56 research outputs found

    Characterizing and modeling citation dynamics

    Get PDF
    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.Comment: 8 pages, 5 figure

    Quantifying Long-Term Scientific Impact

    Full text link
    The lack of predictability of citation-based measures frequently used to gauge impact, from impact factors to short-term citations, raises a fundamental question: Is there long-term predictability in citation patterns? Here, we derive a mechanistic model for the citation dynamics of individual papers, allowing us to collapse the citation histories of papers from different journals and disciplines into a single curve, indicating that all papers tend to follow the same universal temporal pattern. The observed patterns not only help us uncover basic mechanisms that govern scientific impact but also offer reliable measures of influence that may have potential policy implications

    Modeling the clustering in citation networks

    Full text link
    For the study of citation networks, a challenging problem is modeling the high clustering. Existing studies indicate that the promising way to model the high clustering is a copying strategy, i.e., a paper copies the references of its neighbour as its own references. However, the line of models highly underestimates the number of abundant triangles observed in real citation networks and thus cannot well model the high clustering. In this paper, we point out that the failure of existing models lies in that they do not capture the connecting patterns among existing papers. By leveraging the knowledge indicated by such connecting patterns, we further propose a new model for the high clustering in citation networks. Experiments on two real world citation networks, respectively from a special research area and a multidisciplinary research area, demonstrate that our model can reproduce not only the power-law degree distribution as traditional models but also the number of triangles, the high clustering coefficient and the size distribution of co-citation clusters as observed in these real networks

    Characterizing and Modeling the Dynamics of Activity and Popularity

    Full text link
    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.Comment: 13 pages, 6 figures, 2 table

    What is the dimension of citation space?

    Get PDF
    © 2016 Published by Elsevier B.V.Citation networks represent the flow of information between agents. They are constrained in time and so form directed acyclic graphs which have a causal structure. Here we provide novel quantitative methods to characterise that structure by adapting methods used in the causal set approach to quantum gravity by considering the networks to be embedded in a Minkowski spacetime and measuring its dimension using Myrheim-Meyer and Midpoint-scaling estimates. We illustrate these methods on citation networks from the arXiv, supreme court judgements from the USA, and patents and find that otherwise similar citation networks have measurably different dimensions. We suggest that these differences can be interpreted in terms of the level of diversity or narrowness in citation behaviour
    • …
    corecore