389 research outputs found

    Study of Human Hand-Eye Coordination Using Machine Learning Techniques in a Virtual Reality Setup

    Get PDF
    Theories of visually guided action are characterized as closed-loop control in the presence of reliable sources of visual information, and predictive control to compensate for visuomotor delay and temporary occlusion. However, prediction is not well understood. To investigate, a series of studies was designed to characterize the role of predictive strategies in humans as they perform visually guided actions, and to guide the development of computational models that capture these strategies. During data collection, subjects were immersed in a virtual reality (VR) system and were tasked with using a paddle to intercept a virtual ball. To force subjects into a predictive mode of control, the ball was occluded or made invisible for a portion of its 3D parabolic trajectory. The subjects gaze, hand and head movements were recorded during the performance. To improve the quality of gaze estimation, new algorithms were developed for the measurement and calibration of spatial and temporal errors of an eye tracking system. The analysis focused on the subjects gaze and hand movements reveal that, when the temporal constraints of the task did not allow the subjects to use closed-loop control, they utilized a short-term predictive strategy. Insights gained through behavioral analysis were formalized into computational models of visual prediction using machine learning techniques. In one study, LSTM recurrent neural networks were utilized to explain how information is integrated and used to guide predictive movement of the hand and eyes. In a subsequent study, subject data was used to train an inverse reinforcement learning (IRL) model that captures the full spectrum of strategies from closed-loop to predictive control of gaze and paddle placement. A comparison of recovered reward values between occlusion and no-occlusion conditions revealed a transition from online to predictive control strategies within a single course of action. This work has shed new insights on predictive strategies that guide our eye and hand movements

    Characterizing Productive Perseverance Using Sensor-Free Detectors of Student Knowledge, Behavior, and Affect

    Get PDF
    Failure is a necessary step in the process of learning. For this reason, there has been a myriad of research dedicated to the study of student perseverance in the presence of failure, leading to several commonly-cited theories and frameworks to characterize productive and unproductive representations of the construct of persistence. While researchers are in agreement that it is important for students to persist when struggling to learn new material, there can be both positive and negative aspects of persistence. What is it, then, that separates productive from unproductive persistence? The purpose of this work is to address this question through the development, extension, and study of data-driven models of student affect, behavior, and knowledge. The increased adoption of computer-based learning platforms in real classrooms has led to unique opportunities to study student learning at both fine levels of granularity and longitudinally at scale. Prior work has leveraged machine learning methods, existing learning theory, and previous education research to explore various aspects of student learning. These include the development of sensor-free detectors that utilize only the student interaction data collected through such learning platforms. Building off of the considerable amount of prior research, this work employs state-of-the-art machine learning methods in conjunction with the large scale granular data collected by computer-based learning platforms in alignment with three goals. First, this work focuses on the development of student models that study learning through the use of advancements in student modeling and deep learning methodologies. Second, this dissertation explores the development of tools that incorporate such models to support teachers in taking action in real classrooms to promote productive approaches to learning. Finally, this work aims to complete the loop in utilizing these detector models to better understand the underlying constructs that are being measured through their application and their connection to productive perseverance and commonly-observed learning outcomes

    Explainable Physics-informed Deep Learning for Rainfall-runoff Modeling and Uncertainty Assessment across the Continental United States

