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Deep neural networks are naturally “black boxes”, offering little insight into 

how or why they make decisions.  These limitations diminish the adoption likelihood 

of such systems for important tasks and as trusted teammates.  We employ 

introspective techniques to abstract machine activation patterns into human-

interpretable strategies and identify relationships between environmental conditions 

(why), strategies (how), and performance (result) on both a deep reinforcement 

learning two-dimensional pursuit game application and image-based deep supervised 

learning obstacle recognition application.  Pursuit-evasion games have been studied 

for decades under perfect information and analytically-derived policies for static 

environments.  We incorporate uncertainty in a target’s position via simulated 

measurements and demonstrate a novel continuous deep reinforcement learning 

approach against speed-advantaged targets.  The resulting approach was tested under 

many scenarios and performance exceeded that of a baseline course-aligned strategy.  

We manually observed separation of learned pursuit behaviors into strategy groups 



 

 

 

and manually hypothesized environmental conditions that affected performance.  

These manual observations motivated automation and abstraction of conditions, 

performance and strategy relationships.  Next, we found that deep network activation 

patterns could be abstracted into human-interpretable strategies for two separate deep 

learning approaches.  We characterized machine commitment by the introduction of a 

novel measure and revealed significant correlations between machine commitment, 

strategies, environmental conditions, and task performance.  As such, we motivated 

online exploitation of machine behavior estimation for competency-aware intelligent 

systems.  And finally, we realized online prediction capabilities for conditions, 

strategies, and performance.  Our competency-aware machine learning approach is 

easily portable to new applications due to its Bayesian nonparametric foundation, 

wherein all inputs are compactly transformed into the same compact data 

representation.   In particular, image data is transformed into a probability distribution 

over features extracted from the data. The resulting transformation forms a common 

representation for comparing two images, possibly from different types of sensors.  

By uncovering relationships between environmental conditions (why), machine 

strategies (how), & performance (result) and by giving rise to online estimation of 

machine competency, we increase transparency and trust in machine learning 

systems, contributing to the overarching explainable artificial intelligence initiative.  
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Chapter 1: Introduction 

Section 0:  Motivation 

A strong motivation for autonomous control and XAI research is the 

explosion of unmanned systems (UxV).  First came militarization and 

commercialization of unmanned aerial vehicle (UAV) proliferation; now comes 

amassing of small satellites, unmanned underwater vehicles (UUV), unmanned 

surface vessels (USV), and unmanned ground vehicles (UGV).  To date, deployed 

UxV autonomy applications have been largely limited to point-to-point autonomy and 

subsystem control, leaving gaps in higher intelligence and decision-making skills for 

tasks with higher complexity.  One task which has been studied at depth for 

simplified environments is the pursuit game, wherein one agent attempts to capture a 

target agent, and the extension of the game, called a pursuit-evasion game, where the 

target agent actively evades the pursuer agent.   

Many applications for pursuit games arise naturally in unmanned systems 

control, air-to-air combat, ballistic missile defense, and sports.  In unmanned systems 

control, agents plan routes to navigate toward waypoints and avoid obstacles.  

Additionally, unmanned agents may seek to rendezvous with teammates for refueling, 

recharging, leader-follower convoys, or other activities.  In air-to-air combat, systems 

may aim to gain stable line-of-sight with an opposing system.  In missile defense, 

autonomous systems may seek to intersect the path of an incoming threat.  In sports, 

players attempt to intercept passes, make tackles, or catch a ball by anticipating future 

target object locations in dynamic environments.  While some of these applications 

require three-dimensional modeling, in Chapter 2 we consider a two-dimensional (2-
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d) version of this widely applicable game that clearly illustrates the value of the 

proposed continuous reinforcement learning (RL) approach.  2-d pursuit games apply 

to unmanned ground vehicle and unmanned surface vessel applications and are easily 

comparable to the vast literature in pursuit-evasion games.  

Explainability, interpretability, and competency awareness are widely 

recognized shortcomings of current artificial intelligence (AI) and machine learning 

(ML) systems [1] [2].  Currently, many AI-system end-users lack trust and interest in 

the adoption of AI systems.  They demand more explanations and rationale that 

support machine-derived solutions.  As such, explainable artificial intelligence has 

been identified as priority research areas by the National Security Commission on 

Artificial Intelligence (NSCAI) [3] and funded accordingly by DARPA [4].   In this 

research, we explore ways to apply existing techniques to qualitatively improve trust 

and transparency in machine learning systems.  The resulting capabilities contribute 

to the overarching field of explainable AI through analysis of machine behaviors and 

insights gained from making connections between behaviors and performance.  No 

prior XAI research efforts have attempted to aggregate time-series machine behaviors 

into strategies that are relatable to humans.  And no prior research has attempted to 

estimate environmental conditions, strategies, and performance using online 

predictors to provide a competency-aware machine learning system.  We focus on the 

machine side of human-machine teaming, where we equip the machine with self-

awareness, including the assessment of its own competency.  
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Section 1:  Literature Survey 

Pursuit-Evasion Games, like the Homicidal Chauffeur Problem, have been 

studied since introduced by Rufus Isaacs in 1951 [5], most commonly under perfect 

information and analytically-derived policies for static-game parameters, like 

constant-pursuer and evader speeds [6] [7].  The Homicidal Chauffeur Problem is a 

differential pursuit-evasion game in which a low-speed agent with an infinitely small 

turning radius, like that of a pedestrian, evades a much faster pursuer with a 

constrained-turning radius, like that of a chauffeur driving a car.  Through calculus of 

variations and level-set methods, optimal control laws are derived for all 

combinations of speed and maneuverability ratios of the pursuer to the target [8].  In 

[9], the authors modeled an uncertain pursuit-evasion game using uncertain 

differential equations and derived a solution via the corresponding Riccati equation.  

And in [10], the authors used mixed complementarity problem (MCP) formulation to 

address a pursuit-evasion game amidst obstacles and uncertainty. 

Recently, machine-learning approaches have been applied to develop robust 

strategies for pursuit-evasion and pursuit-only games.  Such approaches seek to 

expand capture probabilities of success in cases where speed and maneuverability 

ratios are not suitable for applying the analytically derived solutions in the works 

surveyed in [6] and [7].  For example, these methods solve for optimal policies for 

pursuit-evasion games where both players have perfect information about one another 

and both players act rationally (optimally).  Because of these assumptions, there are 

no solutions for solving a game where the evader moves faster than the pursuer [8], as 

the evader would move in a direction opposite of the pursuer’s direction (known with 
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certainty) and the pursuer would never be able to catch up to the evader due to the 

speed disadvantage. 

In [11], the authors train pursuit and evader agents under a reinforcement-

learning approach which operates under constant speeds and position certainty.  This 

was the only reference found which applied a continuous RL approach to a pursuit 

game, the focus of Chapter 2.  In [12], the author trains only the pursuer to learn the 

homicidal chauffeur strategy using a two-stage, learning technique combining 

particle-swarm, optimization-based fuzzy logic controller algorithm with the Q-

Learning fuzzy inference system (QFIS) algorithm to tune the parameters of a fuzzy 

logic controller.  Similarly, in [13], the authors present a technique to tune a pursuer 

fuzzy logic controller using Q(λ)-learning and a genetic algorithm.  In [14], multiple 

pursuer agents were trained using Watkin’s Q(λ)-learning algorithm to successfully 

capture a single stationary target, but the algorithm did not extend well to moving 

target scenarios.  Briefly, Q-Learning is a reinforcement learning approach that 

determines an optimal control policy by maximizing the expected reward from the 

current state until the end of the game (Chapter 2 Section 3).  In our pursuit game, our 

control policy consists of heading and acceleration pursuit agent actions (Chapter 

2.3), our state consists of observations available to the pursuer agent (Chapter 2 

Section 2.2), and our reward is a function of the distance between the pursuer and 

target agents and time (Chapter 2 Section 2.5). 

While pursuit games are widely analyzed in these publications, none of these 

explore RL approaches to pursuit games with uncertain information as studied in 

Chapter 2 and promoted as an open research problem in the short survey in [6].  
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Additionally, none of the above research efforts considered a pursuit game where the 

pursuer and evader could accelerate.  Lastly, a literature survey in pursuit-evasion 

games did not find any prior work studying the case where the evader could move 

faster than the pursuer.  Tackling challenges of uncertainty, speed control, and speed 

overmatch in Chapter 2 support deployment of the resulting algorithm on real 

unmanned systems in dynamic environments.  In this case, the pursuer agent must 

learn anticipatory strategies to capture speed-advantaged target and robust strategies 

to account for uncertainty.   And we see that the pursuer does learn anticipatory 

strategies inherent to its “L-shaped” & sweeping behaviors manually abstracted from 

winning scenarios in Chapter 2 and automatically abstracted into strategy groupings 

in Chapter 3.  While prior reinforcement learning approaches have led to anticipatory 

behaviors over time, none have been abstracted automatically from activation patterns 

into explainable AI strategies before the work presented in Chapter 3.  Prior work and 

the novel contributions of this dissertation to pursuit game research is summarized in 

Table 1.   

Table 1 Novelty of Pursuit RL Research 

Reference Players RL Uncertainty 

Dynamic 

Speed 

Control 

Speed 

Overmatch 

Explainable 

AI 

Strategies 

Feng et al., 2018 2  ✓    

Wang, Wang, & 

Yue, 2019 
2 ✓    

 

Al-Talabi & 

Schwartz, 2014 
1 ✓    

 

Desouky & 

Schwartz, 2009 
1 ✓    

 

Bilgin & 

Kadioglu-Urtis, 

2015 

>2 ✓    

 

Chapter 2 1 ✓ ✓ ✓ ✓  

Chapter 3 1 ✓ ✓ ✓ ✓ ✓ 
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 To date, eXplainable Artificial Intelligence (XAI) efforts have been largely 

focused on ante-hoc model design, feature importance and continuous system 

evaluation [15] [16].  Ante-hoc approaches, such as random forests and decision trees, 

incorporate explainability mechanisms into models themselves, enabling natural 

interpretability of results in terms of pre-defined features or conditions [17] [18].  Post-

hoc methods, such as Shapley Additive exPlanations (SHAP) [19] and permutation 

methods, have also focused on feature importance for explainability [20] [21] while 

others have focused on understanding high-confidence failures and ambiguous results 

by stimulating examples [22].  In this case, ante-hoc methods refer to instrumentation 

of XAI capabilities prior to training of a deep learning system.  By instrumenting 

explainable parameters that govern policy selection, ante-hoc methods provide 

explainability by design; at a rudimentary level, for example, if one employed a rule-

based pursuit controller, an ante-hoc approach could bookkeep which rules (criteria) 

were satisfied and relay them along with the control policy.  Analogously, random 

forest models, which are an ensemble of decision trees, split trees over branches that 

can be traced back for explainable results.  Conversely, post-hoc methods deal with 

models that have already been trained, whether they carry natural interpretability via 

ante-hoc methods or not.  We focus here on post-hoc models so that our XAI 

capabilities can be more broadly used and bolted on to existing machine learning 

frameworks without stipulations on how the system is trained.  In other words, the 

approach outlined in Chapter 4 is applicable to any type of deep learning model for any 

type of data; it does not require ante-hoc explainability considerations or impose any 

special training specifications on the ML system under evaluation.  
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Importantly, few post-hoc XAI efforts have focused on understanding machine 

behaviors; behaviors are encoded directly into the activation values of neurons in deep 

networks.  The activation patterns of the neurons themselves are representative of 

machine “thought processes”.  Moreover, few XAI efforts have addressed time-series 

applications [23].  Awareness of machine behaviors provides insight into machine 

competency, which goes beyond characterization of machine performance [24] by 

abstracting machine behaviors into communicable strategies. While dimension-

reduction techniques such as Principle Component Analysis (PCA) and t-distributed 

Stochastic Neighbor Embedding (t-SNE) have been used to visualize activation 

patterns previously [25] [26] [27], none have employed  the Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP) technique, which 

shows significant benefits over t-SNE on time-series data [28] and is more accurate 

than PCA [29].  Furthermore, no XAI research efforts have attempted to aggregate 

time-series machine behaviors into generalizable groups, thereby abstracting machine 

behaviors into strategies that are relatable to humans.  And finally, no research has 

attempted to estimate environmental conditions, strategies, and performance using 

online predictors to provide a competency-aware machine learning (CAML) system.  

Prior work and the novel contributions of this dissertation to XAI research is 

summarized in Table 2. 
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Table 2.  Novelty of Competency-Aware Machine Learning XAI Research 

Reference Conditions Strategies  Performance 

Online 

Competency 

Prediction 

Time-

Series 

Strategies 

Google, 2021 

Feature 

importance, 

SHAP 

- 

Model training 

guidance, 

continuous 

evaluation  

- - 

IBM, 2021 - - 

Training model 

and data 

selection focus, 

continuous 

evaluation 

- - 

Krischnamurthy 

et al., 2021 & 

Schmidt et al., 

2021 

Feature 

importance, 

instrumenta

tion 

- - - - 

Hilton et al., 

2020 

Feature 

importance 

Non-negative 

matrix 

factorization 

Causality of 

conditions 
- - 

Schubert et al., 

2020 
- 

Feature 

Visualization 
- - - 

Booth et al., 

2021 

Generating 

stimulating 

conditions 

- 
High-confidence 

failures 
- - 

Jaderberg et al., 

2019 
Manual t-SNE - - - 

Zahavy & 

Mannor, 2016 
Manual t-SNE Automated - - 

Rauber, Fadel, 

& Falcao, 2017 
Manual t-SNE Automated - - 

Chapter 2 Manual Manual Manual - ✓ 

Chapter 3 Manual UMAP Automated - ✓ 

Chapter 4 
SHAP, 

HDP 
UMAP Automated ✓ - 

Section 2: Dissertation Organization & Research Community Involvement 

The dissertation is organized as follows.  Motivation and prior related research 

is summarized in Chapter 1 for both pursuit games and XAI research areas.  In 

Chapter 2, we describe the design and implementation of a novel deep RL-based 

controller for pursuit games with uncertain information and speed-overmatched 

targets.  In the game, a pursuer agent employs a deep deterministic policy gradient 

(DDPG) algorithm (Chapter 2 Section 3.2) [30] to capture a moving target under 

imperfect information.  While pursuit games have been widely analyzed since 1951, 
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none attempted an RL approach to pursuit games with uncertain information as we 

introduced in Chapter 2 and analyzed further in Chapter 3.  Tackling challenges of 

uncertainty, speed control, and speed overmatch supports deployment of the resulting 

algorithm on real unmanned systems in dynamic environments.  In this case, the 

pursuer must learn anticipatory strategies to capture speed-advantaged target and 

robust strategies to account for uncertainty.  We found, in the cases where the target 

maximum speed is greater than that of the pursuer’s, the pursuer is successful in a 

speed-overmatched game.  This result is novel and no prior work has realized a RL 

pursuer agent capable of pursuing a speed-advantaged target.  Moreover, we 

manually abstract RL behaviors into human-interpretable strategy groupings.  We 

make observations between manually hypothesized conditions and machine 

performance, motivating further investigation into offline machine competency and 

online competency prediction.  Competency refers to both the machine performance 

and the strategy that was employed; environmental conditions affect how the agent 

performs the task (strategy) and the associated performance.  Offline competency 

understanding gives us insight into how conditions, strategies, and performance relate 

to one another.  Online competency prediction allows us to take advantage of those 

insights and avoid failures or behaviors that are not desirable in the current situation; 

it also allows gives us an opportunity to perform the task manually or otherwise 

intervene to avoid a system from performing a task under conditions in which it has 

not yet been trained.   Chapters 3 & 4 investigate machine competency in detail.  

Finally, in Chapter 2, we show that the deep RL-based controller outperformed a 
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baseline control algorithm significantly overall (by attaining 100% more target 

captures) and across each manually hypothesized condition.   

In Chapter 3, we uncover and analyze machine behaviors through dimension 

reduction and time-series clustering for an RL agent playing the two-dimensional 

pursuit game described in Chapter 2.  We abstract machine behaviors into strategies 

automatically and assess effects of the same manually hypothesized conditions as 

found in Chapter 2 and discover that they align intuitively to automatically derived 

machine strategies.  We define a novel measure of machine commitment and reveal 

relationships between commitment and machine performance.  Interestingly, many of 

the strategies discovered automatically in Chapter 3 are consistent with those 

extracted manually in Chapter 2.  Moreover, we make important observations across 

behaviors, game outcomes, environmental conditions, and human relatability.  We 

demonstrate utility of machine introspection over action-only alternatives, uncover 

aggregate human-relatable strategies in terms of explainable initial conditions, and 

discuss how these relationships can be exploited for online performance prediction.  

Lastly, we define a novel measure of machine commitment based on the volatility of 

activation expressions, measured as a function of rolling-horizon Shannon entropy 

and analyze its correlation to resulting machine performance.   

In Chapter 4, we extend strategy abstraction methods to a completely different 

application, one using a supervised deep learning approach to recognize obstacles in 

visual data (still images).  Here, we demonstrate that the same automated strategy-

abstraction techniques employed in Chapter 3 are generalizable to a different domain.  

To exploit the game outcome-strategy correlation identified in Chapter 3, we design 
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an online strategy predictor to be used in situ, which enables a user-facing module 

that suggests when to trust the machine or recommend user intervention.  Moreover, 

we devise a method, rooted in a Bayesian nonparametric (BNP) approach (Chapter 4 

Section 2), for discovering conditions automatically that is generalizable to various 

input sources beyond images and pursuit game observations.  After compactly 

describing the input data using the hierarchical Dirichlet processes (HDP) BNP 

approach (Chapter 4 Section 2.1), we layer on deep learning predictors and explainers 

to produce competency assessments of the underlying ML system in an online mode.  

Finally, we relay the competency assessment to the operator via a user interface at an 

update rate that exceeds user expectations.  That is, the user can act on a near real-

time competency assessment to preclude the ML system from incorrectly performing 

its task.  For the pursuit game task, it could be an automatic controller that preserves 

energy by foregoing a low-likelihood capture.  For the obstacle recognition task, it 

could be a human taking over the joystick for one of many forward-deployed UxS. 

Now, we briefly summarize the relationships between the research in Chapters 

1-5.  In Chapter 1, we describe the need for increased trust and transparency in 

machine-learning systems in terms of environmental conditions (why), machine 

behavior (how), and machine performance (result).  In Chapter 2, we manually 

hypothesize conditions and strategies that impact machine performance.  In Chapter 

3, we automatically abstract behaviors into strategy groupings that correspond to 

differing game outcomes (performance).  In Chapter 4, we automatically extract 

conditions from environmental observations and implement online predictors for 

competency-controlling conditions, strategies, and performance for a supervised 
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learning task.  By studying two disparate deep learning techniques (reinforcement & 

supervised) along with two disparate tasks (track-based pursuit & image-based 

obstacle recognition), we supply widely-applicable capabilities for the XAI research 

community.  The key insights and scientific contributions of this research are 

summarized in Table 3. 

Table 3 Key Research Insights & Section References 

Insight & Scientific Contribution 
Section 

Reference 

Developed control strategies using deep reinforcement learning, 

novel for speed-overmatch, speed control, and pursuit games with 

uncertainty. 

Chapter 2 

Sections 2 & 3 

The resulting deep RL policy outperformed a baseline course-

aligned strategy by 100% and does better with respect to harsher 

pursuit game conditions. 

Chapter 2 

Section 4 

Manually abstracted machine behaviors into strategy groupings 

and discovered relationships between conditions and 

performance, exploitable for online competency prediction. 

Chapter 2 

Section 4.5 

Neural network activation patterns were automatically abstracted 

into strategies using a novel procedure; some strategies naturally 

had human-interpretable meaning. 

Chapter 3 

Section 4 

Dimension-reduced behaviors preserved more information 

relative to game outcomes than actions alone. 

Chapter 3 

Section 2 

Automatically-derived strategies can be exploited as a predictor 

of performance. 

Chapter 3 

Section 4 

A novel measure of machine commitment is significantly higher 

in winning pursuit games than losing pursuit games. 

Chapter 3 

Section 6 

Bayesian nonparametric approach supports condition traceability, 

compact environment characterization, and is easily ported to 

new input data types. 

Chapter 4 

Section 2 

Environment similarity calculation supports identification of 

untrained situations and potential sensor faults. 

Chapter 4 

Section 3 

Prototype competency prediction capabilities significantly 

outperform random chance for strategy and performance 

prediction. 

Chapter 4 

Sections 5 & 6 

Competency-aware machine learning approach is generalizable to 

a large number of applications and machine learning approaches, 

as evident by proof-of-concept experimentation on both a 

supervised learning & RL approach and image-based & pursuit 

game application.  

Chapters 3 & 4 
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The work in Chapter 2 was presented at the Naval Applications for Machine 

Learning (NAML) conference in March 2021 (~30% acceptance rate) and tentatively 

accepted pending two sets of minor revisions to the Military Operations Research 

Journal.  The work in Chapter 3 was submitted to the Data Mining and Knowledge 

Discovery Special Issue on Explainable & Interpretable ML and Data Mining in May 

2021 (under review).  The work in Chapter 4 is part of an ongoing $5 million / 3-year 

DARPA program named Competency-Aware Machine Learning (October 2019-

September 2022), for which the author serves as Principal Investigator and winning 

proposal lead author.  Preliminary results were presented to academic, industry, and 

government participants during the September 2020 Principal Investigator (PI) 

meeting.  Additionally, a poster was presented at NAML 2020 & NAML 2021 

conferences.    
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Chapter 2:  Reinforcement Learning Approach to Speed-

Overmatched Pursuit Games with Uncertain Target 

Information 
 

Section 0 Overview   

 Pursuit-evasion games have been studied for decades under perfect information 

and analytically-derived policies for static environments.  Differential equations are 

solved to directly obtain optimal game solutions.  Here, we incorporate uncertainty in 

a target’s position via simulated measurements and propose a continuous deep RL 

approach to support pursuit of a speed-advantaged target.  An OpenAI gym 

environment was created for simulating pursuit game play.  A Kalman filter was 

implemented for simulating data fusion of uncertainties associated with imperfect 

range and bearing measurements from the pursuer to the target.  An actor-critic based, 

model-free, deep discrete policy gradient (DDPG) method [30] was implemented for 

incrementally training an agent to compete at a speed-overmatched pursuit game.  

Essentially, the algorithm aims to optimize the weights of two networks.  The actor 

learns network weight parameters that produce “good” pursuer heading & 

acceleration actions based on state observation inputs.  The critic learns network 

weight parameters that estimate the pursuit reward associated with state and action 

inputs.   
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Each of the DDPG descriptors has particular meaning, as described in Table 4.   

