523 research outputs found

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital

    Algorithms and protocols for multi-channel wireless networks

    Get PDF
    A wireless channel is shared by all devices, in the vicinity, that are tuned to the channel, and at any given time, only one of the devices can transmit information. One way to overcome this limitation, in throughput capacity, is to use multiple orthogonal channels for different devices, that want to transmit information at the same time. In this work, we consider the use of multiple orthogonal channels in wireless data networks. We explore algorithms and protocols for such multi-channel wireless networks under two broad categories of network-wide and link-level challenges. Towards handling the network-wide issues, we consider the channel assignment and routing issues in multi-channel wireless networks. We study both single radio and multi-radio multi-channel networks. For single radio multi-channel networks, we propose a new granularity for channel assignment, that we refer to as component level channel assignment. The strategy is relatively simple, and is characterized by several impressive practical advantages. For multi-radio multi-channel networks, we propose a joint routing and channel assignment protocol, known as Lattice Routing. The protocol manages channels of the radios, for the different nodes in the network, using information about current channel conditions, and adapts itself to varying traffic patterns, in order to efficiently use the multiple channels. Through ns2 based simulations, we show how both the protocols outperform other existing protocols for multi-channel networks under different network environments. Towards handling the link-level challenges, we identify the practical challenges in achieving a high data-rate wireless link across two devices using multiple off-the-shelf wireless radios. Given that the IEEE 802.11 a/g standards define 3 orthogonal wi-fi channels in the 2.4GHz band and 12 orthogonal wi-fi channels in the 5GHz band, we answer the following question: ``can a pair of devices each equipped with 15 wi-fi radios use all the available orthogonal channels to achieve a high data-rate link operating at 600Mbps?' Surprisingly, we find through experimental evaluation that the actual observed performance when using all fifteen orthogonal channels between two devices is a mere 91Mbps. We identify the reasons behind the low performance and present Glia, a software only solution that effectively exercises all available radios. We prototype Glia and show using experimental evaluations that Glia helps achieve close to 600Mbps data-rate when using all possible wi-fi channels.PhDCommittee Chair: Sivakumar, Raghupathy; Committee Member: Blough, Doug; Committee Member: Coyle, Edward; Committee Member: Eidenbenz, Stephan; Committee Member: Fekri, Faramar

    Performance issues in cellular wireless mesh networks

    Get PDF
    This thesis proposes a potential solution for future ubiquitous broadband wireless access networks, called a cellular wireless mesh network (CMESH), and investigates a number of its performance issues. A CMESH is organized in multi-radio, multi-channel, multi-rate and multi-hop radio cells. It can operate on abundant high radio frequencies, such as 5-50 GHz, and thus may satisfy the bandwidth requirements of future ubiquitous wireless applications. Each CMESH cell has a single Internet-connected gateway and serves up to hundreds of mesh nodes within its coverage area. This thesis studies performance issues in a CMESH, focusing on cell capacity, expressed in terms of the max-min throughput. In addition to introducing the concept of a CMESH, this thesis makes the following contributions. The first contribution is a new method for analyzing theoretical cell capacity. This new method is based on a new concept called Channel Transport Capacity (CTC), and derives new analytic expressions for capacity bounds for carrier-sense-based CMESH cells. The second contribution is a new algorithm called the Maximum Channel Collision Time (MCCT) algorithm and an expression for the nominal capacity of CMESH cells. This thesis proves that the nominal cell capacity is achievable and is the exact cell capacity for small cells within the abstract models. Finally, based on the MCCT algorithm, this thesis proposes a series of greedy algorithms for channel assignment and routing in CMESH cells. Simulation results show that these greedy algorithms can significantly improve the capacity of CMESH cells, compared with algorithms proposed by other researchers

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore