

ABSTRACT

Title of Dissertation: Towards Trust and Transparency in Deep

Learning Systems through Behavior

Introspection & Online Competency Prediction

 Julia Filiberti Allen, Doctor of Philosophy, 2021

Dissertation directed by: Dr. Steven A. Gabriel, Department of

Mechanical Engineering

Deep neural networks are naturally “black boxes”, offering little insight into

how or why they make decisions. These limitations diminish the adoption likelihood

of such systems for important tasks and as trusted teammates. We employ

introspective techniques to abstract machine activation patterns into human-

interpretable strategies and identify relationships between environmental conditions

(why), strategies (how), and performance (result) on both a deep reinforcement

learning two-dimensional pursuit game application and image-based deep supervised

learning obstacle recognition application. Pursuit-evasion games have been studied

for decades under perfect information and analytically-derived policies for static

environments. We incorporate uncertainty in a target’s position via simulated

measurements and demonstrate a novel continuous deep reinforcement learning

approach against speed-advantaged targets. The resulting approach was tested under

many scenarios and performance exceeded that of a baseline course-aligned strategy.

We manually observed separation of learned pursuit behaviors into strategy groups

and manually hypothesized environmental conditions that affected performance.

These manual observations motivated automation and abstraction of conditions,

performance and strategy relationships. Next, we found that deep network activation

patterns could be abstracted into human-interpretable strategies for two separate deep

learning approaches. We characterized machine commitment by the introduction of a

novel measure and revealed significant correlations between machine commitment,

strategies, environmental conditions, and task performance. As such, we motivated

online exploitation of machine behavior estimation for competency-aware intelligent

systems. And finally, we realized online prediction capabilities for conditions,

strategies, and performance. Our competency-aware machine learning approach is

easily portable to new applications due to its Bayesian nonparametric foundation,

wherein all inputs are compactly transformed into the same compact data

representation. In particular, image data is transformed into a probability distribution

over features extracted from the data. The resulting transformation forms a common

representation for comparing two images, possibly from different types of sensors.

By uncovering relationships between environmental conditions (why), machine

strategies (how), & performance (result) and by giving rise to online estimation of

machine competency, we increase transparency and trust in machine learning

systems, contributing to the overarching explainable artificial intelligence initiative.

TOWARDS TRUST AND TRANSPARENCY IN DEEP LEARNING SYSTEMS

THROUGH BEHAVIOR INTROSPECTION & ONLINE COMPETENCY

PREDICTION

by

Julia Filiberti Allen

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2021

Advisory Committee:

Professor Steven A. Gabriel, Chair, Dept. of Mechanical Engineering

Professor Dinesh Manocha, Dean’s Representative, Dept. of Computer Science

Professor Jin-Oh Hahn, Dept. of Mechanical Engineering

Professor Shapour Azarm, Dept. of Mechanical Engineering

Professor Jeffrey Herrmann, Dept. of Mechanical Engineering

© Copyright by

Julia Filiberti Allen

2021

ii

Dedication
To my family.

iii

Acknowledgements
This material is based upon work supported by the Defense Advanced

Research Projects Agency (DARPA) under Contract No. HR001119S0030, known as

the MindfuL™ program. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of DARPA. Approved for public release, unlimited

distribution. Not export controlled per ES-FL-051121-0060.

For Chapter 2, I acknowledge collaboration with Steve Schmidt for the

reinforcement learning implementation and PyTorch support. I also acknowledge

consultation from Dr. Lucas Finn on the target tracker implementation. For Chapter

3, I acknowledge support from Steve Schmidt for PyTorch and dimension reduction

support. All of the design, experimentation, and analysis in Chapters 2 and 3 was my

own work; additionally, all but the base reinforcement learning deep deterministic

policy gradient harness software development work was my own.

And for Chapter 4, I acknowledge the contributions of a large research team

across BAE Systems FAST Labs™ and the MIT Computer Science & Artificial

Intelligence (CSAIL) department, for which I served as Principal Investigator (PI)

and lead proposal author. Specifically, I acknowledge Dr. Michael Planer, Dr. Olga

Babko-Malaya, Myriam Ayad, Collin Blakely, Christopher Dean, Dr. John Fisher III,

Genevieve Flaspohler, Dr. Matthew Henry, Jennifer Hemingway, Dr. Steven Kalik,

Dr. Eric Liu, Jennifer Sierchio, Steve Schmidt, Dr. Sean Stromsten, and Dr. Elizabeth

Wills for their technical contributions and project support on the MindfuL™ program.

As PI, I was responsible for the design, implementation oversight, delivery, and

presentation associated with the program. I was the lead author of the original

iv

MindfuL™ winning DARPA proposal, and the ideas for all of the implemented

components and their interactions were my own. I was the lead system architect and

held the final implementation decision authority for all component development. I

designed all of the components and their interactions with one another to achieve a

competency-aware system. Moreover, I implemented the prototype Environment

Similarity Calculator component on my own. And finally, the writing of all parts of

this dissertation were my own, with edit suggestions from my advisor, Dr. Steven A.

Gabriel. In addition to the MindfuL™ team, I acknowledge program guidance and

technical direction from DARPA, especially Dr. Jiangying Zhou and Dr. Zachary

Lapin, whose interpretations and research interests around machine competency

inspired the MindfuL™ software development from inception to implementation.

Throughout this dissertation, I used “we” to acknowledge contributions from others,

however, the ideas behind all research included in this dissertation were my own.

Finally, I acknowledge the impactful guidance, countless reviews, and

valuable feedback from my advisor, Dr. Steven A. Gabriel. His dedication and

commitment to my research amidst the COVID-19 pandemic and ever-fluctuating

full-time employment & military commitments are greatly and sincerely appreciated.

v

Table of Contents

Dedication .. ii
Acknowledgements .. iii
Table of Contents .. v
List of Tables ... vii

List of Figures ... viii
List of Abbreviations ... xi
Chapter 1: Introduction ... 1

Section 0: Motivation ... 1
Section 1: Literature Survey .. 3

Section 2: Dissertation Organization & Research Community Involvement 8
Chapter 2: Reinforcement Learning Approach to Speed-Overmatched Pursuit

Games with Uncertain Target Information .. 14

Section 0 Overview ... 14
Section 1 Introduction ... 16
Section 2 Simulation Overview .. 16

2.1 Measurement Simulation .. 21
2.2 Observation Space .. 23
2.3 Action Space ... 24

2.4 Game Progression ... 24
2.5 Reward .. 25

Section 3 Reinforcement Learning Approach ... 26
3.1. RL .. 26

3.2 DDPG .. 27
Section 4 Results & Discussion .. 30

4.1. Bearing-Following Baseline Algorithm ... 31
4.2. Baseline-RL Results Comparison .. 32
4.3. Comparison to DDPG Approach without Uncertainty 36

4.4. Online Decision-making Leveraging Conditional Past Performance 37

4.5. RL Agent Strategy Abstraction .. 39
Section 5 Conclusions ... 40

Chapter 3: Uncovering Strategies and Commitment through Machine Learning

System Introspection .. 42
Section 0: Overview ... 42

Section 1: Defining Machine Behavior.. 45

Section 2: UMAP Algorithm ... 48

Section 3: UMAP Dimension Reduction & Visualization of Deep RL Behaviors 51
Section 4: Abstracting behaviors into human-relatable strategies. 52
Section 5: Determining effects of environmental conditions on strategies and

performance .. 56
Section 6: Defining machine commitment and determining commitment effects on

game outcome ... 57
Section 7: Empowerment ... 67
Section 8: Interpretations. .. 68

vi

Chapter 4: Achieving Competency-Aware Machine Learning through Machine-

Derived Conditions and Online Strategy & Performance Prediction 70

Section 0: Overview ... 70
Section 1: Deep Supervised Machine Learning System under Evaluation............ 80
Section 2: Automatic Derivation of Conditions via Bayesian Nonparametric

Methods... 83
Section 2.1 Hierarchical Dirichlet process (HDP) .. 85

Section 2.2 Semantic Interpretability of Topics ... 98
Section 3: Environment Similarity Calculator ... 100

3.1 Assessing current environment similarity to past machine experiences using

KL-divergence scoring.. 100
3.2 Historical competency distributions filtered by similar past experiences .. 102

3.3 Leveraging environment similarity to detect data ingestion anomalies and

sensor faults .. 103
Section 4: Offline Definition of ML Strategies & Performance 104

4.1 Offline Definition of ML Strategies ... 104

4.2 Offline definition of ML Performance .. 108
Section 5: Online Prediction of ML Strategies .. 109
Section 6: Online Prediction of ML Performance ... 113

Section 7: Online Prediction of Strategy- & Performance-Controlling Conditions

... 117

Section 8: System Training and Online Framework .. 126
8.1 Walkthrough of Offline Training System Diagram 126
8.2 Walkthrough of Online Competency-Aware System Diagram 127

8.3 Near real-time competency assessment offers “online” utility to users 128
Section 9: Interpretations ... 129

Chapter 5: Conclusions and Future Work .. 130
Section 0: Conclusions ... 130

Section 1: Broader Implications & Future Work ... 132
Appendix .. 138

Section 0: Sample Pursuit Games from Automatically-Derived Strategies 138
Section 1: Analysis of dimension-reduced actions (heading & acceleration only)

... 145

Bibliography .. 147

vii

List of Tables

Table 1 Novelty of Pursuit RL Research .. 5
Table 2. Novelty of Competency-Aware Machine Learning XAI Research 8
Table 3 Key Research Insights & Section References.. 12
Table 4 DDPG Method Definitions .. 15

Table 5 Environmental Run Parameters ... 17
Table 6 DDPG Algorithm applied to the Pursuit Game ... 28
Table 7 DDPG Terminology ... 29
Table 8 DDPG Run Parameters .. 30
Table 9 Baseline bearing-following pursuit algorithm ... 31

Table 10 Procedural Pseudocode for Behavior Analysis .. 51

Table 11 Procedural Pseudocode for Commitment Analysis 66
Table 12 Expert-Proposed Condition Labels .. 99

Table 13 Computational times associated with several components for two sample

updates .. 128

viii

List of Figures
Figure 1 Pursuit game illustration ... 17

Figure 2 Python Pursuit Game Rendering .. 20
Figure 3 RL approaches learn optimal policies to maximize rewards in a given

observable environment .. 26
Figure 4 Baseline bearing-following policy illustration ... 31
Figure 5 DDPG RL pursuit algorithm outperforms baseline algorithm against

increasing target maximum speed parameters .. 33
Figure 6 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated

captures against initial angle to target conditions ... 33
Figure 7 DDPG RL pursuit algorithm outperforms baseline algorithm against

increasing initial distance to target parameters ... 34

Figure 8 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated

captures against initial angle to target conditions ... 34

Figure 9 Baseline pursuit algorithm performs well in certain pursuer-to-target angle

initializations ... 35

Figure 10 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated

captures against initial angle to target conditions ... 35

Figure 11 Comparison of RL pursuit algorithm with uncertainty to baseline RL

pursuit algorithm without uncertainty ... 36
Figure 12 Heat map of DDPG RL performance under coupled conditions for 5000

sample games .. 38
Figure 13 17 successful run samples and their associated manual strategy abstraction

labels in X-Y space ... 40
Figure 14 Visual depiction of neural network basic functions at a single node level.

[38] .. 46
Figure 15 The network structure that determines our pursuit agent action consists of

an 18-dimensional observation state input, two linear hidden layers, and a final output

layer. A total of 702 outputs from the hidden layers, shown in green, are included in

our behavior definition. ... 46

Figure 16 Activation functions used in our network .. 47
Figure 17 Visual inspection reveals that UMAP-embedded behaviors (left) encode

more information relevant to the game outcome (color) than just the actions (right).

Understanding how the agent thought about its actions revealed more relevant

performance information than actions alone. .. 49
Figure 18 Using the “elbow method”, we find a range of acceptable numbers of

clusters, k, highlighted in blue .. 53

Figure 19 Strategies are composed of different, sometimes homogeneous, game

outcome mixtures. ... 54

Figure 20 Clustering behaviors led to human-interpretable separation over strategy

clusters. Additional sample games for each of the 12 strategies are available in

Appendix B. .. 55
Figure 21 Behaviors relate to expert-proposed conditions intuitively. 57
Figure 22 Neuron channels are sparsely utilized and vary throughout each game.

Each subplot represents a separate game episode. .. 59

ix

Figure 23 Receding-horizon volatility measured to the end of the game monotonically

decreases as the agent progresses through the game, as expected. 63

Figure 24 Games with Win outcomes have significantly higher commitment than

games with Loss outcomes. Games with commitment values above -342 always

resulted in a Win. .. 65
Figure 25 Strategies correspond to varying distributions of commitment values 66
Figure 26 MindfuL™ online system input/output architecture 75

Figure 27 Prototype Competency User Interface (UI) .. 78
Figure 28 Simplified Prototype User Interface ... 79
Figure 29 Deep Supervised Learning Model Structure .. 80
Figure 30 Example visual data inputs ... 81
Figure 31 ROS/Gazebo Simulation Screenshot .. 82

Figure 32 HDP of observations into compact representations and traceable conditions

[45] .. 89
Figure 33 HDP procedure illustration ... 92

Figure 34 Illustration of ORB feature extraction with spatial context and associated

topic analysis ... 93
Figure 35 HDPs produce stable transitions from frame to frame 95
Figure 36 Data collected over 10 different simulated environmental properties 96

Figure 37 HDP approach yields consistent results within each property and varies

intuitively across properties .. 97

Figure 38 Alexnet machine-provided labels & the MindfuL™ Element Interpreter

automatically attach the word “volcano” to Topic 9, which is often highly expressed

in the lava simulation environment ... 98

Figure 39 Additional MindfuL™ Element Ingester interface supports human labeling.

... 99

Figure 40 Element Ingester & Interpreter components carry human-provided labels

through to improve topic semantic interpretability ... 100

Figure 41 Environment Similarity Calculator results comparing a current image to

images in the training data set. The top left image is the image being tested for

similarity to previous experiences. The rest of the top row are the most similar

images and the bottom row are the least similar images, as characterized by their

pairwise KL-divergence score. ... 101

Figure 42 Providing historical competency information through similar experience

filtering .. 103
Figure 43 Behavior Definition Network View. Outputs from the 4096 nodes in the

second-to-last layer (highlighted in green) are used as our behavior definition. 104
Figure 44 Elbow method analysis to inform number of strategies 105

Figure 45 UMAP Visualization of Strategy Clusters in an abstract two-dimensional

space where only relative distances between points is interpretable. 105
Figure 46 9 of 11 Strategies (clusters) have human-interpretable meaning! 106
Figure 47 Encouraging strategy definitions to separate over environmental properties

... 108

Figure 48 Encouraging strategy definitions to separate over expert-proposed

conditions .. 108

x

Figure 49 Strategy Predictor Network Structure, where “hidden” refers to the deep

network layers between the inputs and the outputs. ... 109

Figure 50 Strategy Predictor ROC Curves by Strategy Class................................... 110
Figure 51 Strategy Predictor Confusion Matrix .. 111
Figure 52 Online system view of an accurate strategy prediction. 112
Figure 53 Clever combining of strategy classes could improve predictive

performance, as we combine classes that are confused with one another 113

Figure 54 Performance Predictor accuracy on training data set. 114
Figure 55 Performance Predictor accuracy on validation data set 115
Figure 56 Online view of intuitive performance prediction 116
Figure 57 SHAP plot for incorrect performance prediction 122
Figure 58 High expressions of Topic 7 corresponds to unusual lighting and rare

obstacle proximity events (staring at wall with homogeneous features) 123

Figure 59 SHAP plot for Strategy 5 prediction .. 124
Figure 60 High expressions of Topic 16, 19, and 0 positively contribute to correct

clustering ... 125

Figure 61 Offline system training phase diagram ... 126
Figure 62 Online system competency assessment diagram 127
Figure 63 Raw activation patterns for L-shaped maneuver pursuit games 134

Figure 64 Processing of Multi-Modal Sensory Inputs through HDPs 135
Figure 65 Suggestions for user intervention ... 136

Figure 66 Strategy 0 Game Samples ... 138
Figure 67 Strategy 1 Game Samples ... 139
Figure 68 Strategy 2 Game Samples ... 139

Figure 69 Strategy 3 Game Samples ... 140
Figure 70 Strategy 4 Game Samples ... 140

Figure 71 Strategy 5 Game Samples ... 141
Figure 72 Strategy 6 Game Samples ... 141

Figure 73 Strategy 7 Game Samples ... 142
Figure 74 Strategy 8 Game Samples ... 142

Figure 75 Strategy 9 Game Samples ... 143
Figure 76 Strategy 10 Game Samples ... 143
Figure 77 Strategy 11 Game Samples ... 144

Figure 78 Strategy 12 Game Samples ... 144
Figure 79 UMAP-embedded actions have less informative separation over user-

proposed game conditions... 145

Figure 80 Action-clustered strategies separate less homogeneously over game

outcomes. .. 146

Figure 81 Strategy clusters for UMAP-embedded actions 146

xi

List of Abbreviations
alternative asynchronous actor-critic (A3C)

artificial intelligence (AI)

competency-aware machine learning (CAML)

Computer Science & Artificial Intelligence (CSAIL)

Defense Advanced Research Projects Agency (DARPA)

deep discrete policy gradient (DDPG)

Deterministic Policy Gradient (DPG)

eXplainable Artificial Intelligence (XAI)

global positioning system (GPS)

hierarchical Dirichlet process (HDP)

inertial measurement unit (IMU)

Kullback-Leibler divergence (KL-divergence)

light detection and ranging (LiDAR)

machine learning (ML)

Markov Decision Process (MDP)

meters (m)

meters per second (m/s)

mixed complementarity problem (MCP)

Modified National Institute of Standards and Technology (MNIST)

National Security Commission on Artificial Intelligence (NSCAI)

Naval Applications for Machine Learning (NAML)

Oriented FAST and Rotated BRIEF (ORB)

Principal Investigator (PI)

Principle Component Analysis (PCA)

Q-Learning fuzzy inference system (QFIS)

receiver operating characteristic (ROC)

reinforcement learning (RL)

Robot Operating System (ROS)

Shapley Additive exPlanations (SHAP)

t-distributed Stochastic Neighbor Embedding (t-SNE)

two-dimensional (2-d)

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

unmanned systems (UxV)

unmanned aerial vehicle (UAV)

unmanned underwater vehicles (UUV)

unmanned surface vessels (USV)

unmanned ground vehicles (UGV)

user interface (UI)

Value of Information (VoI)

1

Chapter 1: Introduction

Section 0: Motivation

A strong motivation for autonomous control and XAI research is the

explosion of unmanned systems (UxV). First came militarization and

commercialization of unmanned aerial vehicle (UAV) proliferation; now comes

amassing of small satellites, unmanned underwater vehicles (UUV), unmanned

surface vessels (USV), and unmanned ground vehicles (UGV). To date, deployed

UxV autonomy applications have been largely limited to point-to-point autonomy and

subsystem control, leaving gaps in higher intelligence and decision-making skills for

tasks with higher complexity. One task which has been studied at depth for

simplified environments is the pursuit game, wherein one agent attempts to capture a

target agent, and the extension of the game, called a pursuit-evasion game, where the

target agent actively evades the pursuer agent.

Many applications for pursuit games arise naturally in unmanned systems

control, air-to-air combat, ballistic missile defense, and sports. In unmanned systems

control, agents plan routes to navigate toward waypoints and avoid obstacles.

Additionally, unmanned agents may seek to rendezvous with teammates for refueling,

recharging, leader-follower convoys, or other activities. In air-to-air combat, systems

may aim to gain stable line-of-sight with an opposing system. In missile defense,

autonomous systems may seek to intersect the path of an incoming threat. In sports,

players attempt to intercept passes, make tackles, or catch a ball by anticipating future

target object locations in dynamic environments. While some of these applications

require three-dimensional modeling, in Chapter 2 we consider a two-dimensional (2-

2

d) version of this widely applicable game that clearly illustrates the value of the

proposed continuous reinforcement learning (RL) approach. 2-d pursuit games apply

to unmanned ground vehicle and unmanned surface vessel applications and are easily

comparable to the vast literature in pursuit-evasion games.

Explainability, interpretability, and competency awareness are widely

recognized shortcomings of current artificial intelligence (AI) and machine learning

(ML) systems [1] [2]. Currently, many AI-system end-users lack trust and interest in

the adoption of AI systems. They demand more explanations and rationale that

support machine-derived solutions. As such, explainable artificial intelligence has

been identified as priority research areas by the National Security Commission on

Artificial Intelligence (NSCAI) [3] and funded accordingly by DARPA [4]. In this

research, we explore ways to apply existing techniques to qualitatively improve trust

and transparency in machine learning systems. The resulting capabilities contribute

to the overarching field of explainable AI through analysis of machine behaviors and

insights gained from making connections between behaviors and performance. No

prior XAI research efforts have attempted to aggregate time-series machine behaviors

into strategies that are relatable to humans. And no prior research has attempted to

estimate environmental conditions, strategies, and performance using online

predictors to provide a competency-aware machine learning system. We focus on the

machine side of human-machine teaming, where we equip the machine with self-

awareness, including the assessment of its own competency.