Table 4 DDPG Method Definitions 

DDPG 

Descriptor 
Short description 

actor-critic 

based 

“Actor-critic” methods consist of two models; the actor model 

which gives an action for a given state and a critic model which 

anticipates the reward of a given action based on a given state.  Our 

actor model gives a heading & acceleration action for each state 

observation (Section 2.2).  Our critical model estimates the pursuer 

reward function (Section 2.5). 

model-free 

“Model-free” methods do not explicitly learn or leverage any 

known dynamics of the agent or the environment.  For example, our 

deep learning approach does not explicitly account for the limited 

turning radius of the pursuer.  However, it implicitly learns to 

account the limitation over time based on how the pursuer executes 

given actions. 

deep 

“Deep” learning approaches use multiple layers in an artificial 

neural network.  In our network, we have two “hidden” layers 

between the input layer (state observations) and the output layer 

(heading & acceleration). 

deterministic 

“Deterministic” methods do not incorporate any randomness into 

their policies.  That is, for the same inputs (state observations), you 

get the same outputs (heading & acceleration actions). 

policy 

gradient 

“Policy gradient” methods move the policy (set of heading & 

acceleration actions) in the direction of the gradient of improvement 

(higher pursuit rewards), in the context of DDPG with respect to the 

critic model reward expectation. 

  

 The resulting RL policy was tested under many scenarios and performance 

exceeded that of a baseline bearing-following strategy (Section 4.1).  Emerging RL 

success strategies were analyzed and manually abstracted into grouped behaviors.  

Finally, an online decision-making framework is discussed for leveraging conditional 

past performance to predict future performance, as explored further in Chapter 3 & 

Chapter 4. 
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Section 1 Introduction 

 

 Chapter 1 introduced potential real-world applications, an overview of the 

pursuit-evasion game, a summary of previous research related to pursuit games, and 

novel areas of research contributed by this chapter.  Section 2 of this chapter 

describes the simulation environment of the pursuit and target agents, the game 

environment and associated OpenAI Gym implementation, and uncertainty modeling 

assumptions.  Section 3 outlines an introduction to RL and the implemented 

continuous deep RL approach.  Section 4 presents results and discusses their 

comparison to a baseline alternative algorithm.  And Section 5 summarizes 

conclusions and future work.   

Section 2 Simulation Overview 

In this chapter we consider a two-dimensional pursuit game with variable-

target speed and variable-pursuer speed.  There are many 2-d applications in the real 

world, such as those associated with unmanned ground and maritime surface robotics, 

and others discussed in Chapter 1.  However, insights gained from analyzing a 2-d 

game could also have relevance to a 3-d extensions.  The initial position and heading 

of both the target and pursuer are randomized uniformly over 30,000 simulated games 

for training and 5,000 simulated games for testing to make the computational results 

more general.  The target holds a near-constant heading and speed, allowing for slight 

maneuvers along its trajectory modeled as process noise and sampled from a multi-

variate Gaussian distribution with a mean of zero and a standard deviation of 1e-10 

m2/s3, applied to velocity and acceleration vector components proportional to time in 

accordance with the process noise matrix (Q) as given in Table 5.  The pursuer then 
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attempts to capture the target by maneuvering within a distance smaller than the 

capture radius (ε).  The environmental and Kalman filtering parameters in Table 5 

were used to perform the experiments described in Chapters 2 & 3. 

Table 5 Environmental Run Parameters 
Parameter Value 

simulation time step (𝑑𝑡) 1 second (s) 

maximum simulation duration 500 s 

heading change rate limitation 30 degrees per second 

maximum acceleration 4 (m/s2) 

maximum pursuer speed 2 m/s 

capture radius (ε) 50 m 

maximum distance from target 1200 m 

simulated sensor standard deviation error for angle measurements 3 degrees 

simulated sensor noise standard deviation for range measurements 50 meters 

transition matrix (𝐹) [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

 ] 

process noise matrix (𝑄) 

[
 
 
 
 
𝑑𝑡3/3 0 𝑑𝑡2/2 0

0 𝑑𝑡3/3 0 𝑑𝑡2/2

𝑑𝑡2/2 0 𝑑𝑡 0

0 𝑑𝑡2/2 0 𝑑𝑡

 

]
 
 
 
 

 

GPS position error standard deviation 10 m 

GPS velocity error standard deviation 0.1 m/s 

 

Figure 1 Pursuit game illustration 

In Figure 1, we show a map in space where the X axis represents East-West 

orientation and Y represents North-South orientation. The target position and 

associated uncertainty are represented as the dashed ellipse depicted around 𝑥𝑡  while 

the pursuer is represented by the dashed circle around the state represented by 𝑥𝑝.  
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For the target, we simulate measurements obtained from the pursuer’s position, so the 

elliptical uncertainty correlates with the angle in which the measurement was taken.  

For the pursuer, we assumed a fixed uncertainty covariance matrix at the equivalent 

of a conservatively accurate global positioning system (GPS) measurement (10 

meters), uniform in all directions, yielding a circle.   

A four-dimensional state vector is defined for both pursuer (𝑥𝑝) and target 

(𝑥𝑡) agents.  The first two state vector components represent the agent’s position (in 

2-d) and the second two components represent the agent’s 2-dimensional velocity.  

Note that only the position components of the state estimate and their uncertainties 

are illustrated in Figure 1.  Each agent’s state is an imperfect, mean estimate on its 

position and velocity.  In this research, we consider pursuer and target states with 

uncertainty and we model uncertainty using a 4-by-4 covariance matrix 𝑃 for both the 

pursuer (Pp) and the target (Pt) which represent the accuracy of the mean state 

estimate.  Uncertainty estimates are propagated forward in time and updated when 

new measurements are received using a Kalman Filtering approach, Equations 2 & 6, 

respectively, discussed in Section 2.1. 

The solid arrows emanating from each agent in Figure 1 represent the agents’ 

respective direction of travel and the dotted arrow depicts a “North”-orienting 

direction.  The angle α represents the heading of the pursuer.  The circle about the 

target position represents the capture radius; when the pursuer enters within the radius 

ε, it “captures” the target and wins the game.   To represent games with more 

stringent or liberal capture requirements, one can reduce or lengthen the capture 

radius.   
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Lastly, in this game implementation, the target does not attempt to evade the 

pursuer.  Thus this is a pursuit-only game as studied in [12, 13], where the pursuer 

and target agents are present in the game, but only the pursuer is being controlled.  In 

this pursuit-only game, the target agent knows nothing of the pursuer or that it is 

being pursued.  This is relevant for applications where the target agent is not 

equipped with intelligent capabilities or where the pursuer is attempting to sneak up 

on the target.  The pursuer, however, knows an estimate of the target’s position & 

velocity state, and the associated uncertainty of its state estimate.   

This approach could be scaled to multiple target agents and pursuer agents by 

expanding the dimensions of the action and observation spaces, accordingly.  

Additionally, the Kalman filter-targeting approach would need to be extended to 

cover multiple targets.  However, in the case where the number of targets is unknown, 

a multi-hypothesis tracking approach [31] should be used in place of a Kalman filter 

and the deep RL observation space would need to be set to some maximum number 

of targets (which can become intractable and is very inefficient); future research 

should consider support for flexible observation-sized inputs into learning 

approaches, an open research area.   

Additionally, this approach could be extended to two players playing a 

pursuit-evasion game, where the target agent becomes an evader agent.  For this 

extension, two instances of DDPG algorithms are trained simultaneously over the 

same environment; preliminary results support that the approach extends to the 

pursuit-evasion game without issue, however, these results are omitted from this 

dissertation.  We also note that any extensions of the game can take advantage of the 
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previously trained network in order to bootstrap learning of a modified game via 

transfer learning.  Transfer learning approaches take advantage of machine skills 

learned (encoded into network weights) for a previous task to inform the learning of a 

new task.  In other words, by using initial network weights that correspond to a 

previously-learned task, we accelerate the learning of a new, similar task. 

 

Figure 2 Python Pursuit Game Rendering 

In Figure 2, we share the Python interface we developed that shows the 

pursuer and target agents in a 2-d map. Here, we display both the true target position 

& heading (black vector) and estimated target position & heading (magenta ellipse 

and red vector, respectively) consistent with the underlying observations.  Similarly, 

the pursuer true position and heading are displayed (green vector), along with its 

associated position uncertainty (light blue ellipse).  In this example, the pursuer 

estimated heading was aligned with the truth, so the estimated heading vector is not 

displayed.  In the figure (left), we show the outputs from each step through the game 

episode and their associated rewards, discussed in detail in Section 2.5.   This 

developer interface was useful for debugging the approaches and understanding the 

agent’s behavior under different environmental conditions (scenarios). 
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2.1 Measurement Simulation 

Unlike previous research (Table 1), the pursuit game studied in this chapter 

incorporates uncertainty on both the pursuer and target positions consistent with real-

world expectations.  The pursuer only senses the approximate target position, 

resulting in imperfect information.  More specifically, the pursuer perceives a line of 

bearing measurement to the target (angle) and distance measurement to the target 

(range) at each simulated time step.  A measurement model was implemented which 

accounts for pursuer-to-target relative geometries and randomized measurement error.  

A Kalman filter dynamical system model [32] was chosen to predict and track the 

mean state estimate and uncertainty over time according to the dynamics in Equations 

1-6 (see below).  Due to Kalman filtering’s memoryless property, only the current 

measurement and the state estimates from the previous time step are needed to 

calculate an updated target estimate; no history of measurements needs to be stored.  

The Kalman filter is an optimal measurement-fusion technique used to estimate states 

based on linear dynamical systems in state-space format.  Pairing the Kalman filtering 

approach with a RL approach was natural, as both use state estimates to describe the 

environment.  In this case, the states estimated by the Kalman filter were directly 

included into the observation space (state) used by the RL approach.  Moreover, 

Kalman filtering has been used for position tracking applications for decades, initially 

applied in the 1960’s to space trajectory estimation and integrated on the Apollo 

computer [33]. 
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A Kalman filter consists of two overarching steps:  the prediction step and the 

update step.  The prediction step (Eq. 1-2) propagates the state estimate forward in 

time and the update step (Eq. 3-6) revises the predicted state estimate with the 

information gained from incoming measurements.  For example, if the pursuer senses 

the target at some time and wants to estimate the target’s position at a future time, it 

must propagate the position, velocity, and associated error covariance estimates over 

time in accordance with its velocity estimate.  Otherwise, the pursuer would not 

anticipate where the target would be with accuracy.  This state propagation is 

achieved through the prediction step (Eq. 1-2).   

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒:  𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1        (𝐸𝑞. 1) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥:  𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄            (𝐸𝑞. 2) 

𝑤𝑖𝑡ℎ 𝑤𝑘−1~𝑁(0, 𝑄) 

where 𝑘 is the current simulation step, 𝑥𝑘 is the 4-d target state vector (2-d position 

and 2-d velocity), 𝐹 is the state transition matrix, and 𝑤 is the process noise vector 

sampled from a Gaussian distribution with zero mean and covariance (process noise) 

𝑄.  Moreover, when a new measurement is received, the state estimates need to be 

updated in accordance with the information provided.  This is achieved by the 

Kalman update steps (Eq. 3-6):   

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙:  �̃�𝑘 = 𝑧𝑘 − 𝐻𝑥𝑘                      (𝐸𝑞. 3) 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛:  𝐾𝑘 = 𝑃𝑘𝐻
𝑇(𝑅 + 𝐻𝑃𝑘𝐻

𝑇)−1                (Eq. 4) 

𝑈𝑝𝑑𝑡𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒:  𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘�̃�𝑘               (𝐸𝑞. 5) 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒:  𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘       (Eq. 6) 
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where 𝑧 is the target position and velocity measurement vector, R is the measurement 

noise matrix, and 𝐻 is the measurement matrix [32].  Now that we have shared how 

to propagate estimates forward in time via the predict steps (Eq. 1-2) and how to 

update the estimates based on an incoming measurement via the update steps (Eq. 3-

6), we share how we incorporate our state estimates into our RL observation space. 

2.2 Observation Space 

With the natural compression of uncertainty into covariance matrices via Kalman 

filtering and the symmetry of covariance matrices, the observation space is compactly 

described as 18 elements partitioned here for explanation into three categories: 

1) Elements 1-4 are the target mean state estimate elements  

2) Elements 5-14 are the 10 lower triangular unique entries in the target covariance 

matrix, collapsing the covariance matrix into a single dimensional vector 

3) Elements 15-18 are the pursuer mean state estimate elements 

The target agent’s covariance matrix can be reduced to 10 unique elements since 

the matrix is symmetric.  Here is where we incorporate the learning of uncertainty 

into the RL approach, a novel element of this study.  At each time step, this 18-

element observation is formed by executing the Kalman update from simulated 

measurements of sensors native to the pursuer agent.  This observation allows the RL 

pursuit agent to interpret the target position and velocities, their associated 

uncertainties, and the estimated pursuer agent position before choosing an action.  

Depending on the action chosen, new measurements is simulated, and the observation 

will be updated accordingly. 
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2.3 Action Space 

The action space is comprised of two elements:  acceleration (𝑎) and change 

in heading (𝜑).  In order to enable velocity control, we include an acceleration 

decision variable (in meters per second squared (m/s2)).  The inclusion of an 

acceleration decision variable is another novel element of this study, addressing 

dynamic speed control (Table 1).  Additionally, a change in heading (in radians) 

decision variable is included.  Most literature in homicidal chauffeur and pursuit-

evasion games surveyed in [6] [7] only include the change in heading (one-

dimensional) in the pursuer and evasion decision spaces.  

2.4 Game Progression  

At each simulation step, the change in heading action is applied by taking the 

rotation matrix formed by the chosen angle change (𝜑) and applying it to the pursuer 

velocity, as shown in Eq. 7, where the third and fourth velocity components of the 

pursuer’s 4-d state estimate vector are annotated with their associated subscripts and 

the updated velocities are annotated with a prime designator (′).  Additionally, the 

acceleration action is applied by increasing or decreasing the pursuer velocity along the 

new heading, as shown in Eq. 7 where 𝑑𝑡 is the simulation time step and 𝑎 is the 

acceleration action. 

[
𝑥3

𝑝′

𝑥4
𝑝
′
] = [

cos (𝜑) −sin (𝜑)

sin (𝜑) cos (𝜑)
] [

𝑥3
𝑝

𝑥4
𝑝] +  𝑑𝑡 [

𝑎
𝑎
]                  (𝐸𝑞. 7) 

A new measurement, range and azimuth to target, is generated by accounting 

for the relative geometries between the pursuer (equipped with a range and azimuth 

sensor) and the target.  First, the true range and azimuths are computed.  Second, 
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noise is added according to a Gaussian distribution with zero mean and predefined 

range and azimuth noise levels (Table 5, simulated sensor noise standard deviation 

for range measurements & simulated sensor standard deviation error for angle 

measurements). 

2.5 Reward 

The reward applied at each step is the calculated distance between the pursuer 

and the target (Eq. 8), using the Euclidean norm.  Since RL algorithms are most 

commonly designed to maximize reward, the resulting distance is inverted in sign.  

This encourages the pursuer to get closer to the target at each step.  The simulation 

time is a parameter, along with others provided in Table 5; here, we used a simulation 

time step of 1 second. 

𝑟 =  −‖(𝑥𝑡 − 𝑥𝑝)‖            (𝐸𝑞. 8) 

Three different terminal (sparse) rewards were applied using the following scenarios. 

1) If the pursuer’s distance to the target exceeded the maximum threshold (1200 

meters), a penalty of -1500 was applied. 

2) If the maximum simulation step limit (500 seconds) was reached, a penalty of        

-1500 was applied. 

3) If the pursuer penetrated within the capture radius of the target, a reward of 1500 

was applied minus the total pursuit time duration (from scenario start to time of 

capture) to encourage more efficient pursuit strategies. 

The selection of the penalty in 1) was chosen so that it exceeded the possible 

distance from the target reward at any time step (-1200).  Otherwise, the agent could 

be rewarded for traversing further away from the target.  The selection of the capture 

reward was chosen so in an immediate capture scenario, the reward would be 

symmetric to the failure rewards in 1) and 2) about zero.  Since the maximum time is 



26 

 

limited to 500 time steps, the lowest capture reward the pursuer could earn was 1000 

(1500 – 500 time steps).  In all three of these scenarios, the game ends.  No other 

termination criteria were specified. 

Section 3 Reinforcement Learning Approach  

3.1. RL  

RL is a subset of ML wherein an agent learns by interacting with an environment 

through its actions and their associated rewards and effects, exactly like a Markov 

Decision Process (MDP), but where all of the states and transitions are not necessarily 

known.  The goal of a MDP or an RL approach is to determine an optimal control policy 

(sequence of actions) which maximizes all future rewards.  The basic agent-

environment interaction modeled in RL is illustrated in Figure 3.  

 

Figure 3 RL approaches learn optimal policies to maximize rewards in a given observable 

environment 

 Deep reinforcement learning is particularly well-suited to handle sparse rewards 

like those experienced in this pursuit game, as ratified by the breakthrough AlphaGo 

performance in [34].  Due to the continuous nature of the action and observation 

spaces in this pursuit game, and the success of its employment in [11], the DDPG 

algorithm in [30] was used.  The DDPG approach combines the Deterministic Policy 

Gradient (DPG) reinforcement learning algorithm from [35] with deep learning 

function approximation.  An alternative asynchronous actor-critic (A3C) RL approach 

was explored by the authors for this exact problem implementation, but the trained 
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agent did not achieve satisfactory performance even after long periods of training on 

near-stationary targets; the authors concluded that the A3C approach attempted was 

not successful due to the attempt to discretize the intractable continuous action space 

inherent to the pursuit game. 

3.2 DDPG  

 The DDPG algorithm in [30] combines actor and critic methods with policy-

gradient methods.  Actor-critic methods consist of two models; the actor model which 

gives an action for a given state and a critic model which anticipates the reward of a 

given action based on a given state.  The actor model selects an action which maximizes 

an approximate Q-function which the critic learns by minimizing a Bellman loss 

function.  

 A Bellman equation first applied to dynamic programing, where a problem is 

decomposed into a sequence of subproblems, determines an optimal policy by 

recursively solving an action-value function 𝑄𝜇(𝑠𝑡, 𝑎𝑡) (Eq. 9), where 𝑠𝑡 and 𝑎𝑡 are the 

state and action at time 𝑡, respectively, 𝑟 is thre reward function, 𝐸 is the environment 

described in Section 2, 𝜇  is the target policy, and 𝛾 is the discount factor applied to 

future rewards. 

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] (𝐸𝑞. 9) 

 DDPG employs two sets of actor-critic agents, each rooted in a deep artificial 

neural network.  In addition to actor-critic networks updated at every time step, an 

additional set of actor-critic target networks are updated at a slower rate, and only 

with some of the updated weights from the current actor-critic networks, making for 

smoother model updates, less sensitive to uncommon scenario-specific interactions 
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and edge cases.  The DDPG algorithm from [30] is described in Table 6 in detail for 

this implementation.  Essentially, the algorithm aims to optimize the weights of two 

networks.  The actor learns network weight parameters that produce “good” pursuer 

heading & acceleration actions based on state observation inputs.  The critic learns 

network weight parameters that estimate the pursuit reward associated with state and 

action inputs. 

Table 6 DDPG Algorithm applied to the Pursuit Game  

Algorithm 1 DDPG Algorithm applied to the Pursuit Game 

Parameters:  Discount factor 𝛄, number of episodes M, number of steps for each episode T, 

batch size n 

1. Randomly initialize critic network 𝑸(𝒔, 𝒂 |𝜽𝑸) and actor network 𝝁(𝐬|𝜽𝝁) with weights 

𝜽𝑸and 𝜽𝝁. 

2. Initialize target network 𝑸′ and 𝝁′ with weights 𝜽𝑸′
← 𝜽𝑸, 𝜽𝝁′

← 𝜽𝝁 

3. Initialize replay buffer 𝑹 

4. for episode = 1, M do 

    5. Initialize a random process 𝑵 for action exploration 

    6. Receive initial observation state 𝒔𝟏, where the state is comprised of the 18 elements 

described in Section 2.2.  

    7. for t=1, T do 

        8.  Select action 𝒂𝒕 = 𝛍(𝐬|𝜽𝝁) + 𝑵𝒕 according to the current policy and exploration 

noise, where the action is comprised of the 2 elements described in Section 2.3. 

        9. Execute action 𝒂𝒕 and observe reward 𝒓𝒕 and observe new state 𝒔𝒕+𝟏, where the 

pursuer reward is described in Section 2.5. 

       10. Store transition (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝑹      

       11. Sample a random batch of 𝒏 transitions (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) from 𝑹 

       12. Set 𝒚𝒊 = 𝒓𝒊 + 𝛄𝑸′(𝒔𝒊+𝟏, 𝝁′(𝒔𝒊+𝟏|𝜽
𝝁′

)|𝜽𝑸′
) 

       13. Update critic by minimizing the loss using a gradient descent optimizer:     

𝑳 =  
𝟏

𝑵
∑ (𝒚𝒊

𝒊
− 𝑸(𝒔𝒊, 𝒂𝒊|𝜽

𝑸))𝟐 

       14. Update the actor policy using the sampled policy gradient: 

𝜵𝜽𝝁𝑱 ≈
𝟏

𝑵
∑𝜵𝒂𝑸(𝒔, 𝒂 |𝜽𝑸)

𝒊

|𝒔=𝒔𝒊, 𝒂=𝝁(𝒔𝒊)𝜵𝜽𝝁𝛍(𝐬|𝜽𝝁)|𝒔𝒊
 

      15. Update the target networks: 

𝜽𝑸′
← 𝝉𝜽𝑸 + (𝟏 − 𝝉)𝜽𝑸′

 

 𝜽𝝁′
← 𝝉𝜽𝝁 + (𝟏 − 𝝉)𝜽𝝁′

 

      end for 

end for 
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The terms used in the DDPG algorithm outlined above are summarized in  

Table 7. 
 

Table 7 DDPG Terminology 

DDPG 

Term 
Short description 

γ Discount factor applied to future rewards. 

M 
Number of episodes.  Number of pursuit games to play during the DDPG 

training phase.  For us, this is 30,000 pursuit games. 

T 
Number of steps for each episode.  This is maxed out at 500 steps for our 

pursuit games. 

t Current time step index. 

n 
Batch size.  Governs the number of transitions that are sampled from the 

replay buffer to compute the expected game reward. 

𝜃𝑄 Weights in the current critic network.   

𝜃𝜇 Weights in the current actor network.   

𝑄 
Current critic neural network.  The neural network that governs reward 

function approximation. 

𝜇 
Current actor neural network.  The neural network that governs action 

selection. 

𝑄′ Target critic neural network. 

