5 research outputs found

    Morse Code Datasets for Machine Learning

    Full text link
    We present an algorithm to generate synthetic datasets of tunable difficulty on classification of Morse code symbols for supervised machine learning problems, in particular, neural networks. The datasets are spatially one-dimensional and have a small number of input features, leading to high density of input information content. This makes them particularly challenging when implementing network complexity reduction methods. We explore how network performance is affected by deliberately adding various forms of noise and expanding the feature set and dataset size. Finally, we establish several metrics to indicate the difficulty of a dataset, and evaluate their merits. The algorithm and datasets are open-source.Comment: Presented at the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT

    Towards Trust and Transparency in Deep Learning Systems through Behavior Introspection & Online Competency Prediction

    Get PDF
    Deep neural networks are naturally “black boxes”, offering little insight into how or why they make decisions. These limitations diminish the adoption likelihood of such systems for important tasks and as trusted teammates. We employ introspective techniques to abstract machine activation patterns into human-interpretable strategies and identify relationships between environmental conditions (why), strategies (how), and performance (result) on both a deep reinforcement learning two-dimensional pursuit game application and image-based deep supervised learning obstacle recognition application. Pursuit-evasion games have been studied for decades under perfect information and analytically-derived policies for static environments. We incorporate uncertainty in a target’s position via simulated measurements and demonstrate a novel continuous deep reinforcement learning approach against speed-advantaged targets. The resulting approach was tested under many scenarios and performance exceeded that of a baseline course-aligned strategy. We manually observed separation of learned pursuit behaviors into strategy groups and manually hypothesized environmental conditions that affected performance. These manual observations motivated automation and abstraction of conditions, performance and strategy relationships. Next, we found that deep network activation patterns could be abstracted into human-interpretable strategies for two separate deep learning approaches. We characterized machine commitment by the introduction of a novel measure and revealed significant correlations between machine commitment, strategies, environmental conditions, and task performance. As such, we motivated online exploitation of machine behavior estimation for competency-aware intelligent systems. And finally, we realized online prediction capabilities for conditions, strategies, and performance. Our competency-aware machine learning approach is easily portable to new applications due to its Bayesian nonparametric foundation, wherein all inputs are compactly transformed into the same compact data representation. In particular, image data is transformed into a probability distribution over features extracted from the data. The resulting transformation forms a common representation for comparing two images, possibly from different types of sensors. By uncovering relationships between environmental conditions (why), machine strategies (how), & performance (result) and by giving rise to online estimation of machine competency, we increase transparency and trust in machine learning systems, contributing to the overarching explainable artificial intelligence initiative.
    corecore