3

Section 1: Literature Survey

Pursuit-Evasion Games, like the Homicidal Chauffeur Problem, have been

studied since introduced by Rufus Isaacs in 1951 [5], most commonly under perfect

information and analytically-derived policies for static-game parameters, like

constant-pursuer and evader speeds [6] [7]. The Homicidal Chauffeur Problem is a

differential pursuit-evasion game in which a low-speed agent with an infinitely small

turning radius, like that of a pedestrian, evades a much faster pursuer with a

constrained-turning radius, like that of a chauffeur driving a car. Through calculus of

variations and level-set methods, optimal control laws are derived for all

combinations of speed and maneuverability ratios of the pursuer to the target [8]. In

[9], the authors modeled an uncertain pursuit-evasion game using uncertain

differential equations and derived a solution via the corresponding Riccati equation.

And in [10], the authors used mixed complementarity problem (MCP) formulation to

address a pursuit-evasion game amidst obstacles and uncertainty.

Recently, machine-learning approaches have been applied to develop robust

strategies for pursuit-evasion and pursuit-only games. Such approaches seek to

expand capture probabilities of success in cases where speed and maneuverability

ratios are not suitable for applying the analytically derived solutions in the works

surveyed in [6] and [7]. For example, these methods solve for optimal policies for

pursuit-evasion games where both players have perfect information about one another

and both players act rationally (optimally). Because of these assumptions, there are

no solutions for solving a game where the evader moves faster than the pursuer [8], as

the evader would move in a direction opposite of the pursuer’s direction (known with

4

certainty) and the pursuer would never be able to catch up to the evader due to the

speed disadvantage.

In [11], the authors train pursuit and evader agents under a reinforcement-

learning approach which operates under constant speeds and position certainty. This

was the only reference found which applied a continuous RL approach to a pursuit

game, the focus of Chapter 2. In [12], the author trains only the pursuer to learn the

homicidal chauffeur strategy using a two-stage, learning technique combining

particle-swarm, optimization-based fuzzy logic controller algorithm with the Q-

Learning fuzzy inference system (QFIS) algorithm to tune the parameters of a fuzzy

logic controller. Similarly, in [13], the authors present a technique to tune a pursuer

fuzzy logic controller using Q(λ)-learning and a genetic algorithm. In [14], multiple

pursuer agents were trained using Watkin’s Q(λ)-learning algorithm to successfully

capture a single stationary target, but the algorithm did not extend well to moving

target scenarios. Briefly, Q-Learning is a reinforcement learning approach that

determines an optimal control policy by maximizing the expected reward from the

current state until the end of the game (Chapter 2 Section 3). In our pursuit game, our

control policy consists of heading and acceleration pursuit agent actions (Chapter

2.3), our state consists of observations available to the pursuer agent (Chapter 2

Section 2.2), and our reward is a function of the distance between the pursuer and

target agents and time (Chapter 2 Section 2.5).

While pursuit games are widely analyzed in these publications, none of these

explore RL approaches to pursuit games with uncertain information as studied in

Chapter 2 and promoted as an open research problem in the short survey in [6].

5

Additionally, none of the above research efforts considered a pursuit game where the

pursuer and evader could accelerate. Lastly, a literature survey in pursuit-evasion

games did not find any prior work studying the case where the evader could move

faster than the pursuer. Tackling challenges of uncertainty, speed control, and speed

overmatch in Chapter 2 support deployment of the resulting algorithm on real

unmanned systems in dynamic environments. In this case, the pursuer agent must

learn anticipatory strategies to capture speed-advantaged target and robust strategies

to account for uncertainty. And we see that the pursuer does learn anticipatory

strategies inherent to its “L-shaped” & sweeping behaviors manually abstracted from

winning scenarios in Chapter 2 and automatically abstracted into strategy groupings

in Chapter 3. While prior reinforcement learning approaches have led to anticipatory

behaviors over time, none have been abstracted automatically from activation patterns

into explainable AI strategies before the work presented in Chapter 3. Prior work and

the novel contributions of this dissertation to pursuit game research is summarized in

Table 1.

Table 1 Novelty of Pursuit RL Research

Reference Players RL Uncertainty

Dynamic

Speed

Control

Speed

Overmatch

Explainable

AI

Strategies

Feng et al., 2018 2 ✓

Wang, Wang, &

Yue, 2019
2 ✓

Al-Talabi &

Schwartz, 2014
1 ✓

Desouky &

Schwartz, 2009
1 ✓

Bilgin &

Kadioglu-Urtis,

2015

>2 ✓

Chapter 2 1 ✓ ✓ ✓ ✓

Chapter 3 1 ✓ ✓ ✓ ✓ ✓

6

 To date, eXplainable Artificial Intelligence (XAI) efforts have been largely

focused on ante-hoc model design, feature importance and continuous system

evaluation [15] [16]. Ante-hoc approaches, such as random forests and decision trees,

incorporate explainability mechanisms into models themselves, enabling natural

interpretability of results in terms of pre-defined features or conditions [17] [18]. Post-

hoc methods, such as Shapley Additive exPlanations (SHAP) [19] and permutation

methods, have also focused on feature importance for explainability [20] [21] while

others have focused on understanding high-confidence failures and ambiguous results

by stimulating examples [22]. In this case, ante-hoc methods refer to instrumentation

of XAI capabilities prior to training of a deep learning system. By instrumenting

explainable parameters that govern policy selection, ante-hoc methods provide

explainability by design; at a rudimentary level, for example, if one employed a rule-

based pursuit controller, an ante-hoc approach could bookkeep which rules (criteria)

were satisfied and relay them along with the control policy. Analogously, random

forest models, which are an ensemble of decision trees, split trees over branches that

can be traced back for explainable results. Conversely, post-hoc methods deal with

models that have already been trained, whether they carry natural interpretability via

ante-hoc methods or not. We focus here on post-hoc models so that our XAI

capabilities can be more broadly used and bolted on to existing machine learning

frameworks without stipulations on how the system is trained. In other words, the

approach outlined in Chapter 4 is applicable to any type of deep learning model for any

type of data; it does not require ante-hoc explainability considerations or impose any

special training specifications on the ML system under evaluation.

7

Importantly, few post-hoc XAI efforts have focused on understanding machine

behaviors; behaviors are encoded directly into the activation values of neurons in deep

networks. The activation patterns of the neurons themselves are representative of

machine “thought processes”. Moreover, few XAI efforts have addressed time-series

applications [23]. Awareness of machine behaviors provides insight into machine

competency, which goes beyond characterization of machine performance [24] by

abstracting machine behaviors into communicable strategies. While dimension-

reduction techniques such as Principle Component Analysis (PCA) and t-distributed

Stochastic Neighbor Embedding (t-SNE) have been used to visualize activation

patterns previously [25] [26] [27], none have employed the Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP) technique, which

shows significant benefits over t-SNE on time-series data [28] and is more accurate

than PCA [29]. Furthermore, no XAI research efforts have attempted to aggregate

time-series machine behaviors into generalizable groups, thereby abstracting machine

behaviors into strategies that are relatable to humans. And finally, no research has

attempted to estimate environmental conditions, strategies, and performance using

online predictors to provide a competency-aware machine learning (CAML) system.

Prior work and the novel contributions of this dissertation to XAI research is

summarized in Table 2.