𝜇′ Target actor neural network. 

𝜃𝑄′ 
Weights in the target critic neural network, updated at a slower rate than 

the current critic neural network. 

𝜃𝜇′ 
Weights in the target actor neural network, updated at a slower rate than 

the current actor neural network. 

𝑅 

The replay buffer.  Storage of transitions saved in memory for later 

reference.  Here, we save transitions from a current state to the next 

state, in accordance with our acceleration and heading actions, and the 

associated reward. 

𝑁𝑡 
Exploration noise for time t.  Noise is added to the action itself to 

promote exploration of the state space. 

𝑎𝑡 
Action for time t, where the action is composed of two parts, heading 

and acceleration, as described in Section 2.3. 

𝑠𝑡 
State for time t, where state is composed of 18 elements described in the 

observation Space Section 2.2. 

𝑟𝑡 Reward for time t, where the pursuer reward is described in Section 2.5. 

𝐿 Loss function. Bellman equation as described in Section 3.2. 

𝛻𝜃𝜇𝐽  
Sampled policy gradient.  Take the mean of the sum of gradients 

calculated from the mini-batch experiences in the batch indexed by i. 

𝝉 
Proportion of target network weights that are updated from the current 

networks.   
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Specific DDPG implementation parameters and their values are listed in Table 8. 

Table 8 DDPG Run Parameters 

Parameter Value 

optimizer Adam [36] 

target network update 

parameter (τ) 
0.99 

batch size (n) 64 

actor and critic linear neural 

net structures 

18 (inputs/Section 2.2) x 

400 (hidden layer) x 300 

(hidden layer) x 2 

(outputs/Section 2.3) 

discount factor (γ) 0.99 

 

Section 4 Results & Discussion 

After execution of 5000 randomized testing trials, we compared the DDPG-trained 

agent capture performance to that of a baseline bearing-following (always taking a 

direct angle to the target) pursuit approach.  Moreover, we studied performance 

sensitivities to initial conditions.  Each trial consisted of initial position randomization 

of the pursuer and target within a 1200 by 1200 meter (m) operating space and 

randomized maximum target speed between 0 and 8 meters per second (m/s). 

Sensitivities to performance were analyzed for three initial conditions: 

1) The starting distance of the pursuer from the target 

2) The initial relative angle to the target 

3) The maximum speed of the target 
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4.1. Bearing-Following Baseline Algorithm 

The baseline bearing-following capture strategy takes a direct route to the 

target from the pursuer’s position using the algorithm described in Table 9, and 

further illustrated in Figure 4. 

Table 9 Baseline bearing-following pursuit algorithm 

Algorithm 2 Baseline bearing-following pursuit algorithm 

1. Compute the pursuer to target position bearing vector 𝒗 

2. Compute the angle from the pursuer to the target, where 𝒗𝟏 and 𝒗𝟐 are the Cartesian X 

and Y components of the vector 𝒗 

𝛉 =  𝐚𝐫𝐜𝐭𝐚𝐧 (
𝒗𝟐

𝒗𝟏

) 

3. Compute the current pursuer heading 𝜶 

4. Compute the maximum heading action which will align the pursuer heading with the 

velocity heading 

𝝋 = 𝝎 ∗ (𝛉 −  𝜶) 

5. Continue at constant speed (zero acceleration) and apply change in heading action 𝝋 

 

 

 
Figure 4 Baseline bearing-following policy illustration 

 

The bolded action 𝝋 complies with the 𝝎 limit on maximum heading change, 

analogous to the turning radius limitations studied in the homicidal chauffeur 

problem.  In our case, 𝝎 was equal to 30 degrees per second, governing how fast the 

agent can turn.  That is, the agent can only turn so much in one simulation time step.  

In the baseline pursuit strategy, the pursuer maintains a constant speed, consistent 

with previous literature [12, 14, 9, 11] and the classic homicidal chauffeur problem 

[5] and its derivatives surveyed in [6, 7]. 
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4.2. Baseline-RL Results Comparison 

The DDPG agent was trained using a Pytorch platform on an HP ZBook 15 

computer with a modest 16GB of memory and an Intel Core i7-6820HQ CPU.  A 

training episode is analogous to running the pursuit game simulation once.  The 

DDPG agent analyzed in this Chapter was trained against 30,000 training episodes; 

2,000 training episodes were timed and took approximately 3 hours of computational 

runtime without any efforts for parallelization.  The timing scaled nearly linearly for 

30,000 episodes, taking approximately two days of processing time, though the 

experiment was not explicitly timed. 

The following figures show the performance of the RL agent compared to the 

baseline agent.  The X axis represents the discretized bins associated with the 

corresponding initial conditions, using the lower limit bin value as the axis label.  

Figure 5 shows the performance superiority of the RL agent over the baseline agent 

with respect to the initial speed of the target.  The X axis represents the maximum 

speed of the target and the Y axis represents the number of cumulative (aggregated) 

captures as the maximum speed increases.  Here, based on superior performance, we 

know that the RL agent has learned anticipatory strategies sufficient to plan an 

interception point in advance of the target’s current position.  Otherwise, its 

performance would present the same or worse than the baseline algorithm.  In the 

cases where the target maximum speed is greater than that of the pursuer’s (where the 

X axis value is greater than 2 m/s), the pursuer is successful in a speed-overmatched 

game.  This result is novel and no prior work has realized a RL pursuer agent capable 

of pursuing a speed-advantaged target.  
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Figure 5 DDPG RL pursuit algorithm outperforms baseline algorithm against increasing target 

maximum speed parameters 

The non-cumulative captures as a function of maximum target speed, as 

shown in Figure 6. 

 
Figure 6 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures 

against initial angle to target conditions 
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Figure 7 shows the performance sensitivities of both algorithms to the initial 

distance between the pursuer and the target.   

 

Figure 7 DDPG RL pursuit algorithm outperforms baseline algorithm against increasing initial 

distance to target parameters 

The non-cumulative plot of the initial distance to target effects on baseline and 

RL-trained performance is shown in Figure 8.  Here, the performance advantage of 

the DDPG algorithm over the baseline algorithm becomes exaggerated early in the 

parameterization space, achieving significant separation around 200 meters, but then 

shrinks around 900 meters.   

 
Figure 8 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures 

against initial angle to target conditions 
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Figure 9 shows the non-cumulative captures as a function of the initial angle 

of the pursuer to the target.  This plot illustrates an expected result in which the 

baseline algorithm performs at a level commensurate with the RL algorithm when 

positioned “ahead” or “in front” of the target (orange rectangle).  Here, we would 

expect a simple bearing-following (direct angle to the target position) strategy to be 

successful, and it is.   

 

Figure 9 Baseline pursuit algorithm performs well in certain pursuer-to-target angle 

initializations 

The cumulative (aggregated) plot of the initial angle effects on baseline and 

RL-trained performance is shown in Figure 10. 

 
Figure 10 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures 

against initial angle to target conditions 
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4.3. Comparison to DDPG Approach without Uncertainty 

 In addition to analyzing the effects of the RL-based solution against a course-

aligned baseline control policy, we also performed an experiment to quantify the 

benefits of the inclusion of the covariance error into the observation space.  Here, the 

new baseline algorithm consists of the same DDPG approach with a modified 

observation space.  While the original observation space contained 18 elements, 

including the error covariance matrix for the target, the modified observation space 

only contains 4 elements, corresponding to the mean 2-d position estimate for the 

pursuer and the target. 

 When we train each algorithm over 10,000 trials and perform an experiment 

over 5,000 trials, we find that the RL algorithm that directly accounts for uncertainty 

in its observation space outperforms the baseline RL approach without uncertainty by 

a factor of 4 times.  The RL algorithm with uncertainty wins 1011 of 5000 games 

while the baseline algorithm only wins 252 of 5000 games.  The fraction of captures 

over the initial distance to target condition is shown in Figure 11. 

 

Figure 11 Comparison of RL pursuit algorithm with uncertainty to baseline RL pursuit 

algorithm without uncertainty 
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 This result shows the importance of encoding known information about 

uncertainty directly into the observation space.  However, the RL algorithm may be 

able to learn the uncertainty on its own over time based on uncovering the 

relationship between the relevant pursuer-to-target geometries, consistent with 

simulated measurements.  In any case, the incorporation of an error covariance 

tracker for pursuit games with uncertainty shows considerable benefits over its 

exclusion. 

4.4. Online Decision-making Leveraging Conditional Past Performance 

While randomness was controlled between RL and baseline experiments, the 

sampling from the initial parameters was not deliberately controlled for the initial 

angle to the target and distance to the target since each trial was initialized by placing 

the pursuer and target agents down randomly in the operating space.  Thus, the 

number of samples across the initial distance to target and initial angle to target 

parameter spaces were not evenly sampled. 

Regardless, in the next set of results, we consider the historical performance 

of the DDPG RL algorithm for supporting the decision of whether to pursue an agent 

given the current conditions.  Figure 12 shows the experimental capture success, as a 

fraction of wins over total trials, in a heat map over the coupled conditional effects of 

the initial distance to the target and the maximum speed of the target. 
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Figure 12 Heat map of DDPG RL performance under coupled conditions for 5000 sample games 

 

Further analysis of Figure 12 indicates that when the pursuer starts close to a 

slow-moving target (upper left of heat map), its performance supports high capture 

success.  Conversely, as the pursuer’s initial distance to the target grows and the 

maximum speed of the target increases, the chances of successful capture decrease.   

We note the anomalous historical capture success cells in the 11th and 12th 

distance bins and explain them by recalling that the number of samples across the 

horizontal bins was not uniform.  Only 5 samples were analyzed for each of those two 

anomalous parameter combinations resulting in 2 of 5 and 3 of 5 successful captures 

for the 11th and 12th column anomalous cells, respectively. 
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4.5. RL Agent Strategy Abstraction 

Our final analysis segment focuses on categorization of the strategies which 

emerged out of the DDPG RL optimization policy.  These motivate the automated 

strategy mechanism employed in Chapters 3 & 4.  Figure 13 shows the paths of the 

first 17 successful runs of the 5000 test cases and human visual inspection supports 

that the pursuer follows five different types of strategies:  

1) “L-shaped”:  The pursuer closes in on the target perpendicular to the target’s 

direction of travel; then, the pursuer turns approximately 90 degrees toward the 

target and closes distance until capture. 

2) “Direct”:  The pursuer takes an efficient route toward the target, anticipating the 

capture point near-perfectly.   

3) “Unsure”:  The pursuer attempts to improvise a favorable approach angle to the 

target, unsure of the capture point.   

4) “Race”:  The pursuer runs near-parallel to the target until it catches up, then turns 

toward the target to secure a capture. 

5) “Sweep”:  The pursuer attempts to approach the target along an arc, leading to a 

successful capture. 

Interestingly, these strategies are determined automatically through the 

introspective methods in Chapter 3 (Figure 20).  In Figure 13, we manually labeled 

the scenarios with each of the five strategy abstractions discussed here. 
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Figure 13 17 successful run samples and their associated manual strategy abstraction labels in X-

Y space 

Successful captures without labels did not have discernable qualities or were 

trivial scenarios where the target moved especially slow.   

Section 5 Conclusions 

We demonstrated the utility of an agent trained with the DDPG 

reinforcement-learning algorithm in a speed-overmatched pursuit game with 

uncertain target information.  The RL agent outperformed a baseline bearing-

following strategy by increasing capture successes by more than 100% in a 5000-trial 

experiment.  Furthermore, the RL agent was more robust to harsher distance and 

angle-to-target starting conditions and overmatched target speeds.  As the target speed 

increased, the benefits of the RL approach over the bearing-following baseline 
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strategy widened greatly.  Future research could explore the introduction of obstacles 

and their effects on agent performance, as explored in [10] via mixed 

complementarity problem modeling. 

Additionally, we discussed the potential utility of leveraging historical 

performance partitioned by initial conditions for online unmanned system decision-

making. Future work could consider integrating conditional historical performance 

data into an online capability which predicts the probability of successful capture 

from historical data and current operating conditions.  This capability could help the 

pursuer determine whether it should pursue the target of opportunity, wait for a 

different target, or avoid resource expenditure under unlikely success situations; 

examples include expending energy to attempt to intercept a pass in sports or 

expending limited ballistic missile defense resources toward incoming threats.  Such 

analysis would also help determine the timing for when the pursuer should begin 

pursuit, leading to better energy efficiencies for unmanned systems with endurance 

limitations.   

Moreover, we analyzed the underlying strategies employed by the RL-trained 

pursuer agent against the target agent.  We manually inspected the resulting paths and 

aggregated them into five labeled categories.  Future work could investigate online 

strategy and inference, such as methods for online strategy and performance 

prediction, prototyped in Chapter 4.  
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Chapter 3:  Uncovering Strategies and Commitment 

through Machine Learning System Introspection 

 

Section 0:  Overview 

Deep neural networks are naturally “black boxes”, offering little insight into 

how or why they make decisions.  These limitations diminish the adoption likelihood 

of such systems for important tasks and as trusted teammates.  We employ 

introspective techniques to abstract machine activation patterns into human-

interpretable strategies and identify relationships between environmental conditions 

(why), strategies (how), and performance (result) on a deep reinforcement learning 2-

d pursuit game application.  “Introspection” here refers to the analysis of neural 

network activation patterns, and is analogous to looking into one’s own brain from 

psychology.  Activation patterns refer to the outputs of each neural network hidden 

layer over time and are considered synonymous with machine “behaviors”. For 

example, we found that activation patterns that were abstracted into “head-on” or “L-

shaped” maneuver strategies were successful and intuitively corresponded to 

favorable initial conditions, such as the initial distance to the target and the maximum 

speed of the target. In this time-series application, we are performing introspective 

analysis after the game has been played.  As we have shown considerable utility in 

studying machine strategies, we motivate future research into development of an 

online strategy predictor.  An online strategy predictor could provide near real-time 

updates to a human partner about the estimated strategy that the machine is using to 

perform the task.  As a result, the human can anticipate the strategy that the ML is 
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employing prior to making important actions, like a 90-degree turn associated with an 

“L-shaped” maneuver strategy. 

We are interested in characterizing machine strategies abstractly so that 

humans can gain insights into the “black box”, understanding how the machine 

arrived at its output rather than accepting it blindly.  For example, a human is more 

likely to accept an ML output of an “airplane” classification of an object in an image 

if the machine says it used the “looked for wings” strategy rather than just accepting 

the result without any understanding of how the machine determined that an airplane 

was present. 

Moreover, we characterize machine commitment by the introduction of a 

novel measure and reveal significant correlations between machine commitment, 

strategies, environmental conditions, and task performance.  By uncovering 

temporally dependent machine “thought processes” and commitment through 

introspection, we contribute to the larger explainable artificial intelligence initiative, 

increasing transparency and trust in machine learning systems.  And we motivate 

online exploitation of machine behavior estimation for competency-aware intelligent 

systems by revealing correlations between strategies, commitment and resulting 

performance. 

The motivation and summary of prior work (n Table 2. 
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Table 2) pertinent to this research area are discussed in Chapter 1.  In this 

chapter, we uncover and analyze machine behaviors through dimension reduction and 

time-series clustering for a RL agent playing a 2-dimensional pursuit game, as 

introduced in Chapter 2.  In the game, a pursuer agent employs a deep deterministic 

policy gradient (DDPG) algorithm [30] to capture a moving target under imperfect 

information.   

In Chapter 2, we showed significant performance advantages and robustness 

of this deep RL approach over a baseline pursuit strategy.  Prior to the work presented 

in Chapter 2, no approach to pursuit or pursuit-evasion games addressed imperfect 

information, dynamic speed control, and speed overmatch (Table 1).  Tackling 

challenges of uncertainty, speed control, and speed overmatch supports deployment 

of the resulting algorithm on real, unmanned systems in dynamic environments.  In 

this case, the pursuer must learn anticipatory strategies to capture a speed-advantaged 

target and robust strategies to account for uncertainty.  And results support that the 

pursuer does learn anticipatory strategies needed in order to capture a speed-

advantaged target.  In Chapter 2, based on [37], the authors hypothesized machine 

strategies through manual inspection and characterized performance in terms of user-

proposed environmental conditions.   

In this research, we make important observations across behaviors, game 

outcomes, environmental conditions, and human relatability.  We demonstrate utility 

of machine introspection over action-only alternatives (Figure 17), uncover aggregate 

human-relatable strategies in terms of explainable initial conditions (Figure 20 & 

Figure 21), and discuss how these relationships can be exploited for online 
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performance prediction.  Action-only analysis refers to examination of only the 

actions that the machine took over time, without consideration of the activation 

patterns leading up to the action determination.  Lastly, we define a novel measure of 

machine commitment based on the volatility of activation expressions, measured as a 

function of rolling-horizon Shannon entropy and analyze its correlation to resulting 

machine performance (Figure 24).   

Section 1:  Defining Machine Behavior 

In general, we, and others [25], define machine behavior as the activation 

patterns inherent to outputs (yi) in a neural network.  A neural network is typically 

composed of a series of layers, wherein each node in subsequent layers receives an 

input signal from its previous layer (∑ 𝑤𝑗𝑥𝑗
𝑛
𝑗=1 ), whereby their weights (𝑤𝑗) are 

activated, via a non-linearity function, to produce corresponding output(s) to the next 

layer in the network until the final output layer is reached.  This process is shown in 

Figure 14 for a single node.  During online inference while the trained agent is 

competing in the pursuit game, input signals arrive, starting with the 18-dimensional 

pursuer and target state observation described in Chapter 2 Section 2.2, weights are 

applied (that were learned during training) using a linear operation to combine inputs 

to produce a single input, and an activation function (Figure 19) is applied to the 

single input to determine the output of the node.  The output from this layer is fed to 

the subsequent layer until the final output layer (consisting of heading & acceleration 

actions for our 2-d pursuit application) are reached.  The specific network structure 

and the outputs used in our behavior definition are described in Figure 15.  
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Figure 14 Visual depiction of neural network basic functions at a single node level. [38] 

The neural network learns particular weight parameters in the network during 

a training phase, using the DDPG algorithm described in Chapter 2 Table 4 over 

30,000 training episodes (2-d pursuit games) and associated target outputs 

(rewards).  Weights are optimized so they maximize the expected future rewards, as 

defined in Chapter 2 Section 2.5 for our pursuit problem, encouraging target 

capture.  Once the network is trained, we “freeze” weights associated with each 

node.  That is, when we provide the network particular inputs, we get the same 

outputs (hence the “deterministic” qualifier for the DDPG method).   

 
Figure 15 The network structure that determines our pursuit agent action consists of an 18-

dimensional observation state input, two linear hidden layers, and a final output layer.  A total of 

702 outputs from the hidden layers, shown in green, are included in our behavior definition. 
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In our network, we have an input layer (the Observation, as described in 

Chapter 2 Section 2.2), two hidden layers, and an output layer (the two-dimensional 

action, as described in Chapter 2 Section 2.3). Here, when we refer to dimension, we 

refer to the number of nodes that are present in each layer.  Each node works as 

described in Figure 14.  We use batch normalization and the Rectified Linear Unit 

(ReLU) activation function (Figure 16 left) for our hidden layers and the hyberbolic 

tangent (tanh) activation function (Figure 16 right) on the final output layer, 

consistent with choices made in the successful DDPG implementation in [30].  The 

activation function is applied to the weighted sum, prior to determining the final node 

output, as shown in Figure 14. 

 

Figure 16 Activation functions used in our network 

When conducting introspection (analysis of the internal machine activation 

patterns / behaviors), we consider our machine behavior definition as the 702 

activations (400 (output from hidden layer 1) + 300 (output from hidden layer 2) + 2 

(output from hidden layer 3) nodal outputs) in the network, specifically, the outputs 

of the layer weights through their respective ReLU and tanh activations.  In other 
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words, the yi outputs from each ith node (as shown in Figure 14) in the hidden layers 

make up our behavior (shown in green in Figure 15).   

Similar behaviors (activation patterns) are then clustered together into 

strategies, many of which are interpretable by humans and in terms of conditions.  

Moreover, fluctuations in neuron channels are examined by our commitment 

measure, which is based on Shannon entropy. 

Section 2:  UMAP Algorithm 

To abstract the strategies of a trained Deep RL agent, we employ a dimension-

reduction technique on the activation patterns as the agent negotiates the pursuit task.  

More precisely, we define a single-machine behavior as the underlying neurons 

(nodes) activated during inference over the entire game duration.  Then, we reduce 

the dimensionality of each game episode using the UMAP algorithm [29].  UMAP, 

developed in 2018, is a graph-based method for dimension reduction that is rooted in 

Riemannian geometry and algebraic topology; it is robust for use on sparse, time-

series, and high-dimensional data.  Here, UMAP takes as input all 702 activations for 

each time step and maps them into a two-dimensional space, amenable to human 

inspection.  That is, we reduce 351,000 data points from each pursuit game (500 time 

steps x 702 activations) to just two values, encoding relevant information for 

machine-behavior analysis.  The resulting illustration of these games, color-coded by 

the game outcome, is shown in Figure 17 (left).  

Interestingly, when we apply the same dimension-reduction technique to just 

the two-dimensional action space (heading & acceleration outputs from the neural 

network) over the course of the game, we lose separation over the game outcomes 
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(Figure 17 right).  In the case of Figure 17 (right), we analyze 1000 data points per 

game that contain the two-dimensional action and heading actions that occur at each 

of the 500 time steps.  In summary, we can learn more from looking at machine 

“thought processes” (activations) over time (351,000 data points per game) 

rather than just the actions themselves (1,000 data points per game), even 

though only the actions affect the environment.  This is a very important result, 

motivating further XAI research into analyzing machine behaviors for insights into 

machine competency. 

 

Figure 17 Visual inspection reveals that UMAP-embedded behaviors (left) encode more 

information relevant to the game outcome (color) than just the actions (right).  Understanding 

how the agent thought about its actions revealed more relevant performance information than 

actions alone. 

Complete details for the UMAP algorithm and theoretical foundations are 

available in [29].  UMAP is a graph-based dimension-reduction technique that aims 

to preserve local structure in data through manifold approximation.  A manifold is a 

topological space that resembles Euclidean space around each point in the space [39].  

In our 2-d pursuit game application, we used UMAP to reduce 351,000 activations 



50 

 

associated with each game into a two-dimensional space.  The behavior for each 

game is represented by 702 neurons changing over 500 time steps, yielding 351,000 

data points.  The resulting UMAP dimension reduction from 351,000 data points to 

two dimensions supported behavior visualization and interpretability with respect to 

other game parameters, such as outcome, conditions, and strategy abstractions. 

