meaning of min[δD]
adopted in Refs. [94, 44, 45, 43], it is however important to notice that the studies reported
in Refs. [44, 45, 43] were among the first studies which showed how in some aspects of
measurement analysis the Planck length might appear together with other length scales in
the problem. For example, a quantum-gravity effect naturally involving something of length-
squared dimensions might not necessarily go like L2

p: in some cases it could go like ΛLp, with
Λ some other length scale in the problem.

Interestingly, the analysis of the interplay of gravity and quantum mechanics in defining
a net of time-like geodesics reported in Ref. [44] concluded that the maximum “tightness”

achievable for the geodesics would be characterized by
√
L2

pR
−1s, where R is the radius of

the (spherically symmetric) clocks whose world lines define the network of geodesics, and s
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is the characteristic distance scale over which one is intending to define such a network. The√
L2

pR
−1s maximum tightness discussed in Ref. [44] is formally analogous to Eq. (26), but,

as clarified above, this “maximum tightness” was defined in a very different (“doubly differ-
ent”) way, and therefore the two proposals have completely different physical implications.
Actually, in Ref. [44] it was also stated that for a single geodesic distance (which might be
closer to the type of distance measurability analysis reported in Refs. [12, 13, 24]) one could

achieve accuracy significantly better than the formula
√
L2

pR
−1s, which was interpreted in

Ref. [44] as a direct result of the structure of a network of geodesics.
Relations of the type min[δD] ∼ (L2

pD)(1/3), which are formally analogous to Eq. (36),
were encountered in the analysis of maximum tightness achievable for a geodesics network
reported in Ref. [43] and in the analysis of measurability of distances reported in Ref. [45].
Although once again the definitions of “min” and “δD” used in these studies are completely
different from the ones relevant for the “min[δD]” of Eq. (36).

11 QUANTUM GRAVITY, NO STRINGS (OR LOOPS)

ATTACHED

Some of the arguments reviewed in these notes appear to suggest that quantum gravity might
require a mechanics not exactly of the type of ordinary quantum mechanics. In particular,
the new mechanics might have to accommodate a somewhat different relationship (in a sense,
“more democratic”) between “system” and “measuring apparatus”, and should take into ac-
count the fact that the limit in which the apparatus behaves classically is not accessible
once gravitation is turned on. The fact that the most popular quantum-gravity approaches,
including critical superstrings and canonical/loop quantum gravity, are based on ordinary
quantum mechanics but seem inconsistent with a correspondence between formalism and
measurability bounds of the type sought and found in non-gravitational quantum mechan-
ics (through the work of Bohr, Rosenfeld, Landau, Peierls, Einstein, Salecker, Wigner and
many others), represents, in this author’s humble opinion, one of the outstanding problems
of these approaches. Still, it is of great importance for quantum-gravity research that these
approaches continue to be pursued very aggressively: they might eventually encounter along
their development unforeseeable answers to these questions or else, as they are “pushed to the
limit”, they might turn out to fail in a way that provides insight on the correct theory. How-
ever, the observations pointing us toward deviations from ordinary quantum-mechanics could
provide motivation for the parallel development of alternative quantum-gravity approaches.
But how could we envision quantum gravity with no strings (or“canonical loops”) attached?
More properly, how can we devise a new mechanics when we have no direct experimental
data on its structure? Classical mechanics was abandoned for quantum mechanics only after
a relatively long period of analysis of physical problems such as black-body spectrum and
photoelectric effect which contained very relevant information. We don’t seem to have any
such insightful physical problem. At best we might have identified the type of conceptual
issues which Mach had discussed with respect to Newtonian physics. It is amusing to notice
that the analogy with Machian conceptual analyses might actually be quite proper, since at
the beginning of this century we were forced to renounce to the comfort of the reference to
“absolute space” and now that we are reaching the end of this century we might be forced
to renounce to the comfort of an idealized classical measuring apparatus.