8

Table 2. Novelty of Competency-Aware Machine Learning XAI Research

Reference Conditions Strategies Performance

Online

Competency

Prediction

Time-

Series

Strategies

Google, 2021

Feature

importance,

SHAP

-

Model training

guidance,

continuous

evaluation

- -

IBM, 2021 - -

Training model

and data

selection focus,

continuous

evaluation

- -

Krischnamurthy

et al., 2021 &

Schmidt et al.,

2021

Feature

importance,

instrumenta

tion

- - - -

Hilton et al.,

2020

Feature

importance

Non-negative

matrix

factorization

Causality of

conditions
- -

Schubert et al.,

2020
-

Feature

Visualization
- - -

Booth et al.,

2021

Generating

stimulating

conditions

-
High-confidence

failures
- -

Jaderberg et al.,

2019
Manual t-SNE - - -

Zahavy &

Mannor, 2016
Manual t-SNE Automated - -

Rauber, Fadel,

& Falcao, 2017
Manual t-SNE Automated - -

Chapter 2 Manual Manual Manual - ✓

Chapter 3 Manual UMAP Automated - ✓

Chapter 4
SHAP,

HDP
UMAP Automated ✓ -

Section 2: Dissertation Organization & Research Community Involvement

The dissertation is organized as follows. Motivation and prior related research

is summarized in Chapter 1 for both pursuit games and XAI research areas. In

Chapter 2, we describe the design and implementation of a novel deep RL-based

controller for pursuit games with uncertain information and speed-overmatched

targets. In the game, a pursuer agent employs a deep deterministic policy gradient

(DDPG) algorithm (Chapter 2 Section 3.2) [30] to capture a moving target under

imperfect information. While pursuit games have been widely analyzed since 1951,

9

none attempted an RL approach to pursuit games with uncertain information as we

introduced in Chapter 2 and analyzed further in Chapter 3. Tackling challenges of

uncertainty, speed control, and speed overmatch supports deployment of the resulting

algorithm on real unmanned systems in dynamic environments. In this case, the

pursuer must learn anticipatory strategies to capture speed-advantaged target and

robust strategies to account for uncertainty. We found, in the cases where the target

maximum speed is greater than that of the pursuer’s, the pursuer is successful in a

speed-overmatched game. This result is novel and no prior work has realized a RL

pursuer agent capable of pursuing a speed-advantaged target. Moreover, we

manually abstract RL behaviors into human-interpretable strategy groupings. We

make observations between manually hypothesized conditions and machine

performance, motivating further investigation into offline machine competency and

online competency prediction. Competency refers to both the machine performance

and the strategy that was employed; environmental conditions affect how the agent

performs the task (strategy) and the associated performance. Offline competency

understanding gives us insight into how conditions, strategies, and performance relate

to one another. Online competency prediction allows us to take advantage of those

insights and avoid failures or behaviors that are not desirable in the current situation;

it also allows gives us an opportunity to perform the task manually or otherwise

intervene to avoid a system from performing a task under conditions in which it has

not yet been trained. Chapters 3 & 4 investigate machine competency in detail.

Finally, in Chapter 2, we show that the deep RL-based controller outperformed a

10

baseline control algorithm significantly overall (by attaining 100% more target

captures) and across each manually hypothesized condition.

In Chapter 3, we uncover and analyze machine behaviors through dimension

reduction and time-series clustering for an RL agent playing the two-dimensional

pursuit game described in Chapter 2. We abstract machine behaviors into strategies

automatically and assess effects of the same manually hypothesized conditions as

found in Chapter 2 and discover that they align intuitively to automatically derived

machine strategies. We define a novel measure of machine commitment and reveal

relationships between commitment and machine performance. Interestingly, many of

the strategies discovered automatically in Chapter 3 are consistent with those

extracted manually in Chapter 2. Moreover, we make important observations across

behaviors, game outcomes, environmental conditions, and human relatability. We

demonstrate utility of machine introspection over action-only alternatives, uncover

aggregate human-relatable strategies in terms of explainable initial conditions, and

discuss how these relationships can be exploited for online performance prediction.

Lastly, we define a novel measure of machine commitment based on the volatility of

activation expressions, measured as a function of rolling-horizon Shannon entropy

and analyze its correlation to resulting machine performance.

In Chapter 4, we extend strategy abstraction methods to a completely different

application, one using a supervised deep learning approach to recognize obstacles in

visual data (still images). Here, we demonstrate that the same automated strategy-

abstraction techniques employed in Chapter 3 are generalizable to a different domain.

To exploit the game outcome-strategy correlation identified in Chapter 3, we design

11

an online strategy predictor to be used in situ, which enables a user-facing module

that suggests when to trust the machine or recommend user intervention. Moreover,

we devise a method, rooted in a Bayesian nonparametric (BNP) approach (Chapter 4

Section 2), for discovering conditions automatically that is generalizable to various

input sources beyond images and pursuit game observations. After compactly

describing the input data using the hierarchical Dirichlet processes (HDP) BNP

approach (Chapter 4 Section 2.1), we layer on deep learning predictors and explainers

to produce competency assessments of the underlying ML system in an online mode.

Finally, we relay the competency assessment to the operator via a user interface at an

update rate that exceeds user expectations. That is, the user can act on a near real-

time competency assessment to preclude the ML system from incorrectly performing

its task. For the pursuit game task, it could be an automatic controller that preserves

energy by foregoing a low-likelihood capture. For the obstacle recognition task, it

could be a human taking over the joystick for one of many forward-deployed UxS.

Now, we briefly summarize the relationships between the research in Chapters

1-5. In Chapter 1, we describe the need for increased trust and transparency in

machine-learning systems in terms of environmental conditions (why), machine

behavior (how), and machine performance (result). In Chapter 2, we manually

hypothesize conditions and strategies that impact machine performance. In Chapter

3, we automatically abstract behaviors into strategy groupings that correspond to

differing game outcomes (performance). In Chapter 4, we automatically extract

conditions from environmental observations and implement online predictors for

competency-controlling conditions, strategies, and performance for a supervised

12

learning task. By studying two disparate deep learning techniques (reinforcement &

supervised) along with two disparate tasks (track-based pursuit & image-based

obstacle recognition), we supply widely-applicable capabilities for the XAI research

community. The key insights and scientific contributions of this research are

summarized in Table 3.

Table 3 Key Research Insights & Section References

Insight & Scientific Contribution
Section

Reference

Developed control strategies using deep reinforcement learning,

novel for speed-overmatch, speed control, and pursuit games with

uncertainty.

Chapter 2

Sections 2 & 3

The resulting deep RL policy outperformed a baseline course-

aligned strategy by 100% and does better with respect to harsher

pursuit game conditions.

Chapter 2

Section 4

Manually abstracted machine behaviors into strategy groupings

and discovered relationships between conditions and

performance, exploitable for online competency prediction.

Chapter 2

Section 4.5

Neural network activation patterns were automatically abstracted

into strategies using a novel procedure; some strategies naturally

had human-interpretable meaning.

Chapter 3

Section 4

Dimension-reduced behaviors preserved more information

relative to game outcomes than actions alone.

Chapter 3

Section 2

Automatically-derived strategies can be exploited as a predictor

of performance.