The UMAP algorithm can be broken down into two phases:  1) relevant 

weighted-graph construction and 2) low-dimensional layout optimization.  In Phase 1, 

we assume that data are uniformly distributed on some manifold, despite the fact that 

not all data are distributed uniformly.  To create such a space, we employ Riemannian 

metrics [40], which take as input a pair of tangent vectors at a point (in our case, a 

node connecting two edges in an abstracted graph) and produce a scalar that 

characterizes the length and angle between the vectors, similar to a dot product.  We 

surmise a manifold where data are separated by varying Riemannian metrics, forcing 

uniformity.  That is, we craft a metric that is defined dynamically to force uniformity 

between data placed into the manifold. Since we have forced uniformity in this 

approximate manifold, we now have data separated with different metrics that we 

wish to merge into consistent global structure and do so using local fuzzy simplicial 

sets constructed using a k-nearest neighbor descent algorithm [41].  In our 2-d pursuit 

game application, we chose a k of 100, where 100 closest games are evaluated in the 

nearest neighbor algorithm.  Then, we constructed a weighted directed graph over this 

manifold using a weight function described in Eq. 10 where we compute the set of k 

nearest neighbors of each data point 𝑥𝑖 under the metric 𝑑 where 𝑑 represents a 

customized metric parameterized by 𝜌𝑖 and 𝜎𝑖 that ensures that at least one other point 
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(𝑥𝑖−) of the k nearest neighbors considered is connected by an arc in the graph to 𝑥𝑖.  

Here, 𝑥𝑖−  refers to any point other than 𝑥𝑖.  In other words, we choose the distance 

metric to be loose enough so that every point (node) is connected to at least one other 

point by choosing the appropriate 𝜌𝑖 and 𝜎𝑖 that guarantee this property.  

𝑤((𝑥𝑖, 𝑥𝑖−)) = exp(
−𝑚𝑎𝑥(0, 𝑑(𝑥𝑖, 𝑥𝑖−) − 𝜌𝑖)

𝜎𝑖
)            (Eq. 10) 

Ensuring connectedness has considerable computational benefits over other 

dimension-reduction techniques, such as t-distributed Stochastic Neighbor 

Embedding (t-SNE); for example, UMAP takes 87 seconds to perform dimension 

reduction on the Modified National Institute of Standards and Technology (MNIST) 

data set while t-SNE takes 1450 seconds [29].  The MNIST data set [42] is a large 

database of handwritten digits that is commonly used for training machine learning-

based image processing systems to correctly classify the digit that was written.  

Finally, the UMAP algorithm optimizes the total cross entropy between the higher-

dimensional graph and the graph projected into lower-dimensional space.  Cross 

entropy [29] measures the difference between two probability distributions.  This step 

guarantees matching of the dimensionality-reduced topology as closely as possible to 

the overall topology of the original data, thus providing a good low-dimensional 

representation. 

Section 3: UMAP Dimension Reduction & Visualization of Deep RL Behaviors 

In Table 10, we share the procedure for abstracting machine behaviors into 

strategy clusters.  In Figure 17 (left), we see natural groupings into three color-coded 

regions corresponding to wins, max distance losses, and time-out losses.   

Table 10 Procedural Pseudocode for Behavior Analysis 
Parameters:  Number of clusters (nk), as determined by “elbow” method illustrated in Figure 18 
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1. Load in activation patterns, game outcomes, and conditions 

2. Perform UMAP dimensionality reduction 

3. Display UMAP results color-coded by game outcome (Figure 17) 

4. Display UMAP results color-coded by condition (Figure 21) 

5. Cluster behaviors using kmeans over nk clusters to assign strategies 

6. Display UMAP results color-coded by strategy cluster (Figure 20) 

7. Display strategy-outcome plot (Figure 19) 

8. Organize game visualizations into strategy-delineated file structure 

9. Manually inspect strategy file folders for human-interpretable strategy labels (labels provided in Figure 20 and 

sample games provided in Appendix) 

Section 4:  Abstracting behaviors into human-relatable strategies. 

Now that we have a compact representation of machine behaviors in two-

dimensional UMAP-reduced space (Figure 17 Left), we define strategies.  Strategies 

are clusters of machine behaviors.  We grouped behaviors into 13 clusters using a k-

means algorithm and analyzed the game trajectories across each strategy.  𝑘-means 

clustering [43] organizes data into 𝑘 groups, where each data point belongs to a single 

cluster with the nearest center.  In our application, we clustered the pursuit games 

after they were reduced to two dimensions using UMAP.  For k-means clustering, the 

number of clusters 𝑘 is given as a parameter to the algorithm.  Then the algorithm 

performs a heuristic routine to minimize within-cluster variances (Eq. 11) using the 

heuristic approach described next where the distance metric is also provided as an 

argument.  In our case, we used the Euclidean distance. 

argmin
𝑺

∑ ∑‖𝒙 − 𝑢𝑖‖
2

𝒙∈𝑆𝑖

𝑘

𝑖=1

 (𝐸𝑞. 11) 

In Eq. 11, 𝒙 are the data points organized into 𝑘 clusters noted by the sets 𝑆𝑖 and 𝑢𝑖 is 

the centroid of the ith cluster.  Heuristic approaches vary for solving this NP-hard 

problem.  Here, we employed a TimeSeriesKMeans algorithm from the 

tslearn.clustering toolbox with default settings, Euclidean distance metric, 

and a given k [44].   



53 

 

First, the standard algorithm initializes assignments randomly by choosing k 

points at random as the cluster center.  Next, it assigns each data point to the cluster 

with the nearest center.  Finally, it re-computes the cluster centroids and repeats the 

assignment step until the assignments no longer change or a maximum iteration is 

reached. 

We chose 𝑘 based on two factors:  the inertia and the resulting mixture of 

game outcomes.  Inertia is the sum of distances of data points to their closest cluster 

center.  In other words, it is the value found in Eq. 11 for particular assignments, 

∑ ∑ ‖𝒙 − 𝑢𝑖‖
2

𝒙∈𝑆𝑖

𝑘
𝑖=1 .  To determine the range of acceptable numbers of clusters, we 

performed an “elbow analysis” [43] over the inertia attribute.  The plot in Figure 18 

shows how the inertia varied based on the different numbers of clusters given.   

 
Figure 18 Using the “elbow method”, we find a range of acceptable numbers of clusters, k, 

highlighted in blue 

Similar to “knee of a curve” analysis, the goal of the elbow method is to 

identify a region of diminishing returns.  In this case the elbow appears somewhere 

between k=9 and k=14 by visual inspection.  To cut down our selection of k further, 

we examined the breakdown of game outcomes for each of the six k candidates and 

found that k=13 had the most homogeneous clusters with respect to game outcome 

(Figure 19).  That is, we visually inspected the resulting mixtures of strategies and 

associated game outcomes and found that k=13 had the best separation over game 
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outcomes.  For example, strategies 3, 9, and 10 are solid green indicating those 

strategies led to 100% Win outcomes (homogeneous mixture).  Conversely, Strategy 

0 is a heterogeneous mixture over game outcomes, including wins (green), time-out 

losses (orange), and max-dist losses (blue).  Selection of k is important for behavior 

analysis as it can also serve as a tuning parameter for the granularity of strategies, 

explored further by ongoing research summarized in [45].   

As shown in Figure 20, we see natural separation over strategies that are 

able to be assigned human-relatable labels.  Many of the strategies correspond to 

the manual strategies determined in Chapter 2.  Moreover, we see separation of 

strategies over wins (Figure 19).  That is, some strategies, like Strategy 9:  “L-shaped 

maneuvers” and Strategy 3:  “head-on approaches” are more likely to result in a 

winning outcome than others, such as “Strategy 12:  Large distance traveled, no 

capture” (Figure 19, Figure 20).   Thus, if we know the strategy employed by the 

underlying AI system, we can characterize expected performance.  This result 

further motivates an online predictive capability for strategies, as developed in 

Chapter 4. 

 
Figure 19 Strategies are composed of different, sometimes homogeneous, game outcome 

mixtures. 
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Figure 20 Clustering behaviors led to human-interpretable separation over strategy clusters.  

Additional sample games for each of the 12 strategies are available in Appendix B. 
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Section 5:  Determining effects of environmental conditions on strategies and 

performance 

Next, we examine the relationships between three expert-provided 

environmental conditions, strategies, and performance.  The three expert-proposed 

conditions for this analysis are “initial angle to target”, initial distance to target”, and 

“maximum speed of the target”, as proposed and analyzed in Chapter 2 based on 

familiarity with the problem and resulting performance plotted with respect to each 

proposed condition.  Instinctively, we expect these conditions to affect the game 

outcome and relate to machine behaviors; the plots in Figure 21 confirm our intuition.  

For example, when we examine the collection of points associated with max 

distance losses (purple points in Figure 17), we observe that the pursuer’s initial 

position is behind the target (Figure 21 Left), far away from the target (Figure 21 

Center), and at a speed disadvantage (Figure 21 Right).  Here, we classify an initial 

angle as “behind the target” in the approximate range [-1, 1] radians (-60 to 60 deg).  

Moreover, when we examine cases where the agent failed due exceeding the 

maximum time limit (blue points in Figure 17), we see many instances of high target 

speed (Figure 21 Right).  Lastly, just as Strategy 3 (“head-on approaches”) visually 

presented many cases where the target was initially positioned ahead of the pursuer 

(Figure 20), we see favorable angles in that region (Figure 21 Left) which correspond 

to 100% Win outcomes (yellow points in Figure 17).  Here, we classify an initial 

angle as “favorable” in the range [−𝜋, −2]  ∪ [2, 𝜋] radians.   
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Figure 21 Behaviors relate to expert-proposed conditions intuitively. 

 

Section 6:  Defining machine commitment and determining commitment effects on 

game outcome 

Now, we define and analyze a novel measure of machine commitment 

generalizable to all deep learning time-series applications. The goal of a commitment 

measure is to capture volatility in machine behavior, where volatility captures the 

fluctuation in activation patterns.  We use Shannon entropy (Eq. 12) as a measure of 

volatility.  We hypothesize that machine “indecision” leads to less favorable 

outcomes.  Here, we define “indecision” as high volatility in activations over time.  

This indicates that the machine has (widely) volatile behavior, analogous to a human 
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exhibiting wavering behavior, switching from one strategy to another without 

commitment to a specific strategy.  However, we note, perhaps conversely, that 

empowerment (Section 7), which measures the act of leaving one’s options open [46] 

[47] [48], has shown positive effects on machine performance as well as curiosity 

[49].   

To frame a discussion around machine commitment, we showcase different 

activation patterns for a sample of ten games, chosen arbitrarily, from our 2-d pursuit 

application in Figure 22.  We refer to each particular hidden node in the network as a 

neuron and each neuron channel represents the outputs (activations) from each of the 

702 nodes over time.  In Figure 22, we show these 702 neuron channels (subplot y-

axis) over 500 time steps (sub-plot x-axis) for 10 sample 2-d pursuit games 

(subplots).  We display how the raw machine activation patterns (before dimension 

reduction) change over time using color intensity and notice how they differ greatly 

between games.  For example, just two neuron channels of 702 are active in Game 7 

while seven are active in Game 4; in some cases, like Game 6, neurons “turn on” and 

stay on; whereas in others, like in Game 9, they turn on and off at various times in the 

game.  Not surprisingly [50], we see very sparse utilization across the neuron 

channels.  That is, few neuron channels are active for any one game, and this is a 

common observation for deep learning approaches [50].  This is analogous to using 

few neurons in your brain to think about something.  We use a measure of volatility 

to understand the fluctuations inherent to these behaviors, and we leverage strategy 

clustering to make sense of these patterns at a higher level of abstraction. 
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Figure 22 Neuron channels are sparsely utilized and vary throughout each game.  Each subplot 

represents a separate game episode. 

Shannon entropy (Eq. 12) has long been used as a measure of the amount of 

uncertainty inherent to a variable over time [51].   

− ∑ 𝑃(𝑥𝑡) log 𝑃(𝑥𝑡)               (Eq. 12)

𝑡 ∈ 𝜏

 

In our application, we are studying the Shannon Entropy of each of the neuron 

channels as they evolve over the course of the 2-d pursuit game.  For each neuron 

channel, each 𝑃(𝑥𝑡) is the activation value (output from the node) for a time 𝑡 in a 

time horizon 𝜏, such as {10, 20, 30, 40}.  The entropy is calculated by the expression 

given in Eq. 12 for each node channel by using the entropy function available in 

the scipy.stats Python library [52].   
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We capture a rolling-horizon entropy score from the current horizon planning 

start time to the end of the game as the agent progresses through the game.  As we are 

performing analysis after the games have been completed, we have perfect foresight 

to the end of the game at each time step for our behavior analysis.  We note that 

rolling-horizon entropy knowledge into the future is not information that is available 

while the agent is online during the game execution itself and would have to be 

obtained similarly to simulating expected action interactions with the environment.  

That is, the machine does not have perfect foresight into its future behavior; we are 

analyzing its behavior throughout the game after the game has ended.  An online 

predictive capability would need to be designed in order to anticipate future behavior 

and predict machine commitment in situ in order to gain insights into machine 

commitment while the machine was performing its task. We also note that for games 

with long or unknown durations, a shorter planning horizon would need to be 

considered for computational tractability.  However, we study perfect foresight 

Shannon entropy here to determine its utility for a commitment attribute discussed in 

more detail in the next section. 

We propose a novel definition of machine commitment, wherein we measure 

volatility of the neurons over receding (or rolling, based on the length of the game) 

time horizons.  Shannon entropy describes the level of volatility and information 

gained from activation values as they change over the course of the game.   

 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 =  max
𝜏 ∈ 𝑻

∑ ∑ 𝑃(𝑥𝑡𝑛) log𝑃(𝑥𝑡𝑛)

𝑛 ∈ 𝑵𝑡 ∈ 𝝉  

     (𝐸𝑞. 13) 
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𝑻 consists of the set of all time horizons under evaluation.  For example, for a 

long game with a rolling horizon entropy commitment calculation over a time horizon 

step size of 10 and horizon of 30, = {{0, 10, 20, 30}, {10, 20, 30, 40}, {20, 30, 40, 50}, … } , 

where 𝜏 is a set of times in 𝑻, such as {10, 20, 30, 40}.  In Eq. 13, to calculate the 

level of machine commitment in each game, we sum over the Shannon entropy [53] 

of the neurons 𝑛 in the set of all 702 neurons 𝑁.  For each neuron channel 𝑛, each 

𝑃(𝑥𝑡𝑛) is the activation value (output from the node) for a time t in time horizon 𝜏.  

We characterize commitment as the maximum negative entropy value over all of the 

horizons 𝜏.  For example, if the highest value was associated with 𝜏∗ = {10, 20, 30, 40}, 

then it would correspond to the second element in T, where t indexes each element of 

𝜏∗.   

We note that this is a worst-case assessment of volatility because the entropy 

of two simultaneous events is no more than the sum of the entropies of each 

individual event [51].  In other words, the entropy of one neuron channel added with 

the entropy of another neuron channel is an upper bound on their joint entropy.   

Thus, we can sum entropies over all the neuron channels to obtain an upper bound on 

their joint entropy.  While not studied in this research, we note further that the sum of 

entropies is equivalent to their joint entropy if all events (separated along neuron 

channels) are independent [51].  Next, we take the maximum value over all times to 

capture the worst-case volatility value for each game. And finally, since we are 

aiming to measure commitment (opposite of volatility), we take the negative of the 

volatility measure provided by the Shannon entropy. 
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In our 2-d pursuit game application, we chose a planning step size of 20 

seconds for a game with 500 seconds (4% increments).  That is, 𝑻 was equal to the set 

of time horizons, {{0, 20, 40,…𝑇𝑓}, {20, 40, 60… ,𝑇𝑓}, {40, 60, 80,… ,𝑇𝑓},… }, and the set 

of time horizons was truncated according to 𝑇𝑓.  The rolling-horizon approach is 

extensive to long games with a finite planning horizon less than that of the entire 

game, so that it can scale computationally.  However, for this analysis, we assume 

perfect foresight knowledge of the machine behaviors until the end of the game and 

examine the resulting receding-horizon volatility over time. That is, the planning 

period gets shorter as we step through the game.   

Figure 23 shows the volatility portion (Eq. 14) of the commitment measure, 

which is computed for each time horizon 𝜏 𝜖 𝑻.  Each line plot represents a separate 

game episode and is color-coded by game outcome; each point in the line represents 

the volatility measure for a certain time horizon 𝜏.  The receding-horizon volatility (y-

axis) captures the fluctuation in activation patterns from the current planning period 

start time (x-axis) to the end of the game.  Since the planning period is receding 

(getting shorter in duration) and we are adding entropy (positive value) at every time 

step in the receding horizon, the volatility monotonically decreases over time.  This is 

because fewer and fewer time steps are included in the calculation as we get closer to 

the end of the game. 

 

∑ ∑ −𝑃(𝑥𝜏𝑛) log 𝑃(𝑥𝜏𝑛)

𝑡 ∈ 𝝉𝑛 ∈ 𝑁

  (𝐸𝑞. 14) 
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Figure 23 Receding-horizon volatility measured to the end of the game monotonically decreases 

as the agent progresses through the game, as expected.  

 

In Figure 23, we note that games with “win” outcomes (green) tend to have 

lower receding-horizon volatility at the start and over the course of the game than the 

other game outcomes, decreasing significantly toward the ends of the games (lowest 

green lines on the plot).  We also note that games with “time-out loss” outcomes tend 

to be flatter with respect to their receding-horizon volatility than the other game 

outcomes. 

As an alternative to entropy, we also investigated the standard deviation of 

machine behavior over time as a volatility measure suitable for basing a commitment 

definition.  However, as standard deviation accounts for the fluctuation in the actual 

value of a variable, it was not as well-suited for the desired measure of volatility.  

Standard deviation measures the spread of the data in terms of actual values, which 

we do not care about.  For example, for a bimodal distribution of activation values, as 

the distance between peaks widens, the standard deviation increases.  Conversely, the 
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Shannon entropy stays the same.  In our application, this is analogous to a cyclical 

pattern of activation values over time, which we want to characterize as more 

committed than a random expression of activation values over time.  Shannon entropy 

characterizes this as desired while standard deviation would not.  In addition to this 

distinction, we also examined the resulting commitment values and found that they 

did not vary significantly between game outcomes, rendering it a worse alternative to 

characterize machine commitment. 

Finally, we examine the relationship between commitment and game outcome 

by taking the negative of the maximum receding-horizon volatility (shown as box 

plots in Figure 24 with respect to game outcomes and in Figure 25 with respect to 

strategies).  In the case of perfect foresight and full-game receding planning horizons, 

this is the first (maximum) value in Figure 23.  In Figure 24, we observe that when 

the commitment is above a value of -342 (unitless), 100% of the games result in a 

Win.   

In order to test the significance of our commitment results, we employed a 

Mann-Whitney U test, which tests whether one population of observations is greater 

than another [54].  In particular we used a Mann-Whitney U test to determine whether 

the commitment distribution for any game outcome was significantly greater than 

another.  The results from the test revealed the distribution of commitment levels for 

the Win outcome was significantly greater than those of the Time-Out Loss (p-value 

= 1e-3) and Max Dist Loss (p-value = 2e-8 ) game outcomes.   
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Figure 24 Games with Win outcomes have significantly higher commitment than games with 

Loss outcomes.  Games with commitment values above -342 always resulted in a Win. 

Here, again (like strategies), we determine that commitment is a behavior-

based predictor of expected performance that can be exploited during online machine 

control; we also postulate that when commitment is estimated as high, humans 

can gain more trust in machine behaviors, because machines will remain 

committed to a certain strategy.  For example, if the “L-shaped” strategy was 

estimated with high confidence and commitment was also accurately estimated to be 

high, then the human teammate could anticipate a 90-degree turn from its machine 

partner prior to its occurrence; this discussion and its derivatives have many 

redeeming benefits for human-machine teaming. 

In Figure 25, we show the commitment distributions partitioned by each 

strategy group.  Each game is assigned a strategy using the procedure described in 

Table 10 and the results for each strategy assignment are provided visually in Figure 

20.  We see interesting relationships between high commitment and Strategy 1 (as 

clustered by the method in Table 10), which surprisingly results in frequent maximum 

distance losses (described in detail in Chapter 2 Section 2.5), but executes straight 

line trajectories under impossible scenarios.  We also note that Strategy 10 exhibits 
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low commitment values but results in 100% Win outcomes, where many of the 

trajectories are jagged.  Strategies 3 (“head-on approaches”) and 9 (“L-shaped 

maneuvers”), however, also result in 100% Win outcomes and have higher 

commitment expressions than Strategy 10. 

 
Figure 25 Strategies correspond to varying distributions of commitment values 

In summary, the procedure for performing the commitment analysis is given 

in Table 11. 

Table 11 Procedural Pseudocode for Commitment Analysis 

Parameters:  Rolling horizon step size 

1. Load in activation patterns and game outcomes 

2. for each game, do 

    3. initialize game rolling horizon entropy structure 

    4. for each rolling horizon start time, do 

        5. initialize entropy sum to 0  

        6. for each neuron channel, do 

            7. calculate the rolling horizon entropy for each time horizon 

∑ ∑ −𝑷(𝒙𝒕𝒏) 𝐥𝐨𝐠𝑷(𝒙𝒕𝒏)  𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝝉 ∈  𝑻

𝒕 ∈ 𝝉𝒏 ∈ 𝑵

 

            end for 

         8. Store rolling horizon entropy in game rolling horizon entropy structure 

         end for 

   end for 

9. Visualize rolling-horizon time steps (x-axis) and rolling horizon entropies for each time horizon 

(y-axis) (Figure 23) 

10. Calculate commitment:  𝐦𝐚𝐱
𝝉 ∈𝑻

∑ ∑ 𝑷(𝒙𝒕𝒏) 𝐥𝐨𝐠𝑷(𝒙𝒕𝒏)𝒏 ∈ 𝑵𝒕 ∈ 𝝉    

11. Visualize box plot of commitments by game outcome (Figure 24) and strategy (Figure 25) 

12. Perform Mann Whitney U test on commitments for significance across game outcomes 
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Section 7:  Empowerment 

In order to mimic basic human curiosities and survival instincts, scientists 

have attempted to equip machines with intrinsic motivations.  Approaches vary, but 

one intrinsic reward, Empowerment, seeks to maximize mutual information by taking 

actions which allow the machine to reach the largest number of future states within 

some planning horizon [48, 46, 47, 49].  Mutual information (𝐼(𝑋; 𝑌)) (Eq. 15) 

measures dependence between random variables X and Y through their conditional 

probability distribution (𝑝(𝑋,𝑌)(𝑥, 𝑦)) and their corresponding marginal 

probability distributions (𝑝𝑋(𝑥) and 𝑝𝑦(𝑦)). 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑝(𝑋,𝑌)(𝑥, 𝑦) log (
𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑦(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (Eq. 15) 

Empowerment seeks to maximize mutual information gathered across future actions 

over some planning horizon, annotated in Eq. 16. 