Our task is that much harder in light of the fact that (unless something like large extra
dimensions is verified in Nature) we must make a gigantic leap from the energy scales we
presently understand to Planckian energy scales. While of course it is not impossible that
we eventually do come up with the correct recipe for this gigantic jump, one less optimistic
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strategy that might be worth pursuing is the one of trying to come up with some effec-
tive theory useful for the description of new space-time-related phenomena occurring in an
energy-scale range extending from somewhere not much above presently achievable energies
up to somewhere safely below the Planck scale. These theories might provide guidance to
experimentalists, and in turn (if confirmed by experiments) might provide a useful inter-
mediate step toward the Planck scale. For those who are not certain that we can make a
lucky guess of the whole giant step toward the Planck scale34 this strategy might provide
a possibility to eventually get to the Planck regime only after a (long and painful) series
of intermediate steps. Some of the ideas discussed in the previous sections can be seen as
examples of this strategy. In this section I collect additional relevant material.

11.1 A low-energy effective theory of quantum gravity

While the primary emphasis has been on experimental tests of quantum-gravity-motivated
candidate phenomena, some of the arguments (which are based on Refs. [12, 13, 24]) reviewed
in these lecture notes can be seen as attempts to identify properties that one could demand of
a theory suitable for a first stage of partial unification of gravitation and quantum mechanics.
This first stage of partial unification would be a low-energy effective theory capturing only
some rough features of quantum gravity. In particular, as discussed in Refs. [23, 13, 24], it
is plausible that the most significant implications of quantum gravity for low-energy (large-
distance) physics might be associated with the structure of the non-trivial “quantum-gravity
vacuum”. A satisfactory picture of this vacuum is not available at present, and therefore
we must generically characterize it as the appropriate new concept that in quantum gravity
takes the place of the ordinary concept of “empty space”; however, it is plausible that some
of the arguments by Wheeler, Hawking and followers, attempting to develop an intuitive
description of the quantum-gravity vacuum, might have captured at least some of its actual
properties. Therefore the experimental investigations of space-time foam discussed in some
of the preceding sections could be quite relevant for the search of a theory describing a first
stage of partial unification of gravitation and quantum mechanics.

Other possible elements for the search of such a theory come from studies suggesting that
this unification might require a new (non-classical) concept of measuring apparatus and a new
relationship between measuring apparatus and system. I have reviewed some of the relevant
arguments [12, 13] through the discussion of the Salecker-Wigner setup for the measurement
of distances, which manifested the problems associated with the infinite-mass classical-device
limit. As mentioned, a similar conclusion was already drawn in the context of attempts (see,
e.g., Ref. [92]) to generalize to the study of the measurability of gravitational fields the
famous Bohr-Rosenfeld analysis [93] of the measurability of the electromagnetic field. It
seems reasonable to explore the possibility that already the first stage of partial unification
of gravitation and quantum mechanics might require a new mechanics. A (related) plausible
feature of the correct effective low-energy theory of quantum-gravity is (some form of) a novel
bound on the measurability of distances. This appears to be an inevitable consequence of
relinquishing the idealized methods of measurement analysis that rely on the artifacts of
the infinite-mass classical-device limit. If indeed one of these novel measurability bounds
holds in the physical world, and if indeed the structure of the quantum-gravity vacuum is
non-trivial and involves space-time fuzziness, it appears also plausible that this two features
be related, i.e. that the fuzziness of space-time would be ultimately responsible for the
measurability bounds. It is also plausible [23, 13] that an effective large-distance description

34Understandably, some are rendered prudent by the realization that the ratio between the Planck scale and
the energy scales we are probing with modern particle colliders is so big that it is, for example, comparable
(within a couple of orders of magnitude) to the ratio between the average Earth-Moon distance and the Bohr
radius.
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of some aspects of quantum gravity might involve quantum symmetries and noncommutative
geometry (while at the Planck scale even more novel geometric structures might be required).