Chapter 3

Section 4

A novel measure of machine commitment is significantly higher

in winning pursuit games than losing pursuit games.

Chapter 3

Section 6

Bayesian nonparametric approach supports condition traceability,

compact environment characterization, and is easily ported to

new input data types.

Chapter 4

Section 2

Environment similarity calculation supports identification of

untrained situations and potential sensor faults.

Chapter 4

Section 3

Prototype competency prediction capabilities significantly

outperform random chance for strategy and performance

prediction.

Chapter 4

Sections 5 & 6

Competency-aware machine learning approach is generalizable to

a large number of applications and machine learning approaches,

as evident by proof-of-concept experimentation on both a

supervised learning & RL approach and image-based & pursuit

game application.

Chapters 3 & 4

13

The work in Chapter 2 was presented at the Naval Applications for Machine

Learning (NAML) conference in March 2021 (~30% acceptance rate) and tentatively

accepted pending two sets of minor revisions to the Military Operations Research

Journal. The work in Chapter 3 was submitted to the Data Mining and Knowledge

Discovery Special Issue on Explainable & Interpretable ML and Data Mining in May

2021 (under review). The work in Chapter 4 is part of an ongoing $5 million / 3-year

DARPA program named Competency-Aware Machine Learning (October 2019-

September 2022), for which the author serves as Principal Investigator and winning

proposal lead author. Preliminary results were presented to academic, industry, and

government participants during the September 2020 Principal Investigator (PI)

meeting. Additionally, a poster was presented at NAML 2020 & NAML 2021

conferences.

14

Chapter 2: Reinforcement Learning Approach to Speed-

Overmatched Pursuit Games with Uncertain Target

Information

Section 0 Overview

 Pursuit-evasion games have been studied for decades under perfect information

and analytically-derived policies for static environments. Differential equations are

solved to directly obtain optimal game solutions. Here, we incorporate uncertainty in

a target’s position via simulated measurements and propose a continuous deep RL

approach to support pursuit of a speed-advantaged target. An OpenAI gym

environment was created for simulating pursuit game play. A Kalman filter was

implemented for simulating data fusion of uncertainties associated with imperfect

range and bearing measurements from the pursuer to the target. An actor-critic based,

model-free, deep discrete policy gradient (DDPG) method [30] was implemented for

incrementally training an agent to compete at a speed-overmatched pursuit game.

Essentially, the algorithm aims to optimize the weights of two networks. The actor

learns network weight parameters that produce “good” pursuer heading &

acceleration actions based on state observation inputs. The critic learns network

weight parameters that estimate the pursuit reward associated with state and action

inputs.

15

Each of the DDPG descriptors has particular meaning, as described in Table 4.

Table 4 DDPG Method Definitions

DDPG

Descriptor
Short description

actor-critic

based

“Actor-critic” methods consist of two models; the actor model

which gives an action for a given state and a critic model which

anticipates the reward of a given action based on a given state. Our

actor model gives a heading & acceleration action for each state

observation (Section 2.2). Our critical model estimates the pursuer

reward function (Section 2.5).

model-free

“Model-free” methods do not explicitly learn or leverage any

known dynamics of the agent or the environment. For example, our

deep learning approach does not explicitly account for the limited

turning radius of the pursuer. However, it implicitly learns to

account the limitation over time based on how the pursuer executes

given actions.

deep

“Deep” learning approaches use multiple layers in an artificial

neural network. In our network, we have two “hidden” layers

between the input layer (state observations) and the output layer

(heading & acceleration).

deterministic

“Deterministic” methods do not incorporate any randomness into

their policies. That is, for the same inputs (state observations), you

get the same outputs (heading & acceleration actions).

policy

gradient

“Policy gradient” methods move the policy (set of heading &

acceleration actions) in the direction of the gradient of improvement

(higher pursuit rewards), in the context of DDPG with respect to the

critic model reward expectation.

 The resulting RL policy was tested under many scenarios and performance

exceeded that of a baseline bearing-following strategy (Section 4.1). Emerging RL

success strategies were analyzed and manually abstracted into grouped behaviors.

Finally, an online decision-making framework is discussed for leveraging conditional

past performance to predict future performance, as explored further in Chapter 3 &

Chapter 4.

16

Section 1 Introduction

 Chapter 1 introduced potential real-world applications, an overview of the

pursuit-evasion game, a summary of previous research related to pursuit games, and

novel areas of research contributed by this chapter. Section 2 of this chapter

describes the simulation environment of the pursuit and target agents, the game

environment and associated OpenAI Gym implementation, and uncertainty modeling

assumptions. Section 3 outlines an introduction to RL and the implemented

continuous deep RL approach. Section 4 presents results and discusses their

comparison to a baseline alternative algorithm. And Section 5 summarizes

conclusions and future work.

Section 2 Simulation Overview

In this chapter we consider a two-dimensional pursuit game with variable-

target speed and variable-pursuer speed. There are many 2-d applications in the real

world, such as those associated with unmanned ground and maritime surface robotics,

and others discussed in Chapter 1. However, insights gained from analyzing a 2-d

game could also have relevance to a 3-d extensions. The initial position and heading

of both the target and pursuer are randomized uniformly over 30,000 simulated games

for training and 5,000 simulated games for testing to make the computational results

more general. The target holds a near-constant heading and speed, allowing for slight

maneuvers along its trajectory modeled as process noise and sampled from a multi-

variate Gaussian distribution with a mean of zero and a standard deviation of 1e-10

m2/s3, applied to velocity and acceleration vector components proportional to time in

accordance with the process noise matrix (Q) as given in Table 5. The pursuer then

17

attempts to capture the target by maneuvering within a distance smaller than the

capture radius (ε). The environmental and Kalman filtering parameters in Table 5

were used to perform the experiments described in Chapters 2 & 3.

Table 5 Environmental Run Parameters
Parameter Value

simulation time step (𝑑𝑡) 1 second (s)

maximum simulation duration 500 s

heading change rate limitation 30 degrees per second

maximum acceleration 4 (m/s2)

maximum pursuer speed 2 m/s

capture radius (ε) 50 m

maximum distance from target 1200 m

simulated sensor standard deviation error for angle measurements 3 degrees

simulated sensor noise standard deviation for range measurements 50 meters

transition matrix (𝐹) [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

]

process noise matrix (𝑄)

[

𝑑𝑡3/3 0 𝑑𝑡2/2 0

0 𝑑𝑡3/3 0 𝑑𝑡2/2

𝑑𝑡2/2 0 𝑑𝑡 0

0 𝑑𝑡2/2 0 𝑑𝑡

]

GPS position error standard deviation 10 m

GPS velocity error standard deviation 0.1 m/s

Figure 1 Pursuit game illustration

In Figure 1, we show a map in space where the X axis represents East-West

orientation and Y represents North-South orientation. The target position and

associated uncertainty are represented as the dashed ellipse depicted around 𝑥𝑡 while

the pursuer is represented by the dashed circle around the state represented by 𝑥𝑝.

18

For the target, we simulate measurements obtained from the pursuer’s position, so the

elliptical uncertainty correlates with the angle in which the measurement was taken.

For the pursuer, we assumed a fixed uncertainty covariance matrix at the equivalent

of a conservatively accurate global positioning system (GPS) measurement (10

meters), uniform in all directions, yielding a circle.