𝐸 = max
𝑝(𝑎)

𝐼(𝐴; 𝑆)    (Eq. 16) 

Here, A describes the actions taken over some planning horizon, p(a) 

represents the probability distribution of actions, and S describes their respective 

observations.  Empowerment seeks to find the probability distribution of actions that 

leads to the most diverse set of expected observations.  In other words, when 

observations stay the same over time, as determined by mutual information scoring 

(Eq. 15), the machine is not empowered, as the mutual information would be zero.  

Conversely, if the machine observes widely varying observations, consistent with 

“exploration”, then the machine is empowered as the mutual information is high 

[55].   
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Empowerment, however, does not explicitly consider the machine’s behavior.  

Instead, it encourages different behaviors by motivating sensory exploration through 

its intrinsic reward.  Commitment measures volatility of the underlying behaviors 

themselves.  We note that commitment, defined as a function of behavior entropy, 

could serve as an alternate intrinsic reward when a desired attribute of the resulting 

agent is to be decisive.  This does not directly conflict with the Empowerment 

intrinsic reward, as high commitment to a certain strategy may result in varying 

observations (high Empowerment).  Future research could study the benefits of 

combining expectations of Empowerment and commitment as intrinsic rewards.  

However, intuitively, the Empowerment motto of “keeping one’s options open” 

seems in opposition to commitment to a certain strategy.   

Section 8:  Interpretations. 

In summary, we have shown considerable value in analysis of “thought 

processes” that govern machine behavior.  For our 2-d pursuit application, we found 

that compact representations of activation patterns (behaviors) preserved more 

information relevant to machine performance than the machine’s actions themselves.  

Moreover, we found that clusters of behaviors (strategies) separated naturally over 

pursuit trajectories that were relatable to humans and that strategies could be 

exploited as predictors for machine performance.  Next, we found that machine 

behaviors related to expert-proposed environmental conditions intuitively.  And 

finally, we defined machine commitment, and found that it was significantly higher in 

games with Win outcomes than Loss outcomes.  As such, future research on 

predicting machine strategy and commitment in situ can offer greater insight and 
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predictability into machine expected behavior and performance, thereby increasing 

user awareness and trust in “black box” ML systems. 

Currently, the authors are applying these XAI introspective techniques to a 

supervised machine learning system for an image-based obstacle avoidance task, 

funded by the DARPA Competency-Aware Machine Learning (CAML) program 

[45], and the focus of the next chapter.  Preliminary results attest to the 

generalizability and applicability of this approach to other AI systems and 

applications.  In conclusion, research in this chapter contributes to increased AI 

interpretability and competency-awareness needed to increase trust and transparency 

of AI systems.  
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Chapter 4:  Achieving Competency-Aware Machine 

Learning through Machine-Derived Conditions and Online 

Strategy & Performance Prediction 

Section 0:  Overview 

Understanding the strengths and limitations of machine competency is 

important both to machines and to humans.  Machine competency refers not only to the 

expected performance of a machine learning system, but also to the strategy (how) 

employed by the machine to perform its task.  If humans understand machine 

performance, they gain trust into machines to perform tasks in high-probability success 

environments.  Moreover, if humans understand machine strategies, they gain 

transparency into the machines and also increase trust in these otherwise “black box” 

systems.  When humans understand how the machine is performing its task along with 

the expected performance, humans can adequately assess the competency of the 

underlying system.  If the machine expected performance was high, but the strategy 

was random, a human would have less confidence in the overall competency of the 

system.  For example, the expected capture performance (i.e. a percentage of 90%) for 

our Chapter 2 deep reinforcement learning pursuit game along with the expected 

strategy, such as “L-shaped maneuver”, make up the machine’s competency.  Lastly, 

understanding the environmental conditions that affect machine competency helps 

provide additional context and insight into why the machine behaves the way it does, 

promoting additional trust in machines.   

Competency assessment of machines is particularly important for the future of 

human-machine teaming applications.  Example use cases include:  manned aircraft 

working with unmanned aircraft; manned ground vehicles working with unmanned 
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systems; human intelligence analysts working with machines to exploit intelligence 

imagery; human commanders working with machines to understand the battlespace and 

make informed decisions; unmanned transportation resources rendezvousing with 

manned surface vessels; and a multitude of other commercial and military human-

machine teaming application areas. 

Currently, most machine learning systems are trained on a static set of training 

data until a certain level of performance is achieved and the system is deemed effective 

by a subject matter expert (SME). Next, trained systems perform their assigned task, 

regardless of their competency to do so or to do well. Typical maintenance of AI/ML 

systems includes human monitoring of self-reported confidence scores, which are 

artifacts of machine experiences limited to the training data set and oftentimes not 

calibrated to probabilistic interpretation.  Once a system is determined defective by a 

human performance monitor, a labor-intensive retraining phase ensues, and the labor-

intensive deployment cycle repeats with fragile trust from the human teammate. 

Alternative state-of-the-art maintenance of AI/ML systems relies on online learning 

mechanisms; however, lifelong learning mechanisms are prone to catastrophic 

forgetting and lack human-verified performance validation, as the system is constantly 

evolving.  In the future, we must ensure that trained systems maintain acceptable levels 

of performance even after long periods of deployment; and we need to recognize when 

such systems may be losing efficacy or under-performing on assigned tasks. Our 

MindfuL™ competency-assessment framework, described in this Chapter, provides a 

persistent and extensible capability for assessing competency of ML systems. 
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To exploit the relationships between environmental conditions and machine 

competency (strategies and performance) motivated by results in Chapters 2 & 3, we 

develop an online predictor system to share near real-time competency estimates with 

a user.    Moreover, we aim to automatically derive conditions that affect machine 

competency so that our approach can be more broadly applicable to other applications 

and so that competency predictions can be traced back to identifiable conditions.  

Traceability supports explainability of our competency predictions in terms of 

environmental conditions for a human user.  While Chapters 2 & 3 considered a time-

series deep RL agent that took target observations as inputs, Chapter 4 considers a 

supervised ML system that performs a task on a per-instance basis with visual image 

data inputs.  The obstacle recognition machine learning system takes images as input 

and determines whether an obstacle is present in the image.  In this simple obstacle 

recognition application, the user is monitoring the machine results and associated 

competency.  This is analogous to a human intelligence analyst determining whether to 

trust or not trust that a machine has processed an image for identifying objects of 

interest.  And by applying introspective techniques in Chapter 3 to a different 

application and input data type, we show how our competency-awareness approaches 

generalize.   

In this chapter, we develop an offline procedure for learning relationships 

between automatically-derived environmental conditions and machine learning 

competency that is generalizable to a large number of ML systems and applications.  

Specifically, we can work with any set of inputs and any deep learning system.  There 

are no known limitations on applications to which this approach could generalize.  In 
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fact, this approach could assess performance even for systems that are not deep learning 

systems; however, the ability to predict the machine strategy would not be available, 

as the strategy approach works on the activation patterns of the underlying deep 

learning system.   

Moreover, we employ and demonstrate an online competency-awareness 

system that predicts machine strategies and performance in near real-time and attributes 

competency predictions to environmental conditions.  The resulting competency-aware 

machine learning (CAML) system is attached to a ML system under evaluation to act 

as a supervisor, passively determining whether the underlying system will maintain 

consistent behavior and performance under dynamically changing environments.  The 

competency-aware system, dubbed MindfuL™ software, interacts with the user to 

safeguard underlying ML systems from being used inappropriately, and prioritizes 

tasks that require user intervention.  For example, if a human and machine are tasked 

with the imagery exploitation (processing of an image for identifying objects of 

interest)  of 1000 images to search for airplane objects, and the machine has never been 

trained on an image that is similar to 100 of those images, the competency-aware 

MindfuL™ system will flag these 100 images for manual exploitation.  Conversely, 

the machine has been trained adequately, according to MindfuL™ environment 

similarity calculations, to exploit 900 of those images.  However, 10 of them have low 

expected machine performance; the MindfuL™ system again flags these 10 images for 

manual inspection.  Finally, the machine processes 890 of those images with high 

expected performance and associated condition and strategy predictions.  The human 

can “spot check” any of these 890 instances and gain insights into why the machine 
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determined there was or was not an airplane present in the image, such as “airport”, 

along with the associated strategy, such as “looked for wings”, thereby increasing 

transparency & trust in machine’s ability to perform the task without human 

verification.   

Without MindfuL™ software, state-of-the-art machine automated target 

recognition systems process all 1000 images, regardless of whether they have been 

adequately trained.  The confidence scores associated with machine predictions are 

prone to miscalibration, as they are based solely on the training data.  And humans have 

no insights into why (conditions) or how (strategies) these “black boxes” arrived at 

their result.  Competency-aware machine learning systems provide a built-in machine 

supervisor to quantify and qualify expected competency for each assigned task. 

Chapter 4 focuses on the competency components (conditions, strategies, and 

performance) of the MindfuL™ system.  The entire system is composed of 14 

components, all of which have been developed and integrated for an obstacle 

recognition supervised ML application.  The inputs and outputs of all components are 

summarized in Figure 26.  However, detailed expositions for the MindfuL™ Memory 

Bank, Competency Statement Generator, Element Interpreter, Element Ingester, 

Competency User Interface (UI) and Information Analyzer components are not 

included in this dissertation.  These supporting components are not considered novel 

and enable database storage and interfaces to the user. 
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Figure 26 MindfuL™ online system input/output architecture 

 

Chapter 4 is organized as follows.  Section 1 describes our machine learning 

application and “ML system under evaluation”; this is the system whose competency 

is being assessed.  Section 2 provides a description of our Experience Encoder, 

including how we automatically learn conditions from the environment using a 

Bayesian nonparametric (BNP) data processing method and store them compactly in a 

database (Memory Bank) for later reference.  The application of BNP for enabling 

competency predictions is novel, expanding on prior research in crafting compact data 

representations [56] [57].  Section 3 describes how we leverage compact 

representations of the environment, stored in our Memory Bank, to determine the 

similarity of the current environment to past machine experiences.  We also share how 

we leverage recognition of similar past environments to yield historical competency 

scores.  This gives the user a sense of how many training experiences the machine has 

endured similar to the current one, and a distribution on both historical performance 

and historical strategies (historical competency) associated with those past experiences.  
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In Section 4, we discuss our approach to offline strategy and performance definitions, 

where we use the same UMAP dimension reduction and k-means clustering techniques 

from Chapter 3 on a new machine task and different deep learning approach.  Section 

5 discusses our approach to online strategy (how) prediction, where we take the outputs 

from the Experience Encoder and layer on a deep learning technique to learn strategy 

predictions.  Similarly, in Section 6, we take in the same compact representation of the 

environment output from the Experience Encoder and learn performance (result) 

predictions.  Next, in Section 7, we discuss how we layer on deep explainer methods 

(Performance Correlator & Strategy Correlator components) onto our predictors 

discussed in Sections 5 & 6 to determine which environmental conditions (why) were 

most influential on the predictions using SHapley Additive exPlanations (SHAP).  In 

Section 8 we walk through the offline and online system distributed functional 

architectures, explaining how the MindfuL™ system is trained (offline) and how it 

works to process new data (online).  And finally, in Section 9, we share interpretations 

of the aforementioned competency capabilities and implications to broader XAI 

research initiatives.  

Throughout this chapter, reference will be made to our prototype Competency 

User Interface (UI), shown in Figure 27.  In addition to being a debugging tool for 

software developers, the UI showcases our proof-of-concept competency assessments 

to a user.  In the future, we will garner feedback from imagery analysts to see what 

competency information they find most useful for the tasks they share with their 

machine partners.  Additionally, MindfuL™ software could be integrated into analyst 

workspaces, including widely used tools such as BAE Systems SOCET GXP® or 
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Government-owned iSpy software.  Through the user interface, the user can provide 

additional semantic-label information to be used by the MindfuL™ system and can 

see machine competency information for the current image being processed. 

Here, we briefly describe the competency information shared through the 

Competency UI.  Outputs from the Environment Similarity Calculator component 

feed into the light blue boxes.  In our imagery exploitation use case, this is the output 

that would correspond to the number of similar training experiences that the machine 

has seen previously; this output would help to flag the 100 samples that the machine 

should not process, as it has no similar experience with those 100 tasks.  This 

measure gives the user an idea of how many times the machine has performed the 

task at-hand during its training. 

Outputs from the Performance Predictor describe the expected machine 

performance to correctly exploit a particular image.  Outputs from the Performance & 

Strategy SHAP components correspond to the conditions (why) that influence our 

competency predictions, such as “airport”.  Output from the Strategy Predictor 

corresponds to the strategy (how) employed by the machine to perform the task, such 

as “looked for wings”.  Through this interface, the user can observe the overall 

competency of the machine learning system and see estimates on the conditions that 

incited particular competence for the current task environment (image being 

processed).  For example, overall competency could be low for cases where the entire 

image is spanned by “clouds” as a condition that negatively affects machine 

performance, especially if the ML system has not had training samples that included 

clouds. 
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Data acquired from a robot camera in simulation populate the image shown, 

which corresponds to the rest of the competency information displayed.  Labels are 

assigned to different conditions output from the Experience Encoder either 

automatically or through the Element Ingester & Interpreter components, which are 

omitted from detailed discussion in this dissertation.  Competency Statements are 

constructed by using open-source natural language generation software, which is also 

omitted from the scope of this dissertation.  Finally, truth information is displayed 

both for performance, whether the ML was actually “blocked” or “free” according to 

LiDAR truth information, and for the strategy, as determined by UMAP 

transformation and k-means inference. 

 
Figure 27 Prototype Competency User Interface (UI) 

 

Figure 28 shows a simplified version of our prototype competency user 

interface, easier to view without overlaid labels summarizing the information 

displayed.  The competency information shown is an actual result from a MindfuL™ 
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assessment of the associated image data shown.  In this case, past performance and 

predicted performance are high, and the ML system has been trained on 8,312 images 

similar to this one; as such, MindfuL™ software summarizes to the user that the 

situation is “suitable” and “familiar”.  This would correspond to one of the 890 

instances from our airplane exploitation use case, where the human can “feel good” 

about trusting the ML result.  In the application displayed here, the machine has high 

expected performance of correctly determining that no obstacle is present in the 

image. 

 
Figure 28 Simplified Prototype User Interface 
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Section 1:  Deep Supervised Machine Learning System under Evaluation 

Separate from the deep RL introduced in Chapter 2 and analyzed in Chapter 3, 

here we consider an agent that performs an image processing task on a per-image basis.  

That is, we consider a machine that processes visual data and determines a binary 

classification of whether there is an obstacle in the image or not.  This task more 

generally supports ground robotic autonomous operation.  Moreover, this task is similar 

to performing imagery exploitation to process images to determine whether an airplane 

is present or not, as described in Section 0.  Obstacle recognition classification is a 

basic machine learning task that we are using as a proof-of-concept application.  The 

task of determining whether an obstacle is present or not is not novel and is used as a 

simple task to use to show that our competency awareness approaches function 

properly. 

 The ML model is the same structure as the open-source Alexnet [58] model and 

was modified by replacing the final object classification layer with a binary classifier, 

where the output classification indicates a “blocked” or “free” estimate, based on 

whether an obstacle is present (“blocked”) or not present (“free”) in the image being 

processed.  An illustration of the neural network structure is provided in Figure 29. 

 

Figure 29 Deep Supervised Learning Model Structure 
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 This Obstacle Classifier ML system under competency evaluation takes in an 

800x800 pixel image generated from a Robot Operating System (ROS) and Gazebo 

simulation (described briefly in the next section) and outputs a classification of 

probability “blocked” or “free”, depending on whether the machine perceives an 

obstacle is present in the image.  Sample visual data inputs for both “free” and 

“blocked” cases are provided in Figure 30.  In a larger-scoped ground autonomy 

system, this obstacle recognition estimate could feed into an obstacle avoidance 

module.   

 

Figure 30 Example visual data inputs  

A screenshot of our ROS/Gazebo simulation is shown in Figure 31.  In the top 

frame, you see the ground robot traveling through a simulation environment.  The 

camera is mounted on top of the robot along with a light detection and ranging 

(LiDAR) sensor.  LiDAR inputs are used to determine true distances from the vehicle 

to the obstacle.  The simulated LiDAR field of view is shown in blue.  In the middle 

of the screenshot, the Laser truth associated with the LiDAR returns and the ML 

prediction from the Obstacle Classifier described above are shown.   
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Figure 31 ROS/Gazebo Simulation Screenshot 

 

The LiDAR laser truth is provided by the simulation and determines the 

distance to the nearest obstacle.  It displays “free” if there is no obstacle within 6 

meters; otherwise it displays “blocked”.  The “ML Probability Free” is the output 

from the Obstacle Classifier neural network described above.  In the bottom left of 

the screenshot we show the incoming visual data associated with the ML prediction.  

And in the bottom right of the screenshot, we show a topic distribution associated 

with the input image, where topic distributions are summaries over features extracted 

from the image.  The next section discusses in detail how we determine compact topic 

distributions to describe the input image data. 
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Section 2:  Automatic Derivation of Conditions via Bayesian Nonparametric Methods 

In order to explain ML competency to the users, we apply a Bayesian 

nonparametric (BNP) method that summarizes the competency-controlling conditions 

while online.  Data are taken as input, features are extracted, and features are 

organized into different topics (clusters) using a BNP approach, described in detail 

throughout this section.  These topics (clusters) summarize the input data compactly 

into a histogram over combinations of features (topic definitions).  In other words, we 

transform an image into a histogram over topics, where topics are defined as 

combinations of features extracted from the image.  Ideally, our topics would separate 

over environmental features that are pertinent to the machine task and to machine 

competency.  For our obstacle recognition task, this could include things like specific 

obstacles, such as a single topic for “building”, “wall”, or “clear grassy foreground”.  

For our airplane recognition task, this could include things like “airport”, “runway”, 

“wings”, “nose”, or “wheel”.  However, since a machine is determining the number 

of clusters directly from images, there are no guarantees that topics will separate 

cleanly over something with specific human-understandable semantic meaning.  

Human interpretation of automatically generated topics from images is more difficult.  

For the rest of this section, we focus on explaining how machine-derived topics are 

arrived without respect for semantic meaning, so that we can compactly characterize 

an image for comparison to other images under the same topic definition (common 

representation). 
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We use Bayesian nonparametric methods as a clustering technique to 

compactly describe our data in terms of a number of topics (clusters) learned from the 

data.  True to the name, Bayesian nonparametric methods perform Bayesian updates 

when new information is received, where it leverages a prior belief of the information 

explained by each input and assigns them to a topic, and updates the belief through 

posterior update.  Bayesian methods are memoryless, encoding all previously 

processed data and associated uncertainties into its posterior belief, so we do not need 

to keep a record of previously processed information.  In our case, we have a 

Bayesian probabilistic model over our clusters.  Moreover, Bayesian nonparametric 

methods are special because they support flexibility of the number of clusters gleaned 

from the data.  That is, as new information is received, the cluster definition can 

expand according to the properties of the data.  Bayesian nonparametric methods are 

used when the number of clusters is unknown and we can add more clusters as 

necessary to explain our data; BNP methods differ significantly from k-means 

clustering, as the number of clusters does not need to be specified a priori.  Instead, 

we learn the number of clusters (topics) from the data.  By employing Bayesian 

nonparametric method to ingest our data and compactly characterize the data in terms 

of a certain set of shared descriptors, we provide a transformation from input data to a 

common compact representation.  When refer to a common basis or common data 

representation, we are referring to the topic definition over shared environmental 

descriptors derived from HDP training described in the next section.  In other words, 

when we compare images to other images, we do so using the topic distributions that 

resulted from processing each image through our HDP Experience Encoder. 
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Alternative to leveraging topic distributions for the foundation of our 

competency assessments, we could train a predictor to go directly from input data to 

competency predictions.  However, then the approach would be limited to taking in a 

consistent number data streams and would not be extensible to multi-modal data 

stream applications when handling missing data and asynchronous data arrivals are 

necessary.  For our obstacle recognition task, this could include simultaneous 

processing of inertial measurement unit (IMU), LiDAR and camera-based sensor data 

simultaneously.  Moreover, Our BNP approach can be extended to transform 

observations from several sensors across disparate modalities into a common 

representation.  And perhaps more importantly, transforming input data into a 

common representation provides us a way to summarize our inputs concisely and 

trace back our predictions (providing the why) to shared environmental topics.  By 

taking this approach, we further increase the portability of our XAI capabilities to 

other applications and input types.  And to realize the approach on our application, we 

implemented a hierarchical Dirichlet process (HDP) BNP approach to take in images 

and produce compact descriptions of the data via “topic modeling”. 

Section 2.1 Hierarchical Dirichlet process (HDP) 

HDP is a BNP method developed in 2006 [59] that clusters data into groups 

based on a number of Dirichlet processes (described next).  A common application of 

HDPs is document processing where words & “bags of words” are analyzed, and 

some (nonparametric) number of topics are determined using HDPs.  In our case, a 

document is synonymous with an input image, and bags of words are synonymous 

with combinations of extracted image features, where each word is an image feature.  
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For example, if this dissertation document was processed, the resulting topics could 

include “artificial intelligence” and “machine learning”.  And if you were processing 

many different documents, we would want the same topics to be available in the same 

representation to support comparisons of topic distributions across documents.  We 

apply the same technique to our images so that we can store machine experiences 

compactly and infer similarity and competency information for current environments 

in terms of past experiences represented over a common representation of shared 

topic descriptors. 

One benefit of HDPs is their considerable ability to compress data into 

compact topic distributions.  Based on current sensor feeds, our HDP approach 

reduces storage requirements by a factor of 40,000 or more on raw sensor data and 

can store experiences for 1 year at less than 2 TB without implementation of 

additional compression or memory management techniques.  This compression 

enables timely comparison of current environments to a vast memory of prior 

experiences.   

