21 research outputs found

    A versatile and accurate approximation for LRU cache performance

    Full text link
    In a 2002 paper, Che and co-authors proposed a simple approach for estimating the hit rates of a cache operating the least recently used (LRU) replacement policy. The approximation proves remarkably accurate and is applicable to quite general distributions of object popularity. This paper provides a mathematical explanation for the success of the approximation, notably in configurations where the intuitive arguments of Che, et al clearly do not apply. The approximation is particularly useful in evaluating the performance of current proposals for an information centric network where other approaches fail due to the very large populations of cacheable objects to be taken into account and to their complex popularity law, resulting from the mix of different content types and the filtering effect induced by the lower layers in a cache hierarchy

    Cache policies for cloud-based systems: To keep or not to keep

    Full text link
    In this paper, we study cache policies for cloud-based caching. Cloud-based caching uses cloud storage services such as Amazon S3 as a cache for data items that would have been recomputed otherwise. Cloud-based caching departs from classical caching: cloud resources are potentially infinite and only paid when used, while classical caching relies on a fixed storage capacity and its main monetary cost comes from the initial investment. To deal with this new context, we design and evaluate a new caching policy that minimizes the overall cost of a cloud-based system. The policy takes into account the frequency of consumption of an item and the cloud cost model. We show that this policy is easier to operate, that it scales with the demand and that it outperforms classical policies managing a fixed capacity.Comment: Proceedings of IEEE International Conference on Cloud Computing 2014 (CLOUD 14

    Catalog Dynamics: Impact of Content Publishing and Perishing on the Performance of a LRU Cache

    Full text link
    The Internet heavily relies on Content Distribution Networks and transparent caches to cope with the ever-increasing traffic demand of users. Content, however, is essentially versatile: once published at a given time, its popularity vanishes over time. All requests for a given document are then concentrated between the publishing time and an effective perishing time. In this paper, we propose a new model for the arrival of content requests, which takes into account the dynamical nature of the content catalog. Based on two large traffic traces collected on the Orange network, we use the semi-experimental method and determine invariants of the content request process. This allows us to define a simple mathematical model for content requests; by extending the so-called "Che approximation", we then compute the performance of a LRU cache fed with such a request process, expressed by its hit ratio. We numerically validate the good accuracy of our model by comparison to trace-based simulation.Comment: 13 Pages, 9 figures. Full version of the article submitted to the ITC 2014 conference. Small corrections in the appendix from the previous versio

    A unified approach to the performance analysis of caching systems

    Get PDF
    We propose a unified methodology to analyse the performance of caches (both isolated and interconnected), by extending and generalizing a decoupling technique originally known as Che's approximation, which provides very accurate results at low computational cost. We consider several caching policies, taking into account the effects of temporal locality. In the case of interconnected caches, our approach allows us to do better than the Poisson approximation commonly adopted in prior work. Our results, validated against simulations and trace-driven experiments, provide interesting insights into the performance of caching systems.Comment: in ACM TOMPECS 20016. Preliminary version published at IEEE Infocom 201

    Performance evaluation of the replacement policies for pending interest table

    Get PDF
    Information (content) plays an important role in a Named Data Networking (NDN). Hence, an information model is essential in representing information appropriately to supports meaningful information spreading. As a distinction from the current network practice, the NDN shall concentrate on the content itself, rather than the location of the information itself. One important and common feature of NDN is leveraging through its built-in network caches (temporal store) to improve the communication and efficiency of content dissemination. Thus, caching is well thought-out as one of the most crucial features (especially in PIT) of the NDN. Its efficiency is due to it required feature of producing a flexible strategy in deciding what content to store and replace when the PIT overflows. Thus, PIT management in NDN continues being one of the primary concerns of high-speed forwarding. To address this issue, replacement policies, as one of the key factors for determining the effectiveness of a PIT in line with many researcher's haven to propose numerous replacement policies, i.e. LRU, Random and Persistent, which have been projected to attain the improved Interest drop rate, reduce the delay and Interest retransmission as when the PIT is full. However, to the best of our knowledge, there have not been studies that dealt with the performance and evaluation between the mentioned policies under different network topologies. Therefore, in this paper we study the performance of Interest drop rate, delay and Interest retransmission under different network topologies, i.e. Tree, Abilene and Germany when the PIT is full. The significance yearned for this study would be to provide a solid starting point in research directions of new PIT replacement policies for contemporary workload or selectively turning off of fewer used cache ways

    Online Caching with no Regret: Optimistic Learning via Recommendations

    Full text link
    The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework, which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity and hence can naturally reduce the caching network's uncertainty about future requests. We also extend the framework to learn and utilize the best request predictor in cases where many are available. We prove that the proposed {optimistic} learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the sub-linear regret bound O(T)O(\sqrt T), which is the best achievable bound for policies that do not use predictions, even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.Comment: arXiv admin note: substantial text overlap with arXiv:2202.1059

    Load Imbalance and Caching Performance of Sharded Systems

    Get PDF
    Sharding is a method for allocating data items to nodes of a distributed caching or storage system based on the result of a hash function computed on the item’s identifier. It is ubiquitously used in key-value stores, CDNs and many other applications. Despite considerable work that has focused on the design and implementation of such systems, there is limited understanding of their performance in realistic operational conditions from a theoretical standpoint. In this paper we fill this gap by providing a thorough modeling of sharded caching systems, focusing particularly on load balancing and caching performance aspects. Our analysis provides important insights that can be applied to optimize the design and configuration of sharded caching systems

    Optimistic No-regret Algorithms for Discrete Caching

    Full text link
    We take a systematic look at the problem of storing whole files in a cache with limited capacity in the context of optimistic learning, where the caching policy has access to a prediction oracle (provided by, e.g., a Neural Network). The successive file requests are assumed to be generated by an adversary, and no assumption is made on the accuracy of the oracle. In this setting, we provide a universal lower bound for prediction-assisted online caching and proceed to design a suite of policies with a range of performance-complexity trade-offs. All proposed policies offer sublinear regret bounds commensurate with the accuracy of the oracle. Our results substantially improve upon all recently-proposed online caching policies, which, being unable to exploit the oracle predictions, offer only O(T)O(\sqrt{T}) regret. In this pursuit, we design, to the best of our knowledge, the first comprehensive optimistic Follow-the-Perturbed leader policy, which generalizes beyond the caching problem. We also study the problem of caching files with different sizes and the bipartite network caching problem. Finally, we evaluate the efficacy of the proposed policies through extensive numerical experiments using real-world traces.Comment: Accepted to ACM SIGMETRICS 202

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future
    corecore