A four-dimensional state vector is defined for both pursuer (𝑥𝑝) and target

(𝑥𝑡) agents. The first two state vector components represent the agent’s position (in

2-d) and the second two components represent the agent’s 2-dimensional velocity.

Note that only the position components of the state estimate and their uncertainties

are illustrated in Figure 1. Each agent’s state is an imperfect, mean estimate on its

position and velocity. In this research, we consider pursuer and target states with

uncertainty and we model uncertainty using a 4-by-4 covariance matrix 𝑃 for both the

pursuer (Pp) and the target (Pt) which represent the accuracy of the mean state

estimate. Uncertainty estimates are propagated forward in time and updated when

new measurements are received using a Kalman Filtering approach, Equations 2 & 6,

respectively, discussed in Section 2.1.

The solid arrows emanating from each agent in Figure 1 represent the agents’

respective direction of travel and the dotted arrow depicts a “North”-orienting

direction. The angle α represents the heading of the pursuer. The circle about the

target position represents the capture radius; when the pursuer enters within the radius

ε, it “captures” the target and wins the game. To represent games with more

stringent or liberal capture requirements, one can reduce or lengthen the capture

radius.

19

Lastly, in this game implementation, the target does not attempt to evade the

pursuer. Thus this is a pursuit-only game as studied in [12, 13], where the pursuer

and target agents are present in the game, but only the pursuer is being controlled. In

this pursuit-only game, the target agent knows nothing of the pursuer or that it is

being pursued. This is relevant for applications where the target agent is not

equipped with intelligent capabilities or where the pursuer is attempting to sneak up

on the target. The pursuer, however, knows an estimate of the target’s position &

velocity state, and the associated uncertainty of its state estimate.

This approach could be scaled to multiple target agents and pursuer agents by

expanding the dimensions of the action and observation spaces, accordingly.

Additionally, the Kalman filter-targeting approach would need to be extended to

cover multiple targets. However, in the case where the number of targets is unknown,

a multi-hypothesis tracking approach [31] should be used in place of a Kalman filter

and the deep RL observation space would need to be set to some maximum number

of targets (which can become intractable and is very inefficient); future research

should consider support for flexible observation-sized inputs into learning

approaches, an open research area.

Additionally, this approach could be extended to two players playing a

pursuit-evasion game, where the target agent becomes an evader agent. For this

extension, two instances of DDPG algorithms are trained simultaneously over the

same environment; preliminary results support that the approach extends to the

pursuit-evasion game without issue, however, these results are omitted from this

dissertation. We also note that any extensions of the game can take advantage of the

20

previously trained network in order to bootstrap learning of a modified game via

transfer learning. Transfer learning approaches take advantage of machine skills

learned (encoded into network weights) for a previous task to inform the learning of a

new task. In other words, by using initial network weights that correspond to a

previously-learned task, we accelerate the learning of a new, similar task.

Figure 2 Python Pursuit Game Rendering

In Figure 2, we share the Python interface we developed that shows the

pursuer and target agents in a 2-d map. Here, we display both the true target position

& heading (black vector) and estimated target position & heading (magenta ellipse

and red vector, respectively) consistent with the underlying observations. Similarly,

the pursuer true position and heading are displayed (green vector), along with its

associated position uncertainty (light blue ellipse). In this example, the pursuer

estimated heading was aligned with the truth, so the estimated heading vector is not

displayed. In the figure (left), we show the outputs from each step through the game

episode and their associated rewards, discussed in detail in Section 2.5. This

developer interface was useful for debugging the approaches and understanding the

agent’s behavior under different environmental conditions (scenarios).

21

2.1 Measurement Simulation

Unlike previous research (Table 1), the pursuit game studied in this chapter

incorporates uncertainty on both the pursuer and target positions consistent with real-

world expectations. The pursuer only senses the approximate target position,

resulting in imperfect information. More specifically, the pursuer perceives a line of

bearing measurement to the target (angle) and distance measurement to the target

(range) at each simulated time step. A measurement model was implemented which

accounts for pursuer-to-target relative geometries and randomized measurement error.

A Kalman filter dynamical system model [32] was chosen to predict and track the

mean state estimate and uncertainty over time according to the dynamics in Equations

1-6 (see below). Due to Kalman filtering’s memoryless property, only the current

measurement and the state estimates from the previous time step are needed to

calculate an updated target estimate; no history of measurements needs to be stored.

The Kalman filter is an optimal measurement-fusion technique used to estimate states

based on linear dynamical systems in state-space format. Pairing the Kalman filtering

approach with a RL approach was natural, as both use state estimates to describe the

environment. In this case, the states estimated by the Kalman filter were directly

included into the observation space (state) used by the RL approach. Moreover,

Kalman filtering has been used for position tracking applications for decades, initially

applied in the 1960’s to space trajectory estimation and integrated on the Apollo

computer [33].

22

A Kalman filter consists of two overarching steps: the prediction step and the

update step. The prediction step (Eq. 1-2) propagates the state estimate forward in

time and the update step (Eq. 3-6) revises the predicted state estimate with the

information gained from incoming measurements. For example, if the pursuer senses

the target at some time and wants to estimate the target’s position at a future time, it

must propagate the position, velocity, and associated error covariance estimates over

time in accordance with its velocity estimate. Otherwise, the pursuer would not

anticipate where the target would be with accuracy. This state propagation is

achieved through the prediction step (Eq. 1-2).

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1 (𝐸𝑞. 1)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄 (𝐸𝑞. 2)

𝑤𝑖𝑡ℎ 𝑤𝑘−1~𝑁(0, 𝑄)

where 𝑘 is the current simulation step, 𝑥𝑘 is the 4-d target state vector (2-d position

and 2-d velocity), 𝐹 is the state transition matrix, and 𝑤 is the process noise vector

sampled from a Gaussian distribution with zero mean and covariance (process noise)

𝑄. Moreover, when a new measurement is received, the state estimates need to be

updated in accordance with the information provided. This is achieved by the

Kalman update steps (Eq. 3-6):

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: �̃�𝑘 = 𝑧𝑘 − 𝐻𝑥𝑘 (𝐸𝑞. 3)

𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛: 𝐾𝑘 = 𝑃𝑘𝐻
𝑇(𝑅 + 𝐻𝑃𝑘𝐻

𝑇)−1 (Eq. 4)

𝑈𝑝𝑑𝑡𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘�̃�𝑘 (𝐸𝑞. 5)

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 (Eq. 6)

23

where 𝑧 is the target position and velocity measurement vector, R is the measurement

noise matrix, and 𝐻 is the measurement matrix [32]. Now that we have shared how

to propagate estimates forward in time via the predict steps (Eq. 1-2) and how to

update the estimates based on an incoming measurement via the update steps (Eq. 3-

6), we share how we incorporate our state estimates into our RL observation space.