The intuition emerging from these considerations on a novel relationship between mea-
suring apparatus and system and by a Wheeler-Hawking picture of the quantum-gravity
vacuum has not yet been implemented in a fully-developed new formalism describing the
first stage of partial unification of gravitation and quantum mechanics, but one can use this
emerging intuition for rough estimates of certain candidate quantum-gravity effects. Some
of the theoretical estimates that I reviewed in the preceding sections, particularly the ones
on distance fuzziness, can be seen as examples of this.

Besides the possibility of direct experimental tests (such as some of the ones here re-
viewed), studies of low-energy effective quantum-gravity models might provide a perspective
on quantum gravity that is complementary with respect to the one emerging from approaches
based on proposals for a one-step full unification of gravitation and quantum mechanics. On
one side of this complementarity there are the attempts to find a low-energy effective quan-
tum gravity which are necessarily driven by intuition based on direct extrapolation from
known physical regimes; they are therefore rather close to the phenomenological realm but
they are confronted with huge difficulties when trying to incorporate this physical intuition
within a completely new formalism. On the other side there are the attempts of one-step full
unification of gravitation and quantum mechanics, which usually start from some intuition
concerning the appropriate formalism (e.g., canonical/loop quantum gravity or critical su-
perstrings) but are confronted by huge difficulties when trying to “come down” to the level
of phenomenological predictions. These complementary perspectives might meet at some
mid-way point leading to new insight in quantum gravity physics. One instance in which
this mid-way-point meeting has already been successful is provided by the mentioned results
reported in Ref. [41], where the candidate phenomenon of quantum-gravity induced deformed
dispersion relations, which had been proposed within phenomenological analyses [46, 23, 5]
of the type needed for the search of a low-energy theory of quantum gravity, was shown to
be consistent with the structure of canonical/loop quantum gravity.

11.2 Theories on non-commutative Minkowski space-time

At various points in these notes there is a more or less explicit reference to deformed sym-
metries and noncommutative space-times35. Just in the previous subsection I have recalled
the conjecture [23, 13] that an effective large-distance description of some aspects of quan-
tum gravity might involve quantum symmetries and noncommutative geometry. The type
of in vacuo dispersion which can be tested [5] using observations of gamma rays from dis-
tant astrophysical sources is naturally encoded within a consistent deformation of Poincaré
symmetries [23, 27, 28].

A useful structure (at least for toy-model purposes, but perhaps even more than that)
appears to be the noncommutative (so-called “κ”) Minkowski space-time [64, 65, 21]

[xi, t] = ıλ xi, [xi, xj] = 0 (46)

where i, j = 1, 2, 3 and λ (commonly denoted36 by 1/κ) is a free length scale. This simple
noncommutative space-time could be taken as a basis for an effective description of phe-

35The general idea of some form of connection between Planck-scale physics and quantum groups (with
their associated noncommutative geometry) is of course not new, see e.g., Refs. [101, 102, 103, 104, 21, 105,
106, 107, 108]. Moreover, some support for noncommutativity of space-time has also been found within
measurability analyses [32, 23].

36This author is partly responsible [28] for the redundant convention of using the notation λ when the
reader is invited to visualize a length scale and going back to the κ notation when instead it might be
natural for the reader to visualize a mass/energy scale. In spite of its unpleasantness, this redundancy is
here reiterated in order to allow the reader to quickly identify/interpret corresponding equations in Ref. [28].
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nomena associated with a nontrivial foamy quantum-gravity vacuum37. When probed very
softly such a space would appear as an ordinary Minkowski space-time38, but probes of suf-
ficiently high energy would be affected by the properties of the quantum-gravity foam and
one could attempt to model (at least some aspects of) the corresponding dynamics using a
noncommutative Minkowski space-time. In light of this physical motivation it is natural to
assume that λ be related to the Planck length.

The so-called κ-deformed Poincaré quantum group [104] acts covariantly [65] on the κ-
Minkowski space-time (46). The dispersion relation for massless spin-0 particles

λ−2
(
eλE + e−λE − 2

)
− ~k2e−λE = 0 , (47)

which at low energies describes a deformation that is linearly suppressed by λ (and therefore,
if indeed λ ∼ Lp, is of the type discussed in Section 5), emerges [21, 27, 28] as the appropriate
Casimir of the κ-deformed Poincaré group. Rigorous support for the interpretation of (47)
as a bona fide dispersion relation characterizing the propagation of waves in the κ-Minkowski
space-time was recently provided in Ref. [28].