    Get PDF
    Hydrologic models provide a comprehensive tool to calibrate streamflow response to environmental variables. Various hydrologic modeling approaches, ranging from physically based to conceptual to entirely data-driven models, have been widely used for hydrologic simulation. During the recent years, however, Deep Learning (DL), a new generation of Machine Learning (ML), has transformed hydrologic simulation research to a new direction. DL methods have recently proposed for rainfall-runoff modeling that complement both distributed and conceptual hydrologic models, particularly in a catchment where data to support a process-based model is scared and limited. This dissertation investigated the applicability of two advanced probabilistic physics-informed DL algorithms, i.e., deep autoregressive network (DeepAR) and temporal fusion transformer (TFT), for daily rainfall-runoff modeling across the continental United States (CONUS). We benchmarked our proposed models against several physics-based hydrologic approaches such as the Sacramento Soil Moisture Accounting Model (SAC-SMA), Variable Infiltration Capacity (VIC), Framework for Understanding Structural Errors (FUSE), Hydrologiska Byråns Vattenbalansavdelning (HBV), and the mesoscale hydrologic model (mHM). These benchmark models can be distinguished into two different groups. The first group are the models calibrated for each basin individually (e.g., SAC-SMA, VIC, FUSE2, mHM and HBV) while the second group, including our physics-informed approaches, is made up of the models that were regionally calibrated. Models in this group share one parameter set for all basins in the dataset. All the approaches were implemented and tested using Catchment Attributes and Meteorology for Large-sample Studies (CAMELS)\u27s Maurer datasets. We developed the TFT and DeepAR with two different configurations i.e., with (physics-informed model) and without (the original model) static attributes. Various catchment static and dynamic physical attributes were incorporated into the pipeline with various spatiotemporal variabilities to simulate how a drainage system responds to rainfall-runoff processes. To demonstrate how the model learned to differentiate between different rainfall–runoff behaviors across different catchments and to identify the dominant process, sensitivity and explainability analysis of modeling outcomes are also performed. Despite recent advancements, deep networks are perceived as being challenging to parameterize; thus, their simulation may propagate error and uncertainty in modeling. To address uncertainty, a quantile likelihood function was incorporated as the TFT loss function. The results suggest that the physics-informed TFT model was superior in predicting high and low flow fluctuations compared to the original TFT and DeepAR models (without static attributes) or even the physics-informed DeepAR. Physics-informed TFT model well recognized which static attributes more contributing to streamflow generation of each specific catchment considering its climate, topography, land cover, soil, and geological conditions. The interpretability and the ability of the physics-informed TFT model to assimilate the multisource of information and parameters make it a strong candidate for regional as well as continental-scale hydrologic simulations. It was noted that both physics-informed TFT and DeepAR were more successful in learning the intermediate flow and high flow regimes rather than the low flow regime. The advantage of the high flow can be attributed to learning a more generalizable mapping between static and dynamic attributes and runoff parameters. It seems both TFT and DeepAR may have enabled the learning of some true processes that are missing from both conceptual and physics-based models, possibly related to deep soil water storage (the layer where soil water is not sensitive to daily evapotranspiration), saturated hydraulic conductivity, and vegetation dynamics

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity

    Exploiting Structure for Scalable and Robust Deep Learning

    Get PDF
    Deep learning has seen great success training deep neural networks for complex prediction problems, such as large-scale image recognition, short-term time-series forecasting, and learning behavioral models for games with simple dynamics. However, neural networks have a number of weaknesses: 1) they are not sample-efficient and 2) they are often not robust against (adversarial) input perturbations. Hence, it is challenging to train neural networks for problems with exponential complexity, such as multi-agent games, complex long-term spatiotemporal dynamics, or noisy high-resolution image data. This thesis contributes methods to improve the sample efficiency, expressive power, and robustness of neural networks, by exploiting various forms of low-dimensional structure, such as spatiotemporal hierarchy and multi-agent coordination. We show the effectiveness of this approach in multiple learning paradigms: in both the supervised learning (e.g., imitation learning) and reinforcement learning settings. First, we introduce hierarchical neural networks that model both short-term actions and long-term goals from data, and can learn human-level behavioral models for spatiotemporal multi-agent games, such as basketball, using imitation learning. Second, in reinforcement learning, we show that behavioral policies with a hierarchical latent structure can efficiently learn forms of multi-agent coordination, which enables a form of structured exploration for faster learning. Third, we showcase tensor-train recurrent neural networks that can model high-order mutliplicative structure in dynamical systems (e.g., Lorenz dynamics). We show that this model class gives state-of-the-art long-term forecasting performance with very long time horizons for both simulation and real-world traffic and climate data. Finally, we demonstrate two methods for neural network robustness: 1) stability training, a form of stochastic data augmentation to make neural networks more robust, and 2) neural fingerprinting, a method that detects adversarial examples by validating the network’s behavior in the neighborhood of any given input. In sum, this thesis takes a step to enable machine learning for the next scale of problem complexity, such as rich spatiotemporal multi-agent games and large-scale robust predictions.</p

    Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model

    Get PDF
    Climate change is perhaps the biggest single threat to humankind and the environment, as it severely impacts our terrestrial surface, home to most of the living species. Inspired by video prediction and exploiting the availability of Copernicus Sentinel-2 images, recent studies have attempted to forecast the land surface evolution as a function of past land surface evolution, elevation, and weather. Further extending this paradigm, we propose a model based on convolutional long short-term memory (ConvLSTM) that is computationally efficient (lightweight), however obtains superior results to the previous baselines. By introducing a ConvLSTM-based architecture to this problem, we can not only ingest the heterogeneous data sources (Sentinel-2 time-series, weather data, and a Digital Elevation Model (DEM)) but also explicitly condition the future predictions on the weather. Our experiments confirm the importance of weather parameters in understanding the land cover dynamics and show that weather maps are significantly more important than the DEM in this task. Furthermore, we perform generative simulations to investigate how varying a single weather parameter can alter the evolution of the land surface. All studies are performed using the EarthNet2021 dataset. The code, additional materials and results can be found at https://github.com/dcodrut/weather2land
    • …
    corecore