At a high level, HDPs use statistical techniques to determine sufficient 

mixtures of features (words) and aggregations of features (topics) that explain a set of 

data (images).  Determining the features that go with each topic and topics that 

represent each image is decided by Dirichlet processes.  The Dirichlet process 

𝐷𝑃(𝛼0, 𝐺0) is a distribution over probability measures; in other words, it is a 

distribution over distributions.  It is governed by two parameters, a concentration 

parameter 𝛼0 and a base probability distribution 𝐺0.  That is, for some measureable 

space where 𝐺0 is a probability distribution on the space, 𝐷𝑃(𝛼0, 𝐺0) is the 
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distribution of 𝐺 over the measurement space so that for any finite measureable 

partition of the space (𝐴1, 𝐴2, … , 𝐴𝑟), the random vector (𝐺(𝐴1), 𝐺(𝐴2),… , 𝐺(𝐴𝑟)) is 

distributed as a finite-dimensional Dirichlet distribution with parameters 

(𝛼0𝐺0(𝐴1),… , 𝛼0𝐺0(𝐴𝑟)) :  (𝐺(𝐴1),… , 𝐺(𝐴𝑟))~𝐷𝑖𝑟(𝛼0𝐺0(𝐴1), … , 𝛼0𝐺0(𝐴𝑟)), as 

established by Ferguson in 1973 [59].   

A common metaphor for how DPs work is represented by the “Chinese 

Restaurant Process” [59].  Initially, in this metaphor, some number of people are 

seated at some number of tables at a restaurant with an unlimited capacity on the 

amount of tables that can fit in the restaurant.  A new guest arrives and sits down at 

an existing table proportional to the number of people sitting at the table or at a new 

table proportional to the concentration parameter 𝛼, set a priori.  Specifically, a new 

customer sits at an existing table with probability given in Eq. 17, where 𝑛𝑘 

represents the number of people currently seated at table k and (i-1) is the total 

number of customers already seated at the restaurant when the new customer arrives.  

Meanwhile, the probability of sitting at a new table is given in Eq. 18.  We note that 

this promotes a “rich get richer” scheme, and that a new customer is more likely to sit 

at an occupied table if many people are seated.  This is known as the “clustering 

effect”, introduced along with the Chinese restaurant process in [60].  We also note 

that the greater the concentration parameter 𝛼, the more likely a new table is to form.  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡𝑎𝑏𝑙𝑒 𝑘 =  
𝑛𝑘

𝛼 + 𝑖 − 1
   (𝐸𝑞. 17) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑛𝑒𝑤 𝑡𝑎𝑏𝑙𝑒 =  
𝛼

𝛼 + 𝑖 − 1
  (𝐸𝑞. 18) 

The HDP extension of this DP metaphor is a Chinese Restaurant Franchise 

process, wherein the HDP determines the number of restaurants, the number of tables 
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in each restaurant, and the number of shared dishes across the franchise.  In our 

application, this is analogous to the number of topics, the composition of features 

present within each topic, and the number of environmental feature descriptors shared 

across topics, respectively. 

Integral to the HDP approach is the definition of a base distribution that is 

itself a draw from a Dirichlet process 𝐷𝑃(𝛾, 𝛽).  This is how we instrument 

hierarchical links between a global topic distribution, governed by scaling parameter 

𝛾 and base probability measure 𝛽 over a local topic distribution, where a Dirichlet 

process for each topic is governed by scaling parameter 𝛼0 and a base probability 

distribution 𝐺0.  For our application, the local topic definition refers to the 

combinations of features that make up a specific topic.  The global topic definition 

refers to how many topics we have overall. In summary, the HDP approach is 

specified by Eq. 19 and Eq. 20 [59] and illustrated in Figure 32 [45]. 

𝐺0| 𝛾, 𝛽 ~ 𝐷𝑃(𝛾, 𝛽)        (Eq. 19) 

𝐺𝑚| 𝛼0, 𝐺0 ~ 𝐷𝑃(𝛼0, 𝐺0) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑜𝑝𝑖𝑐 𝑚      (𝐸𝑞. 20)  

 In simplest terms, 𝛼0 determines when a new feature is assigned to a topic.  

And 𝛾 determines when a new topic is necessary to describe the data that has been 

processed.  The complexity of the model adapts to the composition of features within 

each environment as well as the number of distinct environments.  Both concentration 

parameters (𝛼0 and 𝛾) are tunable and can give rise to more or fewer clusters, 

accordingly.  We performed a parametric study to determine the best choices for the 

concentration parameters using MIT’s high-performance computing environment, and 

the results of the study are omitted from this dissertation.  
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For our application, we process images (documents) into compact descriptions 

(topics) of machine experiences using HDP.  The topic definitions are learned offline 

using the method described.  However, for online use, we freeze the number and 

feature composition of topics and infer topic proportions of new images processed.  

This is so we can compare new data to previous machine experiences under a 

common representation.  During offline training, the HDP learns topic distributions 

that best characterize the data, allowing topic definitions to fluctuate.  Online, we 

make inferences over new data under the trained representation.  In this way, we 

guarantee that references to specific topics retain the same meaning over both offline 

and online phases. 

 
 

Figure 32 HDP of observations into compact representations and traceable conditions [45] 

 

In Figure 32, we show the HDP model.  Features (xmn) are extracted from the 

input image (𝜙𝑘
𝑆) and compared to the feature represented associated with each topic 
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(zmn), which were governed by the concentration parameter α during training.  The 

incoming document is represented by 𝜙𝑘
𝑆

 from some sensor S.  Data are organized 

into separate groups each containing unstructured data features (xmn). All features are 

derived from a common data type across all documents and combinations of features 

are associated with expressions of each topic.  New images are aligned with the set of 

topics learned from previous experience. During training, concentration parameter γ 

determines when a new topic is necessary to sufficiently capture the features 

expressed in the data.  The resulting histogram of topic distributions is the 

compact representation of the machine experience that is saved into memory 

and lays the foundation for competency predictor components and environment 

similarity calculations. The image (environment) associated with the current task is 

thus represented compactly by topic proportions determined by a trained HDP model. 

And each previously experienced environment is described as a unique symbolic 

mixture over the same set of shared topics.  

The use of HDPs addresses several critical issues. HDPs are models over 

shared descriptors; different environments are described by distinct proportions of 

topics. Additionally, by design, each individual environment is a sparse mixture, 

meaning only a few topics are present for each environment. The result is a compact 

representation that explicitly encodes shared properties of different environments in 

the global topic definition. We use the same HDP techniques to encode the current 

operating environment into a local topic definition, thereby identifying emergent 

environmental conditions automatically and providing the basis for making 

competency predictions traceable back to topic dependencies (conditions).  
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Analysis and comparison of topic distributions is used to predict task 

competency. With reference to Figure 32, topic proportions (θ) are a compact 

sufficient statistic of historical data sets and experience [56] [57], resulting in a 

dramatic reduction in required storage capacity. Consequently, reasoning over novel 

environments is with respect to these parameters. The application of HDPs for 

enabling competency predictions is novel, expanding on prior research using HDPs to 

craft compact data representations [56] [57]. 

Over our images for the obstacle recognition task, HDPs work on features 

(words) that are extracted from the image (document).  While a multitude of feature 

extraction methods can be used, we chose to use Oriented FAST and Rotated BRIEF 

(ORB) feature extraction.  ORB feature extraction is available for free from OpenCV 

and describes local features in images [61].  The pre-processing pipeline for 

transforming images into features for inputs to the HDP is involved, including feature 

extraction, summarization, and quantization, for which details are omitted in this 

dissertation.   

The procedure illustrated in Figure 33 helps to summarize the HDP approach 

used as the foundation for competency prediction in this chapter.  An image is input, 

features are extracted (top) and associated with topics (right) according to the feature-

topic memberships.  Finally, topic proportions are determined (bottom) based on the 

feature-to-topic analysis (right) that compactly describe the image.  Every image is 

processed this way.  
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Figure 33 HDP procedure illustration 

 

In the following results, we used an HDP as described above and used ORB 

feature extraction with additional spatial context.  That is, we delineated extracted 

features based on their location in the image.  An example of this “ORB + spatial 

context” feature extraction is illustrated in Figure 34.  In the top left of the figure, we 

can see the red, orange, dark blue, light green, and light blue spatial bins that were 

defined a priori.  Then, within those bins, ORB features are extracted, where different 

orb features correspond to different color intensities.  On the top right, we see the 

magnitude of HDP features (combinations of ORB features shown on the y-axis) 

represented by color intensity extracted from each image document (x-axis).  In the 

bottom left, we show the original image, as collected from the camera sensor in the 

ROS/Gazebo simulation.  And in the bottom right, we show the HDP-derived 

distribution of topics over time, where the document index (image frame index) is on 

the x-axis, topic weights are on the y-axis, and the color represents varying topic 

indices.  Both the top right and bottom right plots show results for a large set of 
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images.  The example images on the left correspond to the first image index.  We can 

play the images as a video over time to conceptually show how the features and topic 

expressions evolve over time. A snippet of the top row of frames is available online at 

https://www.linkedin.com/feed/update/urn:li:activity:6752672510229143552/, 

playing in the opening scene of the video.  As the documents are ordered by frame 

within a certain environment, it is encouraging that we see homogeneity in the topic 

expressions in certain regions of orange (Star 1) and light blue (Star 2).  This is an 

important result that supports strong qualitative attribute of “stability” discussed 

previously.  Otherwise, if topic distributions varied significantly from frame to frame, 

we would feel less confident that we could fairly compare the current environment to 

past experiences adequately. 

 

Figure 34 Illustration of ORB feature extraction with spatial context and associated topic 

analysis 
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The measure we used to calculate topic distributions similarity is a Kullback-

Leibler divergence (KL-divergence) score (Eq. 21).  KL-divergence measures the 

difference between two probability distributions, and is thus a reasonable measure to 

use to assess the similarity between one topic distribution and another. 

𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
)    (𝐸𝑞. 21)

𝑥∈𝑋

 

Here, Q(x) is the distribution over the weights 𝑥 of HDP feature expression 

based on topic proportions from a past environment; P(𝑥) is the distribution over the 

weights 𝑥 of feature expression proportions from the current environment. This 

measure is also foundation for our Environment Similarity Calculator, described in 

Section 3. 

Next, we attempt to qualitatively assess HDP processing of sensory inputs into 

topic distributions.  We introduce “stability” and “consistency” as two qualitative 

attributes of HDP performance; we do not make any claims about significance or 

quantitative assessments that in any way prove that we have adequately captured 

important characteristics of the image for determining machine competency.  

However, both sets of results are encouraging qualitatively and indicative of 

“stability” and “consistency”.  

First, “stability” refers to the sensitivity of topic distributions from frame to 

frame.  We would like the topic distributions to be stable in the sense that they vary 

smoothly when the changes in the image are small.  Second, “consistency” refers to 

the topic distribution variation over different environmental properties.  We would 

like the topic distributions to follow a similar pattern when the ground robot passes 
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through environments where only an environmental property varies, such as snow 

versus rain.  We attempt to qualitatively assess both of these desirable attributes next. 

To assess HDP stability, we calculated the KL-divergence score from one 

image to the next image for two ground robot paths taken through the ROS/Gazebo 

simulation as shown in Figure 35.  And, as we had hoped, images with similar visual 

content have reduced KL-divergence (y-axis) when assessed over time (x-axis).  

From frame to frame, KL divergence varies smoothly when inspected by eye, 

indicating HDP model is not sensitive to small changes in the environment. 

 

 

Figure 35 HDPs produce stable transitions from frame to frame 
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To assess HDP consistency, we collected data across 10 simulated 

environmental properties, as illustrated in Figure 36.  We hope to see similar topic 

distributions associated with each environmental property.  And we also hope to see 

similar patterns in topic distributions as the robot took the same approximate path 

through each of the 10 environments. 

 

Figure 36 Data collected over 10 different simulated environmental properties 
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In Figure 37, we show the KL-scores (y-axis) for each environment (white 

gridlines) over time (x-axis).  We also show how KL-scoring for each environment 

compares to each other environment.  Each of the gridlines separates data collected 

from each environment given in Figure 36 and how it compares to data collected from 

another environment. Intuitively, the results make sense.  When we perform visual 

inspection, for example, we see that the center column (night environmental 

property), is very different (high KL-score, lighter heat index) than other most other 

environments (except itself).  Moreover, we see a repeated cross pattern within each 

grid square, showing that the robot path through each environment is experiencing 

similar fluctuation across each property.  This indicates, qualitatively, that the HDP 

model is consistent across environmental properties, and we have confidence that our 

HDP approach provides stable topic distributions from small changes in the frame 

and produces comparable topic distributions from environmental property to property. 

 

Figure 37 HDP approach yields consistent results within each property and varies intuitively 

across properties  
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Section 2.2 Semantic Interpretability of Topics 

While human interpretability of HDP-derived topics is still an ongoing 

research area, preliminary results support that HDPs can pick up on environmental 

descriptors that have semantic meaning.  When we refer to “semantic meaning”, we 

refer to word labels associated with HDP-derived topics that a human can understand, 

such as “airport”, “wings”, “nose”, and “wheel” for our airplane imagery exploitation 

task.  For our obstacle recognition task, when we simulate an environment with a lava 

ground appearance and input and interpret labels that are available automatically 

through Alexnet processing, we notice that images with high expression of Topic 9 

(Figure 38) are associated with the label “volcano”, as provided in the MEIngester UI 

(Figure 39).   

 

Figure 38 Alexnet machine-provided labels & the MindfuL™ Element Interpreter automatically 

attach the word “volcano” to Topic 9, which is often highly expressed in the lava simulation 

environment  

 



99 

 

 While not described in detail in this dissertation, the MindfuL™ team 

developed an interface, called the Element Ingester (Figure 39), which supports 

efficient labeling efforts, where labels are interpreted and propagated through to topic 

label estimates via a Bayesian update method inherent to the Element Interpreter 

component.   

 

Figure 39 Additional MindfuL™ Element Ingester interface supports human labeling.  

Moreover, we spent approximately 4.5 person-hours to augment the 

automatically-available Alexnet label set to improve topic semantic interpretability by 

annotating data conditions that an expert proposes might have effects on underlying 

competency.  The set of expert-proposed condition labels is provided in Table 12. 

Table 12 Expert-Proposed Condition Labels 

Expert-Proposed Condition Labels 

Object off to left side 

Object off to right side 

Clear (when no obstacle is present and foreground is clear) 

Dark 

Shadow 

Building close 

Barrier (for the jersey barrier/wall) 

Obstacle very close 

Obstacle close 

Smooth surface (this goes with the red objects) 
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Using the Element Ingester, the annotator labeled images that seemed to 

exhibit any of the expert-proposed condition labels. The Element Ingester interface 

supported mass data labeling and the Memory Bank database stored relationships 

between labels and data persistently. As a result of the labeling effort, our topics had 

more human-relatable context.  This is important for determining and communicating 

environmental conditions we suspect strongly influence our strategy and performance 

predictions, described in Section 7.  Example labels, associated data, and high topic 

expressions are shown in Figure 40. 

 

Figure 40 Element Ingester & Interpreter components carry human-provided labels through to 

improve topic semantic interpretability 

Section 3:  Environment Similarity Calculator 

3.1 Assessing current environment similarity to past machine experiences using KL-

divergence scoring 

Since the HDP experience encoder compactly represents ingested data in a 

common representation via topic distributions, we can perform similarity calculations 

over all prior experiences by comparing the topic distribution associated with the 

current environment with those of past experiences.  Similarity between the current 

environment and historical environments, as defined as the similarity between two 
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topic distributions, increases confidence in ML capabilities in the current 

environment, accuracy of Mindful performance predictions, and accuracy of 

behavior-controlling topics.   

We capture the number of experiences succinctly by performing pairwise KL-

divergence (Eq. 21) calculations over the current topic distribution and all previously 

stored topic distributions (machine training experiences).  In Figure 41, we show the 

results of comparing the current document to all prior experiences, as encoded by 

their topic distributions.  The top row represents the most similar past experiences and 

the bottom row represents the least similar past experiences, as determined by KL-

scoring.  Through manual inspection, we see that the top row contains images that 

look similar to the human eye.  Conversely, the bottom row represents the least 

similar images, which also makes intuitive sense.   

 

Figure 41 Environment Similarity Calculator results comparing a current image to images in the 

training data set.  The top left image is the image being tested for similarity to previous 

experiences.  The rest of the top row are the most similar images and the bottom row are the 

least similar images, as characterized by their pairwise KL-divergence score. 



102 

 

As the HDP offers considerable compression benefits, we can perform 

pairwise calculations of current images over past experiences very quickly.  In fact, 

performing all of the competency predictions, similarity calculations, natural 

language sentence generation, and user interface population takes less than 2 seconds 

over 10,000 past experiences, stored compactly in the Memory Bank.  We note that 

this could be sped up considerably by parallelizing the similarity computations, 

however, the resulting update rate is faster than human preference, so there are no 

planned efforts for parallelization on this proof-of-concept application. 

3.2 Historical competency distributions filtered by similar past experiences 

 Another advantage of categorizing whether a past experience is similar to the 

current environment is the ability to characterize historical competency in similar 

environments.  To enable this analysis, in addition to storing topic distributions 

associated with training documents, we store the metadata associated with how and 

how well the machine performed its task in that environment.  In other words, we 

store the historical performance (whether the machine performed its task well) and 

historical strategy (as defined in Section 4.1) along with the topic distribution in the 

Memory Bank.   

As such, for the set of similar documents determined by the Environment 

Similarity Calculator, we can provide a breakdown of the historical performance 

distribution and historical strategy distribution.  And if we have an online strategy 

prediction for the current environment (as derived in Section 5) we can further break 

down historical performance for each strategy class prediction.  This concept is 

illustrated in Figure 42.  
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Figure 42 Providing historical competency information through similar experience filtering 

3.3 Leveraging environment similarity to detect data ingestion anomalies and sensor faults 

 Lastly, another redeeming property of assessing the similarity of the current 

environment to training experiences is the detection of data anomalies.  That is, we 

can determine when data inputs look significantly different (anomalous) compared to 

prior data inputs.  Not only can we identify when the ML system has not been trained 

on an environment similar to the current one, but we can also detect when a different 

type of data is being ingested, as it is classified as highly dissimilar (anomalous) 

compared to previously ingested data.  This can thus be used to detect when a sensor 

is not acting as it has previously and other data anomalies.  We tested this hypothesis 

by simulating an event where the camera fell out of the housing on the ground robot 

used in the ROS/Gazebo simulation to collect data.  As desired, the Environment 

Similarity Calculator outputs responded accordingly.  Specifically, the number of 

similar experiences dropped drastically from ~10,000 to ~200 for the same image 

taken with a fully functional sensor and broken sensor.  Thus, our environment 

similarity calculator can detect an unfamiliar environment (anomalous sensor data) 

when a sensor fault is simulated. 
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Section 4:  Offline Definition of ML Strategies & Performance 

4.1 Offline Definition of ML Strategies 

 

Figure 43 Behavior Definition Network View.  Outputs from the 4096 nodes in the second-to-last 

layer (highlighted in green) are used as our behavior definition. 

 

We used the same method (Table 10) in Chapter 3 to define a set of machine 

strategies.  In this case, we defined our behavior to be the outputs (yi outputs from 

each ith node, defined in Figure 14), from the 4096 nodes in the second-to-last layer of 

the ML system under evaluation (highlighted in green in Figure 43).  Note that this is 

analogous to the 702-dimension behavior definition from Chapter 3.  However, as the 

ML system performs its task on a per-instance basis, no time-series behaviors are 

defined.   

Additionally, we employ the same elbow analysis technique as we did in 

Chapter 2.  Here, we find that 11 clusters gives us both an acceptable inertia score and 

the right granularity of strategies (Figure 44).  For the latter, we manually examined 

data associated with each of the 11 strategies and found that 9 of them had human-

interpretable meaning. 
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Figure 44 Elbow method analysis to inform number of strategies 

 

Figure 45 shows the strategies that resulted from the k-means analysis.  In this 

case, one strategy stands out from the rest.  Upon manual inspection, we see that all 

images associated with that cluster have very low feature density and correspond to 

the “night” environmental property.   

 

Figure 45 UMAP Visualization of Strategy Clusters in an abstract two-dimensional space where 

only relative distances between points is interpretable. 
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Additionally, 8 other clusters had human-interpretable meaning and are tagged 

in Figure 46.  Since strategy groupings are frozen after initial offline determination, 

we can do this manual inspection analysis just once.  The labels associated with each 

strategy offline are then available for association to online strategy predictions of the 

same name.   

 

 

Figure 46 9 of 11 Strategies (clusters) have human-interpretable meaning! 
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Some strategies do not have human-interpretable meaning.  In these cases, the 

ML system is picking up on groups of features that are not easily categorized by the 

human eye, or that require further separation (deeper granularity) to become 

interpretable.  We experimented with several numbers of clusters, as we did in 

Chapter 3, however, k=11 resulted in the most human-interpretable context across all 

clusters. 

 While behavior clustering revealed some human-understandable context, we 

are experimenting with incorporating separation over environmental properties and 

expert-proposed condition labels to achieve semantic separation amongst strategies.  

To do this, we adjust the cluster “gain” ratio in the k-means algorithm to nudge 

separation of strategies from one another over a given set of labeled categories.  This 

encourages homogeneous organization of strategies over desired properties.  The 

following discussion and figures shares preliminary results associated with this line of 

research, however, effects on downstream competency assessment performance have 

not yet been evaluated. 

Figure 47 and Figure 48 show the strategy distributions resulting from these 

adjustments.  In each figure, we show Strategy clusters across the top, labels along 

the left hand side, and the ratio of the label in the set of data associated with each 

strategy cluster.  In this case, values close to 1 indicate that the strategy ratio is 

consistent with the population proportion.  In other words, values greater than 1 

indicate that there are more of that label present in the associated strategy than the 

population as a whole.  For example, Strategy 2 has 10.25x more “lava” labels than 
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the population.  We manually highlight the cases that have higher expression than 

normal in blue. 

 

Figure 47 Encouraging strategy definitions to separate over environmental properties 

 

Figure 48 Encouraging strategy definitions to separate over expert-proposed conditions 

 

By continuing this line of research, we contribute to the semantic 

interpretations of strategies produced by the MindfuL™ system, an important aspect 

of the DARPA CAML program and XAI research. 

4.2 Offline definition of ML Performance 

Offline definition of ML Performance is much simpler.  For the obstacle 

recognition task, we define a binary performance measure that takes on values of 

“correct” or “incorrect”, based on whether the ML correctly recognized the presence 

of an obstacle within six meters of its position. 
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Section 5:  Online Prediction of ML Strategies 

We use a deep learning approach to predict strategies from topic distributions.  

In this case, we train on topic distribution inputs and learn strategy classifications in 

accordance with the UMAP representation.  That is, each training sample in Figure 45 

is associated with an image.  The image gets compressed by the HDP into a topic 

distribution.  And our Strategy Predictor is trained to learn transformations from topic 

distributions into strategy classifications.  The deep learning neural network structure 

for our strategy predictor approach is provided in Figure 49.   

 

Figure 49 Strategy Predictor Network Structure, where “hidden” refers to the deep network 

layers between the inputs and the outputs. 