In Ref. [28] it was also observed that, using the quantum group Fourier transform which
was worked out for our particular algebra in Ref. [110], there might be a rather simple ap-
proach to the definition of a field theory on the κ-Minkowski space-time. In fact, through the
quantum group Fourier transform it is possible to rewrite structures living on noncommu-
tative space-time as structures living on a classical (but nonAbelian) “energy-momentum”
space. If one is content to evaluate everything in energy-momentum space, this observation
gives the opportunity to by-pass all problems directly associated with the non-commutativity
of space-time. While waiting for a compelling space-time formulation of field theories on non-
commutative geometries to emerge, it seems reasonable to restrict all considerations to the
energy-momentum space. This approach does not work for any noncommutative space-time
but only for those where the space-time coordinate algebra is the enveloping algebra of
a Lie algebra, with the Lie algebra generators regarded ‘up side down’ as noncommuting
coordinates [111].39

Within this viewpoint a field theory is not naturally described in terms of a Lagrangian,
but rather it is characterized directly in terms of Feynman diagrams. In principle, according
to this proposal a given ordinary field theory can be “deformed” into a counterpart living in
a suitable noncommutative space-time not by fancy quantum-group methods but simply by
the appropriate modification of the momentum-space Feynman rules to those appropriate for
a nonAbelian group. Additional considerations can be found in Ref. [28], but, in order to give
at least one example of how this nonAbelian deformation could be applied, let me observe
here that the natural propagator of a massless spin-0 particle on κ-Minkowski space-time
should be given in energy-momentum space by the inverse of the operator in the dispersion

relation (47), i.e. in place of D = (ω2 − ~k2 −m2)−1 one would take

Dλ =
(
λ−2(eλω + e−λω − 2)− e−λω~k2

)−1
. (48)

37In particular, within one particular attempt to model space-time foam, the one of Liouville non-critical
strings [19], the time “coordinate” appears [109] to have properties that might be suggestive of a κ-Minkowski
space-time.

38Generalizations would of course be necessary for a description of how the quantum-gravity foam affects
spaces which are curved (non-Minkowski) at the classical level, and even for spaces which are Minkowski
at the classical level a full quantum gravity of course would predict phenomena which could not be simply
encoded in noncommutativity of Minkowski space.

39Another (partly related, but different) κ-Minkowski motivated proposal for field theory was recently put
forward in Ref. [112]. I thank J. Lukierski for bringing this paper to my attention.
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As discussed in Ref. [28] the elements of this approach to field theory appear to lead natu-
rally to a deformation of CPT symmetries, which would first show up in experiments as a
violation of ordinary CPT invariance. The development of realistic field theories of this type
might therefore provide us a single workable formalism40 in which both in vacuo dispersion
and violations of ordinary CPT invariance could be computed explicitly (rather than being
expressed in terms of unknown parameters), connecting all of the aspects of these candi-
date quantum-gravity phenomena to the value of λ ≡ 1/κ. One possible “added bonus”
of this approach could be associated with the fact that also loop integration must be ap-
propriately deformed, and it appears plausible [28] that (as in other quantum-group based
approaches [103]) the deformation might render ultraviolet finite some classes of diagrams
which would ordinarily be affected by ultraviolet divergences.

12 CONSERVATIVE MOTIVATION AND OTHER

CLOSING REMARKS

Since this paper started off with the conclusions, readers might not be too surprised of the
fact that I devote most of the closing remarks to some additional motivation. These remarks
had to be postponed until the very end also because in reviewing the experiments it would
have been unreasonable to take a conservative viewpoint: those who are so inclined should
find in the present lecture notes encouragement for unlimited excitement. However, before
closing I must take a step back and emphasize those reasons of interest in this emerging
phenomenology which can be shared even by those readers who are approaching all this
from a conservative viewpoint.

