8,927 research outputs found

    Characterizing and Improving Stability in Neural Style Transfer

    Get PDF
    Recent progress in style transfer on images has focused on improving the quality of stylized images and speed of methods. However, real-time methods are highly unstable resulting in visible flickering when applied to videos. In this work we characterize the instability of these methods by examining the solution set of the style transfer objective. We show that the trace of the Gram matrix representing style is inversely related to the stability of the method. Then, we present a recurrent convolutional network for real-time video style transfer which incorporates a temporal consistency loss and overcomes the instability of prior methods. Our networks can be applied at any resolution, do not re- quire optical flow at test time, and produce high quality, temporally consistent stylized videos in real-time

    Manipulating Attributes of Natural Scenes via Hallucination

    Full text link
    In this study, we explore building a two-stage framework for enabling users to directly manipulate high-level attributes of a natural scene. The key to our approach is a deep generative network which can hallucinate images of a scene as if they were taken at a different season (e.g. during winter), weather condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the scene is hallucinated with the given attributes, the corresponding look is then transferred to the input image while preserving the semantic details intact, giving a photo-realistic manipulation result. As the proposed framework hallucinates what the scene will look like, it does not require any reference style image as commonly utilized in most of the appearance or style transfer approaches. Moreover, it allows to simultaneously manipulate a given scene according to a diverse set of transient attributes within a single model, eliminating the need of training multiple networks per each translation task. Our comprehensive set of qualitative and quantitative results demonstrate the effectiveness of our approach against the competing methods.Comment: Accepted for publication in ACM Transactions on Graphic

    Optical Flow Distillation: Towards Efficient and Stable Video Style Transfer

    Full text link
    Video style transfer techniques inspire many exciting applications on mobile devices. However, their efficiency and stability are still far from satisfactory. To boost the transfer stability across frames, optical flow is widely adopted, despite its high computational complexity, e.g. occupying over 97% inference time. This paper proposes to learn a lightweight video style transfer network via knowledge distillation paradigm. We adopt two teacher networks, one of which takes optical flow during inference while the other does not. The output difference between these two teacher networks highlights the improvements made by optical flow, which is then adopted to distill the target student network. Furthermore, a low-rank distillation loss is employed to stabilize the output of student network by mimicking the rank of input videos. Extensive experiments demonstrate that our student network without an optical flow module is still able to generate stable video and runs much faster than the teacher network
    • …
    corecore