 

In our preliminary approach, we achieved 64% correctness (Eq. 22) using this 

framework.  That is, for 48,000 images, MindfuL™ correctly predicted 30,561 

strategies correctly. 

Correctness =  
Number of times system predicted the correct 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

Total number of trials
  (𝐸𝑞. 22) 
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The associated receiver operating characteristic (ROC) curves for each 

Strategy Class are shown in Figure 50.  The ROC curve shows how the true positive 

and false positive rates vary as a function of setting different ML probability 

thresholds. As the threshold for “ML probability blocked” corresponding with a 

binary “blocked” classification gets looser (lower), the True Positive Rate and False 

Positive Rate increase.  That is, if we give the ML credit for correctly predicting that 

an obstacle was present based on a low threshold confidence estimate (such as 0.1 

probability “blocked”), the resulting True Positive Rate and False Positive Rate are 

higher.  The greater the area under the curve, the better the predictor.  In the figure, 

each class corresponds a different strategy. And we see that some strategies are easier 

to predict than others.   

 

Figure 50 Strategy Predictor ROC Curves by Strategy Class 
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We further analyze the associated confusion matrix in Figure 51.  A confusion 

matrix shares information about the strategy classifications that were confused with 

one another.  That is, the confusion matrix gives detailed information about how our 

strategy predictor was wrong.  Any entries on the off-diagonal of the confusion 

matrix correspond with the number errors associated with the given predicted strategy 

(column) and true strategy (row) occurrence.  Any entries on the diagonal are correct 

strategy classifications. In a perfect classifier, all of the off-diagonals would be zero 

and the diagonal would be solid dark blue.  Moreover, the darker the square, the more 

numbers of occurrence that the row strategy class was confused with the column 

strategy class.   

 

 

Figure 51 Strategy Predictor Confusion Matrix 
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A screenshot of the strategy predictor running as part of the larger MindfuL™ 

system is shown in Figure 52.  Here, the ground robot encounters red structures and the 

“red objects/wall” strategy is predicted.  The true strategy in the bottom left of the 

figure agrees with the prediction. 

 

Figure 52 Online system view of an accurate strategy prediction. 

 

While we achieved 64% on strategy classification using, considerably better 

than random chance (11%), where the expectation of a correct classification is equal 

to 1 out of 11 strategies. We note further that we could achieve ~85% accuracy if we 

combine confused classes cleverly (Figure 53).  That is, if we combine strategy 

classes that are often confused with one another, we can do better at predicting online 

strategies.  However, if we combined strategies in this way, we would lose semantic 

understanding of strategies at the level of granularity shown in Figure 46.  In other 

words, these four strategy groups, which enable 85% strategy prediction accuracy, 

would correspond to very high-level strategies that are too high of a granularity to 

relate competency to the user.  There would only be four strategies to provide 
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additional insight into machine competency, reducing the level of detailed 

transparency into the “black box” ML system. 

 

Figure 53 Clever combining of strategy classes could improve predictive performance, as we 

combine classes that are confused with one another 

 

We also explored strategy prediction accuracy sensitivity to the number of 

clusters, neural network structures, and machine behavior definitions (experimenting 

with other layers shown in Figure 43).  The highest performance achieved was 73% 

on 6 clusters, but again we sacrificed human-interpretable meaning associated with a 

higher granularity of strategy definition and some of this performance gain is 

attributable to random chance (1/6 clusters vs. 1/11 clusters).   

Section 6:  Online Prediction of ML Performance 

Just as we layered on a predictor to go from topics to strategies, now we aim 

to go from topics to performance predictions, with an additional input of the ML 

blocked estimate.  Here, we again employ a deep learning approach that trains on 

topic distributions and determines a binary classification of whether the machine will 

be correct or incorrect.  In Figure 54, we show the results of our system on the 
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training data set.  Here, the green ellipse covers the case when the MindfuL™ 

performance prediction is correct (98.8%) and the red ellipse notes when it is 

incorrect (1.2%).  Note, this is different than measuring whether the ML system 

prediction of “free” vs. “blocked” was actually correct.  For these plots, label 0 

represents “incorrect” and label 1 represents “correct”, where we are assessing the 

correctness of the MindfuL™ prediction of the ML system’s performance.  The actual 

label represents whether the ML system was correct (“1”) or incorrect (“0”) with 

respect to ground truth over the incoming image while the predicted label represents 

our Performance Predictor output.  More precisely, the ML system was correct 

45,951 (summing over the “1” row) times out of 48,034 images (96%) in the training 

data set; it was incorrect (summing over the “0” row) 2,083 times (4%). 

 

Figure 54 Performance Predictor accuracy on training data set. 

The MindfuL™ system correctly predicted the machine performance over 

98.8% of the training data images (green ellipse); it was incorrect 1.2% of the time 

(red ellipse).  Here, the performance predictions worked only off of the compact topic 

distributions representative of each image to make its predictions, which is 

encouraging since we preserved enough of the information in the image through our 

topic distributions to assess machine competency for this task. 



115 

 

 

From the training data set to the testing data set, we note that the ML system 

itself had a considerable performance drop from 96% (on the training data) to 69% 

(on the testing data); these numbers are separate from the performance predictor 

accuracy shown in Figure 54 and Figure 55.  The performance drop occurs because 

the testing data set was different than the training set in terms of a different array of 

obstacles and presence of new obstacles in the simulation environment, and likely 

because the ML system was over-trained in accordance with the training data set.  

Ongoing research is investigating the sensitivities of new environments on both ML 

system and Performance Predictor accuracy.  However, we see that the performance 

predictor still produces much better results than chance (50%) on the testing data set, 

as shown in Figure 55.  And while 68% has significant room for improvement, we are 

encouraged that the topic distributions are capturing enough information about the 

environment to make an informed (vice random) prediction on machine performance 

prediction. 

 

Figure 55 Performance Predictor accuracy on validation data set 
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The prototype Competency UI screenshot in Figure 56 shows a simulated 

scenario where the ground robot endures a rain environment and nears an obstacle 

(building) off to its left side, which are likely conditions that affect its task 

performance.  Consistent with intuition, our performance prediction decreases in this 

scenario, as highlighted in Figure 56 as 51%.  Both strategy and performance 

prediction approaches resulted in useful capabilities, considerably better than random 

chance.  This indicates that topic distributions are capturing conditions in the 

environment that are important for assessing machine competency, a huge result for 

XAI research advancement and encouraging result for us to continue to use HDPs to 

compress data for later use to inform online competency prediction. 

 

 

Figure 56 Online view of intuitive performance prediction 
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Section 7:  Online Prediction of Strategy- & Performance-Controlling Conditions 

In order to explain the conditions (why) associated with our predictions of 

machine strategy and performance predictions, we employ feature importance 

methods to find which HDP topics contribute the most to each competency 

prediction.  Ideally, the important topics we find can be used to provide semantic 

understanding to the user based on why the machine arrived at its result.  For our 

obstacle recognition task, a topic may represent that an obstacle is present like 

“building” or “wall”.  For our airplane recognition use case, a topic might correspond 

with an “airport”, “runway” or the presence of “wings” or a “nose”.  For now, we can 

still leverage the presence of certain topics regardless of whether they carry semantic 

meaning, such as “Topic 1” or “Topic 2” conditions by comparing across different 

tasks.  We refer to topic expression as “high” or “low” when the topic weight is more 

than two standard deviations higher or lower than the mean, and we are considering 

alternatives to this threshold.   

In some cases, human connotation might be matched with high or low topic 

expressions through manual inspection.  In others, there may not be any human-

discernable correlations.  Even if there is no human-understandable context, we can 

group conditions, strategies, and performance together based on common results.  For 

example, we can construct an abstract rule such as “If Topic 3 is highly expressed, 

then the machine employs Strategy 4 with predicted performance of 95%.”  Then, 

even though the human might not understand what Topic 3 or Strategy 4 are, he/she 

can compare similar occurrences of this rule to one another to identify common 

themes or gain some insights into the “black box” behavior, if only at an abstract 
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level.  Again, we ideally aim to attach semantic meaning to both conditions and 

strategies.  A more useful-to-humans rule abstraction for competency would be “If 

Topic 3:  ‘airport’ is highly expressed, then the machine employs Strategy 4:  ‘looked 

for wings’ with predicted performance of 95%”. 

To find these conditions which influence the strategy and machine 

performance predictions, we employ Shapley Additive exPlanations (SHAP) [62]; in 

our case, SHAP correlates specific topic expressions to the strength that they 

contribute to the predicted performance (see below for a mathematical description).  

More generally, Shapley feature values are computed leveraging coalitional game 

theory, where for a given instance of data, the feature values (or group of features) are 

treated as a single player.  The contribution that this player has in shifting the 

prediction from the average value, is the Shapley feature value.  We apply SHAP to 

the HDP topic distribution for a given image and use the magnitude and direction to 

determine which topic values improved and worsened performance by what quantity 

from average for a given data instance.   

Shapley values [19] have traditionally been used to determine how to divide 

the payoff or gain amongst a group of players in a cooperative game.  It measures the 

average marginal contribution from every sequence of players entering the game, 

evaluated with and without the jth player.  In our case, the players are the topics 

themselves, derived from HDP processing of images described in Section 2, such as 

Topic 1:  “wings” or Topic 3:  “airport”. The game is either the strategy prediction 

(Section 5) or the performance prediction task (Section 6), depending on whether we 

are estimating strategy-controlling or performance-controlling conditions.  The “gain” 
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is the prediction for a particular image instance minus the average prediction for all 

instances.  And the Shapley Value is the average change in the competency prediction 

when another topic value is added, given a competency prediction based on an 

existing group of topic values, as described in the previous two sections.   

We are interested in how each topic affects the competency prediction of an 

image. In a linear model it is easy to calculate the individual effects. For example, 

here is what a linear model prediction looks like for one data instance [62] (Eq. 23): 

𝑓(𝑥) =  𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝  (𝐸𝑞. 23) 

where 𝑥 is the instance for which we want to compute the contributions. Each 𝑥𝑗 is a 

topic value, with 𝑗 = 1,… , 𝑝. The 𝛽𝑗 is the weight corresponding to topic 𝑗. 

The contribution 𝜑𝑗 of the j-th topic on the prediction 𝑓(𝑥) is (Eq. 24): 

𝜑𝑗(𝑓) =  𝛽𝑗𝑥𝑗 − 𝛽𝑝𝐸(𝑋𝑗)  (𝐸𝑞. 24) 

The contribution is the difference between the topic effect minus the average effect. 

Now we know how much each topic contributed to the prediction.  And if we sum all 

the topic contributions for one instance, the result is the following (Eq. 25): 

∑𝜑𝑗(𝑓)

𝑝

𝑗=1

= ∑(𝛽𝑗𝑥𝑗 − 𝛽𝑝𝐸(𝑋𝑗))

𝑝

𝑗=1

= 𝑓(𝑥) − 𝐸 (𝑓(𝑋))  (𝐸𝑞. 25) 

 However, this is only applicable to linear models.  Shapley values provide a 

way for us to do feature importance analysis over general models [62], such as the 

neural network and random forest models used by our Strategy and Performance 

Predictor, respectively.  Shapley value is defined as (Eq. 26): 

𝜑𝑗(𝑣𝑎𝑙) =  ∑
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
𝑆 ∈ {𝑥1,…𝑥𝑝} \{𝑥𝑗}

(𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆)) (𝐸𝑞. 26) 
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Where val is the prediction for feature values in set S that are marginalized over 

features that are not included in S,  p is the total number of players, and xj represents 

the value (topic weight) associated with player (topic) j.  In our case, this means 

computing the competency predictions without some of the topics.  To compute 

Shapley values, we simulate that only some topics are playing ("present") and some 

are not ("absent").  

The SHAP method leverages Shapley values to specify an explanation (Eq. 

27): 

𝑔(𝑧′) =  𝜑0 + ∑𝜑𝑗(𝑧𝑗
′)

𝑀

𝑗=1

 (𝐸𝑞. 27) 

where 𝑔 is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the coalition vector, M is the 

maximum coalition size and 𝜑𝑗 ∈ ℝ is the feature attribution for a feature j, the 

Shapley values [62].  

As an alternative to SHAP, Gini Importance or Mean Decrease in Impurity 

calculates each feature importance as the sum over the number of splits (across all 

tress) that include the feature, proportionally to the number of samples it splits.  This 

is a common ante-hoc XAI method used to determine general feature importance for 

random forest tree models. 

Unlike Gini importances, that are useful for determining the general 

importance of features, SHAP supports per-instance feature importance, which is 

necessary for our near real-time competency assessment framework.  For example, in 

our airplane recognition task, it is more useful to understand why the ML system 

thinks there is an airplane in the current image that it is processing, such as “airport” 
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topic being highly expressed than a generality that an “airport” is an important feature 

in general for identifying airplanes in an image.  SHAP gives the former on a per-

image basis, as desired.  Gini importances give the latter in a general sense over a set 

of images. Figure 57 shows both the Gini importances and SHAP values for our 

performance predictor.  Each point represents a Shapley value for a topic and 

performance prediction. The color represents the actual topic weight from low (blue) 

to high (red).  For example, if Topic 3 corresponds to “airport”, high expression of 

Topic 3 would indicate that an airport is present in the image; low expression of 

Topic 3 would indicate that no airport is present in the image.   

Gini importances generated from the random forest model agree with top two 

SHAP channels, supporting the SHAP approach validity.  Other than the ML blocked 

estimate, there is little variance in both SHAP values and Gini importances, and we 

suspect this is likely due to needing all topics in order to make an informed 

competency prediction.  Future work is attempting to gain separation between topics 

across features that are important for performing the ML task itself, rather than a 

compressed distribution over all of the features in the image.  In our airplane 

recognition task, this would mean that we want a topic to separate specifically over 

the presence of “airport”, and not contain overlapping features associated with that 

topic, such as “grass” or “roads” that are not as well-associated with the ML task.  

Automatic and reliable extraction of competency-relevant features from data at a 

summarized level of granularity and semantic meaning is an open research problem, 

currently being addressed by the author.  In Figure 57, a large blocked estimate 

negatively affects incorrect classification, noted by the yellow star, thereby yielding 
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positive effect on correct classification.  Moreover, when Topic 7 is not expressed, it 

could positively or negatively impact classification, as indicated by the orange stars; 

these could be rare events corresponding to images with unique properties.   

 

 
Figure 57 SHAP plot for incorrect performance prediction 

 

And when we filter on high expressions of Topic 7, we visually can see 

indicators of these rare edge cases, as shown in Figure 58. 
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Figure 58 High expressions of Topic 7 corresponds to unusual lighting and rare obstacle 

proximity events (staring at wall with homogeneous features) 

  

 

To compute strategy-controlling conditions, different from the performance-

controlling conditions found above, SHAP values are generated for each strategy 

classification.  The SHAP plot for Strategy 5 is provided in Figure 59.  Gini 

importances generated from a random forest alternative model are again consistent 

with the top SHAP topics.  Moreover, the top 5 important topics are preserved across 

all strategy classifications.  This means that five topics encode the most 

distinguishable information over all strategy predictions.  Notably, high expressions 

of Topic 16, 19, and 0 positively contribute to an image clustered into #5 (black 

stars), while Topic 15 and 1 negatively contribute (orange stars).  For example, in our 

airplane recognition task, we would expect that the high expression of Topic 1:  

“wings” would positively contribute to Strategy 3:  “looked for airplane wings”.  
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Next, we attempt to discern semantic meaning from manually inspecting images 

associated with high expressions of Topics 16, 19, 0, 15, and 1 to see if we can 

determine logical reasons why they might be affecting the machine’s propensity to 

employ Strategy 5:  “shadow detection”. 

 

 
Figure 59 SHAP plot for Strategy 5 prediction 

  

And when we look at the data associated with high expressions of these 

topics, we make some useful observations.  Topics 1 and 15 correspond with dark 

images, making intuitive sense for distinguishing the Strategy 5:  “shadow detection” 

strategy from other strategies.  Topic 19 seems to correspond to buildings, where the 
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building acts as a close obstacle and Topic 0 seems to consistently show a jersey 

barrier wall, which was consistent with one of our human-interpretable strategies 

(Strategy 8).  However, Topic 16 doesn’t have any discernable human context when 

parsing through images that have highly variable environmental features present in 

the filtered data set.  Here, we point out importantly that there are no guarantees that 

the machine cares about what humans can distinguish by their eyes.  In other words, 

there might be commonalities in these data that the machine recognizes as important 

for determining strategy that humans do not think would be intuitively important.  A 

powerful aspect of our approach is that we can still recognize these conditions, even 

though they may only be identifiable by a common label (i.e. Topic 16), and not 

interpretable further semantically. 

 

 
Figure 60 High expressions of Topic 16, 19, and 0 positively contribute to correct clustering 

 

In summary, our online competency-aware system uses a deep explainer 

method, SHAP, to determine which conditions were most influential to the current 

strategy and performance predictions for the current environment.   
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Section 8:  System Training and Online Framework 

8.1 Walkthrough of Offline Training System Diagram 

 

Offline, we train our competency predictor components through a series of 

training regimes.  At a high level, this is how the system works to train all of its 

components.  The training is sequential in nature, but is also automated so we can 

train on a new dataset with minimal human involvement.  The MindfuL™ offline 

system is illustrated in Figure 61 and the steps associated with the diagram are 

described below.   

1) We train the experience encoder to ingest data and produce topic models; during this 

phase, the HDP determines the features associated with each topic and the number of 

topics that sufficiently explain the training data set.   

2) Topic distributions associated with each document in the training data set are stored in 

the Memory Bank.   

3) Labels ingested by the Element Ingester are linked to data in the Memory Bank. 

4) We determine ground truth from comparing ML estimates over the sensor data to the 

LiDAR data obtained from the simulation. 

5) We train a performance predictor to go from topic models to “correct” or “incorrect” 

predictions, giving rise to our trained Performance Predictor model. 

6) We define strategies using the Behavior Clusterer method used in both Chapters 3 & 4 

based on the underlying behaviors gleaned from the ML system activations. 

7) We train a Strategy Predictor to learn relationships between topic models and strategies, 

giving rise to a trained Strategy Predictor model. 

 

 
Figure 61 Offline system training phase diagram 



127 

 

8.2 Walkthrough of Online Competency-Aware System Diagram 

Both our offline and online functionally distributed architectures supported 

analyses of alternative approaches easily due to a disciplined, function-based 

input/output implementation.  This was especially important when considering 

alternatives to our HDP, SHAP, and Deep Neural Network approaches to predictor 

components.  Details of auto-encoder, feature importance, and random forest models 

are omitted from this dissertation, but were explored by the MindfuL™ team during 

system development.  Online, we provide competency information to the user in 

accordance with involved component interactions.  These interactions are 

summarized in Figure 62 and described in the steps outlined below.   

1) Data is ingested and the Experience Encoder infers topic distributions based on the learned HDP 

model, wherein features associated with each topic and the number of topics is constant. 

2) Inference is performed over the trained Strategy Predictor to go from topics to a Strategy estimate. 

3) Inference is performed over the trained Performance Predictor to go from topics to a Performance 

estimate. 

4) SHAP methods determine the most important conditions (topics) for both strategy and 

performance predictions. 

5) The number of environments and the historical competency is determined by the Environment 

Similarity Calculator component by comparing the current topic model to those compactly stored 

in the Memory Bank. 

6) The Ingester & Interpreter components support user-provided labels. 

7) The Competency Statement Generator produces long-form statements. 

8) The Information Analyzer makes a determination of whether to allow the machine to perform the 

task or whether user intervention is recommended. 

9) The Competency UI displays all of the competency information derived above to the user. 

 
Figure 62 Online system competency assessment diagram 
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8.3 Near real-time competency assessment offers “online” utility to users 

The online system supports near-real time operation, and the processing times 

for several of the components is provided in Table 13.  MindfuL™ competency 

assessments update every two seconds, which is a cadence faster than human 

preference for current applications.  The competency statement generator remains the 

most expensive functionality, typically accounting for more than half of execution 

time per frame. This is largely because the environment similarity algorithm searches 

through all past experiences in the agent’s memory within a function call in this 

component.  Fortunately, this computation can be parallelized to realize even faster 

update rates.  Moreover, we could intelligently maintain a memory bank where we 

discard experiences that are sufficiently similar to one another to speed up the 

calculations. 

 

Table 13 Computational times associated with several components for two sample updates 

Component 
Update Rate with 

1k Image Set 

Update Rate with 10k 

Image set 

Experience Encoder (HDP) 0.204 0.738 

Performance Predictor 0.040 0.037 

Performance Correlator 0.001 0.0004 

Environment Similarity 

Calculator 
0.234 0.140 

Competency Statement 

Generator 
1.076 0.919 

Memory Bank 0.010 0.348 

System 1.556 1.83 
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Section 9:  Interpretations 

In Chapter 4, we showed the utility of a competency-aware machine learning 

approach to provide near real-time competency information to a user.  We capitalized 

on benefits hypothesized in Chapters 2 & 3 by realizing an online predictive capability 

for strategy and performance (competency).  We implemented an automated way to 

devise conditions, strategies, and performance with no human involvement required 

other than to improve semantic interpretability.  To determine conditions, we leveraged 

shared descriptor characterization from the HDP approach and SHAP feature 

importance analysis to determine which conditions (HDP-derived topics) were most 

influential for our online competency predictions.  Our online competency predictions 

performed well above chance with 64% accuracy on strategy predictions (compared to 

11% chance) and 69% performance predictions (compared to 50% chance) when using 

a generalizable HDP approach to compactly describe inputs.  Importantly, this result 

showed that HDPs captured competency-relevant information, in spite of their 

incredible compression benefits (1 year of video data is compressed to just 2TB of 

data).  Finally, we showed timeliness of our approach to scale to near real-time as online 

competency predictions took less than 2 seconds to compute over 10,000 previous 

experiences, faster than a user would desire for an obstacle recognition task.  In 

conclusion, these results and those in Chapter 3 attest to the generalizability and 

applicability of this approach to other AI systems and applications.  Research in this 

chapter contributes to increased AI interpretability and competency-awareness needed 

to increase trust and transparency of AI systems. 
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Chapter 5:  Conclusions and Future Work 

Section 0:  Conclusions 

In conclusion, this research provides materials and methods to study and 

assess the competency, including how (strategies), why (conditions), and the expected 

result (performance), of otherwise “black box” machine learning systems.  First, we 

manually identified important relationships between environmental conditions and 

emerging strategies on deep learning performance in a 2-d pursuit game application in 

Chapter 2, driving further exploitation in Chapter 3 and motivating predictive 

approaches in Chapter 4.  Moreover, we demonstrated the effectiveness of an agent 

trained with the DDPG reinforcement-learning algorithm in a speed-overmatched 

pursuit game with uncertain target information.  The resulting RL agent outperformed 

a baseline bearing-following strategy by increasing capture successes by more than 

100% in a 5000-trial experiment and was more robust to harsher pursuit game 

conditions.  No prior research approach addressed speed overmatch, uncertainty, and 

dynamic speed control with deep learning or any other control system for a 2-d 

pursuit game.  Finally, we discussed the potential utility for leveraging historical 

competency for online unmanned system control.  We manually observed separation 

of learned pursuit behaviors into strategy groups.  And we manually hypothesized 

environmental conditions that affected performance.  These manual hypotheses 

regarding machine competency motivated automated abstraction of conditions, 

performance and strategy relationships investigated in Chapters 3 & 4. 