In reviewing these quantum-gravity experiments I have not concealed my (however mod-
erate) optimism regarding the prospects for data-driven advances in quantum-gravity re-
search. I have reminded the reader of the support one finds in the quantum-gravity literature
for the type of phenomena which we can now start to test, particularly distance fuzziness
and violations of Lorentz and/or CPT symmetries and I have also emphasized that it is
thanks to recent advances in experimental techniques and ideas that these phenomena can
be tested (see, for example, the role played by the remarkable sensitivities recently achieved
with modern interferometers in the experimental proposal reviewed in Section 4 and the role
played by very recent break-throughs in GRB phenomenology in the experimental proposal
reviewed in Section 5). But now let me emphasize that even from a conservative viewpoint
these experiments are extremely significant, especially those that provide tests of quantum
mechanics and tests of fundamental symmetries. One would not ordinarily need to stress
this, but since these lectures are primarily addressed to young physics students let me ob-
serve that of course this type of tests is crucial for a sound development of our science. Even
if there was no theoretical argument casting doubts on them, we could not possibly take for
granted (extrapolating ad infinitum) ingredients of our understanding of Nature as crucial
as its mechanics laws and its symmetry structure. We should test quantum mechanics and
fundamental symmetries anyway, we might as well do it along the directions which appear
to be favoured by some quantum-gravity ideas.

One important limitation of the present stage in the development of quantum-gravity
phenomenology is the fact that most of the experiments actually test only one of the two main

40Until now the young field of quantum-gravity phenomenology has relied on “single-use” phenomeno-
logical models (the parameters of the phenomenological model are only relevant in one physical context).
A first step toward a greater maturity of this phenomenological programme would be the development of
phenomenological models that apply to more than one physical context (the same parameters are fitted using
data from more than one physical context). The type of field theory on κ-Minkowski space-time that was
considered in Ref. [28] (with its single parameter λ) could represent a first example of these more ambitious
multi-purpose phenomenological models.
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branches of quantum-gravity proposals: the proposals in which (in one or another fashion)
quantum decoherence is present. There is in fact a connection (whose careful discussion I
postpone to future publications) between decoherence and the type of violations of Lorentz
and CPT symmetries and the type of power-law dependence on Tobs of distance fuzziness here
considered. The portion of our community which finds appealing the arguments supporting
the decoherence-inducing Wheeler-Hawking space-time foam (and certain views on the so-
called “black-hole information paradox”) can use these recent developments in quantum-
gravity phenomenology as an opportunity for direct tests of some of its intuition. The rest
of our community has developed an orthogonal intuition concerning the quantum-gravity
realm, in which there is no place for quantum decoherence. The fact that we are finally at
least at the point of testing decoherence-involving quantum-gravity approaches (something
which was also supposed to be impossible) should be seen as encouragement for the hope
that even other quantum-gravity approaches will eventually be investigated experimentally.

Even though there is of course no guarantee that this new phenomenology will be able to
uncover important elements of the structure of quantum gravity, the fact that such a phe-
nomenological programme exists suffices to make a legitimate (empirical) science of quantum
gravity, a subject often derided as a safe heaven for theorists wanting to speculate freely
without any risk of being proven wrong by experiments. As emphasized in Refs. [87, 113]
(and even in the non-technical press [114]) this can be an important turning point in the
development of the field. Concerning the future of quantum-gravity phenomenology let me
summarize my expectations in the form of a response to the question posed by the title of
these notes: I believe that we are indeed at the dawn of quantum-gravity phenomenology,
but the forecasts call for an extremely long and cloudy day with only a few rare moments of
sunshine. Especially for those of us motivated by theoretical arguments suggesting that at
the end of the road there should be a wonderful revolution of our understanding of Nature
(perhaps a revolution of even greater magnitude than the one undergone during the first
years of this 20th century), it is crucial to profit fully from the few glimpses of the road
ahead which quantum-gravity phenomenology will provide.
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