In both Chapters 3 & 4, we found that neural network activation patterns 

could be abstracted into human-interpretable strategies for two separate deep learning 



131 

 

approaches, including the pursuit game application analyzed in Chapter 2.  In Chapter 

3, we found that compact representations of activation patterns (behaviors) preserved 

more information relevant to machine performance than the machine’s actions 

themselves.  Moreover, we found that clusters of behaviors (strategies) separated 

naturally over pursuit trajectories that were relatable to humans and that strategies 

could be exploited as predictors for machine performance.  And finally, we defined 

machine commitment, and found that it was significantly higher in games with Win 

outcomes than Loss outcomes.  These results motivated further exploration of online 

competency prediction approaches.  

And in Chapter 4, we realized online prediction capabilities for condition, 

strategy, and performance competency assessments.  The HDP approach encoded 

information pertinent to the machine learning task and system, as evident by the 

success of strategy and performance predictor components.  Furthermore, the HDP 

encoded data compactly, supporting scalability of the approach to handle a large 

library of machine experience in our memory bank database.  Our approach to 

automated condition determination using SHAP, while difficult to assess in terms of 

ground truth, yielded useful results consistent with human intuition.  Our prototype 

strategy and performance prediction components produced useful competency 

estimates, significantly outperforming random chance.  Moreover, our environment 

similarity calculator adequately determines whether a machine is familiar with the 

current task, and quantifies the number of similar experiences the machine has been 

trained on in the past; and lastly, as a byproduct of its approach, it shows promising 

results for detecting faulty sensor and other anomalous input data.  
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Since all of the prediction components are trained based on a common topic 

representation (and not the input data directly), only the HDP component needs to be 

modified to support competency prediction over other types of data.  Moreover, only 

the offline strategy definition needs to be modified to adapt to new ML systems.  

Since only two of the 14 components require significant modification for new 

applications and systems, the resulting MindfuL™ system is highly portable.  

Therefore, the approach can be applied to a large number of machine tasks and 

systems.  By uncovering relationships between environmental conditions, machine 

strategies, & strategies and by giving rise to online estimation of machine 

competency, we increase transparency and trust in machine learning systems, 

contributing to the overarching XAI initiative. 

Section 1:  Broader Implications & Future Work 

For the 2-d pursuit game application, the RL approach should be tested in a 

higher fidelity simulation and integrated with an unmanned system for testing in the 

real world.  Additionally, it can be extended to three dimensions for further 

applicability to missile & space domains, for example.   

Regarding XAI, MindfuL™ software provides insights into how, why, and the 

expected result of an ML system for a particular task.  This has many benefits 

regarding trust and transparency, and broader implications for the future of manned 

and unmanned teaming.  Trust by humans is gained into the ML system under 

assessment because the MindfuL™ system identifies when an ML system is likely to 

succeed or fail.  Transparency is gained by understanding why and how the ML 

system performs its task a certain way.  For example, in an “L-shaped” maneuver in 
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the pursuit game, the human could doubt that the ML system was on track for a 

capture, even though the performance prediction was high.  But if the human is aware 

of the internal strategy of the ML system being consistent with and “L-shaped” 

maneuver, then he/she can increase trust in a likely successful capture.  Moreover, if 

the human is teamed with the machine and knows about the “L-shaped” maneuver, 

he/she can choose a complementary action or maneuver with strong confidence and 

anticipation that the machine is going to make a 90-degree turn within some 

timeframe.   

In order to anticipate the maneuver, the machine must be thinking ahead and 

have a plan for the L-shaped strategy prior to making its 90-degree turn.  Future work 

could examine activation patterns and attempt to understand the time in which an 

agent commits to a certain strategy or is planning to execute a certain strategy based 

on certain neuron activation values.  The raw activation plot in Figure 63 for six 

Strategy 9: “L-shaped maneuver” games is given here as further motivation for future 

research.  There are not obvious correlations between the activation patterns beyond 

higher numbers of active neurons than other sample games examined by the eye.  

Example military use cases for complementary human-machine tactics include small 

unit maneuvers with UxV teammates or fighter jet dogfighting with UAV teammates. 
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Figure 63 Raw activation patterns for L-shaped maneuver pursuit games 

 

Separately, competency awareness also helps with energy preservation for 

deployed unmanned systems without human teammates or controllers.  Performance 

prediction could help a pursuer agent, for example, determine whether it should 

pursue the target of opportunity, wait for a different target, or avoid resource 

expenditure under unlikely success situations; examples include expending energy to 

attempt to intercept a pass in sports or expending limited ballistic missile defense 

resources toward incoming threats.  Such analysis would also help determine the 

timing for when the pursuer should begin pursuit, leading to better energy efficiencies 

for unmanned systems with endurance limitations.   

Future work should consider supporting a multi-modal HDP that ingests 

unorthodox sensory inputs like labels and machine behaviors (activation patterns) 
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themselves in order to increase competency prediction efficacy.  Such inputs are 

different than what many consider orthodox sensory inputs, like those from cameras 

or radar sensors.  The diagram in Figure 64 illustrates the pipeline for training an 

HDP on multiple sensory modalities.  In this case, features are extracted from each 

data stream and summarized via feature counts.  Then, the topic model looks at the 

distribution of feature counts in the data and determines the topic distribution 

associated with that input data.  One important property of HDPs is that they can 

handle missing data.  In this case, if one of the sensor data streams is missing, I can 

still estimate a topic distribution and compare that to other samples where the data 

stream was present. 

 

Figure 64 Processing of Multi-Modal Sensory Inputs through HDPs 

 

Additionally, an online mechanism to estimate machine commitment in situ 

could be exploited for machine predictability and support human-machine teaming.  

Moreover, future research, especially for human-machine teaming applications, 

should focus on the semantic interpretability of machine-derived conditions and 

strategies, so that a human teammate can understand the results more easily.  And, in 

cases of no human partners, a closed-loop controller should supervise ML behavior 

and intervene with stoppages or fail-safe policies when unacceptable performance 

estimates are estimated.  We also note that while the UMAP representation of 
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strategies is good when it is trained on all of the data, it suffers to fit new data into 

existing manifolds properly.  This became a concern during use of the online 

predictive capability when ingested images appeared to humans to correspond to a 

different strategy than what was assigned as the true strategy.  Further investigation 

into ground truth definition is underway to resolve this potential issue.  However, we 

only expect to see improved Strategy Predictor performance and note that the current 

system provides results that make sense to the user. 

 

The Information Analyzer output currently supports just a binary interpretation:  

“Continue normal operation” vs “manual override recommended”, as shown in Figure 

65.  In the future, MindfuL™ software could produce suggestions for other actions and 

provide other alerts regarding system competency.  Such actions could span sensor 

modality selection or sensor acquisition of new data, beneficial for refining competency 

assessment or suggestions to modify a selected action, like reducing speed in a ground 

autonomy application, to maintain acceptable mission performance.  We could also 

prompt labeling actions for attaching semantic meaning to an unlabeled Condition.  

These additional suggestions necessitate innate awareness of performance and strategy 

predictions, their reasons (conditions) and their uncertainties, and should be paired with 

a Value of Information (VoI) approach for more robust results. 

 
Figure 65 Suggestions for user intervention 
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Finally, as the MindfuL™ approach was careful to be input- and ML system-

agnostic, the XAI capabilities should be exercised for other machine tasks and input 

data types.  User experience should be evaluated and interfaces updated accordingly.    
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Appendix 
 

Section 0:  Sample Pursuit Games from Automatically-Derived Strategies 

Nine sample games are provided at random from each strategy grouping in the 

figures that follow.  The metadata in the filename corresponds to the game outcome, 

initial distance to the target (meters), initial angle to the target (radians), maximum 

target speed (meters per second), and game episode identifier parameters, delineated 

by an underscore, respectively. 

 
Figure 66 Strategy 0 Game Samples 
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Figure 67 Strategy 1 Game Samples 

 

 
Figure 68 Strategy 2 Game Samples 
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Figure 69 Strategy 3 Game Samples 

 

 
Figure 70 Strategy 4 Game Samples 
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Figure 71 Strategy 5 Game Samples 

 

 

 
Figure 72 Strategy 6 Game Samples 
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Figure 73 Strategy 7 Game Samples 

 

 

 

 
Figure 74 Strategy 8 Game Samples 
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Figure 75 Strategy 9 Game Samples 

 

 

 
Figure 76 Strategy 10 Game Samples 
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Figure 77 Strategy 11 Game Samples 

 

 
Figure 78 Strategy 12 Game Samples 
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Section 1:  Analysis of dimension-reduced actions (heading & acceleration only) 

In Figure 79, we show the same conditions studied for behavior analysis as 

they relate to the UMAP-embedded action space (Chapter 2 Section 2.3).  Again, we 

see by visual inspection that the dimension-reduced behavior (activation pattern) 

space (Figure 21) separates better over the conditions than those of the action space 

shown here.  Because of this, we can better estimate machine strategies from 

conditions by analyzing machine behaviors defined as activation patterns rather than 

their associated actions.  That is, because of the lack of separation along these 

conditions, we cannot draw conclusions like “favorable initial angles to the target 

lead to Strategy 3: ‘head-on approach’” as we can do when we examine relationships 

between conditions and strategies in the dimension-reduced behavior (activation 

pattern) space (Figure 21). 

 

Figure 79 UMAP-embedded actions have less informative separation over user-proposed game 

conditions. 

Moreover, in Figure 80, we see that clustering with respect to actions to 

determine strategies also leads to less separation over game outcomes.  That is, every 

strategy leads to a heterogeneous mixture of game outcomes.  In other words, there 

are no strategies in the bar plot that contain only one color (game outcome).  This 

again motivates the analysis of underlying activation patterns more so than actions 

alone to glean useful relationships between strategies and performance. 
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Figure 80 Action-clustered strategies separate less homogeneously over game outcomes. 

The associated strategies for the action space are provided in Figure 81.  The 

games associated with each of the clusters were not analyzed for human 

interpretability. 

 

Figure 81 Strategy clusters for UMAP-embedded actions 



147 

 

Bibliography 

References 
 

[1]  A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A. 

Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila and F. 

Herrera, "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 

opportunities and challenges toward responsible AI," Information Fusion, pp. 

82-115, 2020.  

[2]  W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu, "Definitions, 

methods, and applications in interpretable machine learning," PNAS, vol. 116, 

no. 44, pp. 22071-22080, 2019.  

[3]  E. Schmidt, R. Work, S. Catz, E. Horvitz, S. Chien, A. Jassy, M. Clyburn, G. 

Louie, C. Darby, W. Mark, K. Ford, J. Matheny, J.-M. Griffiths, K. McFarland 

and A. Moore, "Final Report, Chapter 7: Establishing Justified Confidence in 

AI Systems," The National Security Commission on Artificial Intelligence, 

2021. 

[4]  D. Gunning and D. Aha, "DARPA’s Explainable Artificial Intelligence (XAI) 

Program," AI Magazine, pp. 44-58, Summer 2019.  

[5]  R. Isaacs, "Games of Pursuit," RAND Corporation, 1951. 

[6]  P. Cheng, "A Short Survey on Pursuit-Evasion Games," 2003. 

[7]  T. H. Chung, G. A. Hollinger and V. Isler, "Search and pursuit-evasion in 

mobile robotics," Autonomous Robotics, vol. 31, no. 299, 2011.  

[8]  A. Merz, "The homicidal chauffeur - a differential game: PhD thesis," Stanford 

Univ., 1971.  

[9]  Y. Feng, L. Dai, J. Gao and G. Cheng, "Uncertain pursuit-evasion game," Soft 

Comput, vol. 24, p. 2425–2429, 2018.  

[10]  K. Quigley, S. A. Gabriel and S. Azarm, "Multi-Agent Unmanned Vehicle 

Trajectories with Rolling-Horizon Games," Military Operations Research 

Society Journal, 2020.  

[11]  M. Wang, L. Wang and T. Yue, "An Application of Continuous Deep 

Reinforcement Learning Approach to Pursuit-Evasion Differential Game," in 

2019 IEEE 3rd Information Technology, Networking, Electronic and 

Automation Control Conference (ITNEC), Chengdu, China, 2019.  

[12]  A. A. Al-Talabi and H. M. Schwartz, "A two stage learning technique using 

PSO-based FLC and QFIS for the pursuit evasion differential game," in 2014 

IEEE International Conference on Mechatronics and Automation, Tianjin, 

2014.  

[13]  S. F. Desouky and H. M. Schwartz, "A novel technique to design a fuzzy logic 

controller using Q-learning and genetic algorithms in the pursuit-evasion 

game," in 2009 IEEE International Conference on Systems, Man, and 

Cybernetics, San Antonio, TX, 2009.  



148 

 

[14]  A. T. Bilgin and E. Kadioglu-Urtis, "Ana pproach to multi-agent pursuit evasion 

games using reinforcement learning," in 2015 International Conference on 

Advanced Robotics (ICAR), Istanbul, 2015.  

[15]  Google, "Explainable AI," [Online]. Available: 

https://cloud.google.com/explainable-ai. 

[16]  IBM, "Explainable AI," 2021. [Online]. Available: 

https://www.ibm.com/watson/explainable-ai. [Accessed 23 April 2021]. 

[17]  P. Krishnamurthy, F. Khorrami, S. Schmidt and K. Wright, "Machine Learning 

for NetFlow Anomaly Detection with Human-Readable Annotations," IEEE 

Transactions on Network and Service Management, 2021.  

[18]  S. Schmidt, J. Stankowicz, J. Carmack and S. Kuzdeba, "RiftNeXt(TM): 

Explainable Deepn Neural RF Scene Classification," in 14th ACM Conference 

on Security and Privacy in Wireless and Mobile Networks, Abu Dhabi, United 

Arab Emirates, 2021.  

[19]  M. Sundararajan and A. Najmi, "The many Shapley values for model 

explanation," preprint arXiv, 2019.  

[20]  J. Hilton, N. Cammarata, S. Carter, G. Goh and C. Olah, "Understanding RL 

Vision," Distill, 2020.  

[21]  L. Schubert, M. Petrov, S. Carter, N. Cammarata, G. Goh and C. Olah, "OpenAI 

Microscope," 14 April 2020. [Online]. Available: 

https://openai.com/blog/microscope/. [Accessed 21 April 2021]. 

[22]  S. Booth, Y. Zhou, A. Shah and J. Shah, "BAYES-TREX: a Bayesian Sampling 

Approach to Model Transparency By Example," Association for the 

Advancement of Artificial Intelligence, 2021.  

[23]  G. Vilone and L. Longo, "Explainable Artificial Intelligence: a Systematic 

Review," preprint arXiv, 2020.  

[24]  C. Firestone, "Performance vs. competence in human–machine comparisons," 

Proceedings of the National Academy of Sciences of the United States of 

America (PNAS), 2020.  

[25]  M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. Garcia 

Castaneda, C. Beattie, N. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, 

T. Green, L. Deason, J. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu and T. 

Graepel, "Human-level performance in 3D multiplayer games with population-

based reinforcement learning," Science, pp. 859-865, 2019.  

[26]  T. Zahavy and S. Mannor, "Graying the black box: Understanding DQNs," in 

International Conference on Machine Learning, New York City, New York, 

2016.  

[27]  P. Rauber, S. Fadel and A. Falcao, "Visualizing the hidden activity of artificial 

neural networks," IEEE transactions on visualization and computer graphics, 

vol. 23, no. 1, pp. 101-110, 2017.  

[28]  M. Ali, M. W. Jones, X. Xie and M. Williams, "TimeCluster: dimension 

reduction applied to temporal data for visual analytics," The Visual Computer, 

pp. 1013-1026, 2019.  



149 

 

[29]  L. McInnes and J. Healy, "Uniform Manifold Approximation and Projection for 

Dimension Reduction," preprint ArXiv, 2018.  

[30]  T. P. Lillicrap, J. J. Hunt and A. Pritzel, "Continuous Control with Deep 

Reinforcement Learning," arXiv preprint, 2015.  

[31]  S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking," 

IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 1, pp. 5-18, 

2004.  

[32]  Y. Kim and H. Bang, "Introduction and Implementations of the Kalman Filter," 

IntechOpen, 2018. [Online]. Available: 

https://www.intechopen.com/books/introduction-and-implementations-of-the-

kalman-filter-and-its-applications. [Accessed 24 April 2021]. 

[33]  M. S. Grewal and A. P. Andrews, "Applications of Kalman Filtering," IEEE 

Control Systems Magazine, 2010.  

[34]  D. Silver, J. Schrittwieser and K. Simonyan, "Mastering the Game of Go 

without Human Knowledge," Nature, vol. 550, pp. 354-359, 2017.  

[35]  D. Silver, G. Lever, N. Heess and T. Degris, "Deterministic policy gradient 

algorithms," in ICML, 2014.  

[36]  D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," CoRR, 

2015.  

[37]  J. F. Allen, S. Schmidt and S. A. Gabriel, "Reinforcement Learning Approach to 

Speed-Overmatched Pursuit Games with Uncertain Target Information," in 

Naval Applications of Machine Learning (NAML), Virtual, 2021.  

[38]  N. Bharti, "What-is-meant-by-activation-function," Quora, 23 October 2018. 

[Online]. Available: https://www.quora.com/What-is-meant-by-activation-

function. [Accessed 4 June 2021]. 

[39]  M. Hazewinkel, "Encyclopedia of Mathematics," EMS Press, 1994. 

[40]  C. T. Dodson and T. Poston, Tensor geometry. Graduate Texts in Mathematics, 

Berlin, New York: Springer-Verlag, 1991.  

[41]  W. Dong, C. Moses and K. Li, "Efficient k-nearest neighbor graph construction 

for generic similarity measures," in 20th International Conference on World 

Wide Web, New York, NY, 2011.  

[42]  Y. Lecun and C. Cortes, "The MNIST database of handwritten digits," Courant 

Institute, NYU Corinna Cortes, Google Labs, New York Chirstopher J C 

Burges, Microsoft Research, Redmond. 

[43]  R. L. Thorndike, "Who Belongs in the Family?," Psychometrika, vol. 18, no. 4, 

pp. 267-276, 1953.  

[44]  R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. 

Payne, R. Yurchak, M. Russwurm, K. Kolar and E. Woods, "Tslearn, A 

Machine Learning Toolkit for Time Series Data," Journal of Machine Learning 

Research, vol. 21, no. 118, pp. 1-6, 2020.  

[45]  Defense Advanced Research Projects Agency (DARPA), "Competency-Aware 

Machine Learning (CAML)," 2019. [Online]. Available: 



150 

 

https://www.darpa.mil/program/competency-aware-machine-learning. 

[Accessed 23 April 2021]. 

[46]  A. Klyubin, D. Polani and C. L. Nehaniv, "All else being equal be empowered," 

in European Conference on Artificial Life, Berlin, Heidelberg, 2005.  

[47]  A. S. Klyubin, D. Polani and C. L. Nehaniv, "Keep your options open: An 

information-based driving principle for sensorimotor systems," PloS one, vol. 3, 

no. 12, p. 4018, 2008.  

[48]  T. Jung, D. Polani and P. Stone, "Empowerment for continuous agent - 

environmental systems," Adaptive Behavior, vol. 19, no. 1, pp. 16-39, 2011.  

[49]  D. Pathak, P. Agrawal, A. Efros and T. Darrell, "Curiosity-driven Exploration 

by Self-supervised Prediction," in Proceedings of the 34th International 

Conference on Machine Learning (PMLR), 2017.  

[50]  S. Dey, K.-W. Huang, P. A. B eerel and K. M. Chugg, "Characterizing Sparse 

Connectivity Patterns in Neural Networks," in Information Theory and 

Applications Workshop (ITA), San Diego, CA, 2018.  

[51]  T. M. Book and J. A. Thomas, Elements of Information Theory, Hoboken, NJ: 

Wiley, 1991.  

[52]  T. S. Community, "scipy.stats.entropy," SciPy.org, [Online]. Available: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html. 

[Accessed 5 June 2021]. 

[53]  C. E. Shannon, "A Mathematical Theory of Communication," Bell System 

Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.  

[54]  W. H. Kruskal, "Historical Notes on the Wilcoxon Unpaired Two-Sample Test," 

Journal of the American Statistical Association, vol. 52, no. 279, pp. 356-360, 

1957.  

[55]  C. Marais, "Empowerment as Intrinsic Motivation," towards data science, 18 

July 2018. [Online]. Available: https://towardsdatascience.com/empowerment-

as-intrinsic-motivation-b84af36d5616. [Accessed 24 April 2021]. 

[56]  T. Campbell, J. Straub, J. W. Fisher III and J. How, "Streaming, Distributed 

Variational inference for Bayesian Nonparametrics," Advances in Neural 

Information Processing Systems, vol. 28, pp. 280-288, 2015.  

[57]  J. Chang and J. W. Fisher III, "Parallel Sampling of DP Mixture Models using 

Sub-clusters Splits," Neural Information and Processing Systems, 2013.  

[58]  A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep 

convolutional neural networks," Communications of the ACM, vol. 60, no. 6, 

pp. 84-90, 2017.  

[59]  Y. W. Teh, M. I. Jordan, M. J. Beal and D. M. Blei, "Hierarchical Dirichlet 

Processes," Journal of the American Statistical Association, vol. 101, no. 476, 

pp. 1566-1581, 2006.  

[60]  D. Aldous, "Exchangeability and Related Topics," Ecole d'Ete de Probabilities 

de Saint-Flour XIII, pp. 1-198, 1983.  



151 

 

[61]  E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: an efficient 

alternative to SIFT or SURF," in IEEE International Conference on Computer 

Vision, 2011.  

[62]  C. Molnar, Interpretable Machine Learning, github, 2019.  

[63]  "Additional information is available as supplementary materials.".  

[64]  J. B. MacQueen, "Some methods for classification and analysis of multivariate 

observations," in 5th Berkeley Symposium on Mathematical Statistics and 

Probability, 1967.  

[65]  R. K. Pathria and P. Beale, Statistical Mechanics (Third ed.), Academic Press, 

2011.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