2.2 Observation Space

With the natural compression of uncertainty into covariance matrices via Kalman

filtering and the symmetry of covariance matrices, the observation space is compactly

described as 18 elements partitioned here for explanation into three categories:

1) Elements 1-4 are the target mean state estimate elements

2) Elements 5-14 are the 10 lower triangular unique entries in the target covariance

matrix, collapsing the covariance matrix into a single dimensional vector

3) Elements 15-18 are the pursuer mean state estimate elements

The target agent’s covariance matrix can be reduced to 10 unique elements since

the matrix is symmetric. Here is where we incorporate the learning of uncertainty

into the RL approach, a novel element of this study. At each time step, this 18-

element observation is formed by executing the Kalman update from simulated

measurements of sensors native to the pursuer agent. This observation allows the RL

pursuit agent to interpret the target position and velocities, their associated

uncertainties, and the estimated pursuer agent position before choosing an action.

Depending on the action chosen, new measurements is simulated, and the observation

will be updated accordingly.

24

2.3 Action Space

The action space is comprised of two elements: acceleration (𝑎) and change

in heading (𝜑). In order to enable velocity control, we include an acceleration

decision variable (in meters per second squared (m/s2)). The inclusion of an

acceleration decision variable is another novel element of this study, addressing

dynamic speed control (Table 1). Additionally, a change in heading (in radians)

decision variable is included. Most literature in homicidal chauffeur and pursuit-

evasion games surveyed in [6] [7] only include the change in heading (one-

dimensional) in the pursuer and evasion decision spaces.

2.4 Game Progression

At each simulation step, the change in heading action is applied by taking the

rotation matrix formed by the chosen angle change (𝜑) and applying it to the pursuer

velocity, as shown in Eq. 7, where the third and fourth velocity components of the

pursuer’s 4-d state estimate vector are annotated with their associated subscripts and

the updated velocities are annotated with a prime designator (′). Additionally, the

acceleration action is applied by increasing or decreasing the pursuer velocity along the

new heading, as shown in Eq. 7 where 𝑑𝑡 is the simulation time step and 𝑎 is the

acceleration action.

[
𝑥3

𝑝′

𝑥4
𝑝
′
] = [

cos (𝜑) −sin (𝜑)

sin (𝜑) cos (𝜑)
] [

𝑥3
𝑝

𝑥4
𝑝] + 𝑑𝑡 [

𝑎
𝑎
] (𝐸𝑞. 7)

A new measurement, range and azimuth to target, is generated by accounting

for the relative geometries between the pursuer (equipped with a range and azimuth

sensor) and the target. First, the true range and azimuths are computed. Second,

25

noise is added according to a Gaussian distribution with zero mean and predefined

range and azimuth noise levels (Table 5, simulated sensor noise standard deviation

for range measurements & simulated sensor standard deviation error for angle

measurements).

2.5 Reward

The reward applied at each step is the calculated distance between the pursuer

and the target (Eq. 8), using the Euclidean norm. Since RL algorithms are most

commonly designed to maximize reward, the resulting distance is inverted in sign.

This encourages the pursuer to get closer to the target at each step. The simulation

time is a parameter, along with others provided in Table 5; here, we used a simulation

time step of 1 second.

𝑟 = −‖(𝑥𝑡 − 𝑥𝑝)‖ (𝐸𝑞. 8)

Three different terminal (sparse) rewards were applied using the following scenarios.

1) If the pursuer’s distance to the target exceeded the maximum threshold (1200

meters), a penalty of -1500 was applied.

2) If the maximum simulation step limit (500 seconds) was reached, a penalty of

-1500 was applied.

3) If the pursuer penetrated within the capture radius of the target, a reward of 1500

was applied minus the total pursuit time duration (from scenario start to time of

capture) to encourage more efficient pursuit strategies.

The selection of the penalty in 1) was chosen so that it exceeded the possible

distance from the target reward at any time step (-1200). Otherwise, the agent could

be rewarded for traversing further away from the target. The selection of the capture

reward was chosen so in an immediate capture scenario, the reward would be

symmetric to the failure rewards in 1) and 2) about zero. Since the maximum time is

26

limited to 500 time steps, the lowest capture reward the pursuer could earn was 1000

(1500 – 500 time steps). In all three of these scenarios, the game ends. No other

termination criteria were specified.

Section 3 Reinforcement Learning Approach

3.1. RL

RL is a subset of ML wherein an agent learns by interacting with an environment

through its actions and their associated rewards and effects, exactly like a Markov

Decision Process (MDP), but where all of the states and transitions are not necessarily

known. The goal of a MDP or an RL approach is to determine an optimal control policy

(sequence of actions) which maximizes all future rewards. The basic agent-

environment interaction modeled in RL is illustrated in Figure 3.

Figure 3 RL approaches learn optimal policies to maximize rewards in a given observable

environment

 Deep reinforcement learning is particularly well-suited to handle sparse rewards

like those experienced in this pursuit game, as ratified by the breakthrough AlphaGo

performance in [34]. Due to the continuous nature of the action and observation

spaces in this pursuit game, and the success of its employment in [11], the DDPG

algorithm in [30] was used. The DDPG approach combines the Deterministic Policy

Gradient (DPG) reinforcement learning algorithm from [35] with deep learning

function approximation. An alternative asynchronous actor-critic (A3C) RL approach

was explored by the authors for this exact problem implementation, but the trained

27

agent did not achieve satisfactory performance even after long periods of training on

near-stationary targets; the authors concluded that the A3C approach attempted was

not successful due to the attempt to discretize the intractable continuous action space

inherent to the pursuit game.

3.2 DDPG

 The DDPG algorithm in [30] combines actor and critic methods with policy-

gradient methods. Actor-critic methods consist of two models; the actor model which

gives an action for a given state and a critic model which anticipates the reward of a

given action based on a given state. The actor model selects an action which maximizes

an approximate Q-function which the critic learns by minimizing a Bellman loss

function.

 A Bellman equation first applied to dynamic programing, where a problem is

decomposed into a sequence of subproblems, determines an optimal policy by

recursively solving an action-value function 𝑄𝜇(𝑠𝑡, 𝑎𝑡) (Eq. 9), where 𝑠𝑡 and 𝑎𝑡 are the

state and action at time 𝑡, respectively, 𝑟 is thre reward function, 𝐸 is the environment

described in Section 2, 𝜇 is the target policy, and 𝛾 is the discount factor applied to

future rewards.

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] (𝐸𝑞. 9)

 DDPG employs two sets of actor-critic agents, each rooted in a deep artificial

neural network. In addition to actor-critic networks updated at every time step, an

additional set of actor-critic target networks are updated at a slower rate, and only

with some of the updated weights from the current actor-critic networks, making for

smoother model updates, less sensitive to uncommon scenario-specific interactions

28

and edge cases. The DDPG algorithm from [30] is described in Table 6 in detail for

this implementation. Essentially, the algorithm aims to optimize the weights of two

networks. The actor learns network weight parameters that produce “good” pursuer

heading & acceleration actions based on state observation inputs. The critic learns

network weight parameters that estimate the pursuit reward associated with state and

action inputs.

Table 6 DDPG Algorithm applied to the Pursuit Game

Algorithm 1 DDPG Algorithm applied to the Pursuit Game

Parameters: Discount factor 𝛄, number of episodes M, number of steps for each episode T,

batch size n

1. Randomly initialize critic network 𝑸(𝒔, 𝒂 |𝜽𝑸) and actor network 𝝁(𝐬|𝜽𝝁) with weights

𝜽𝑸and 𝜽𝝁.

2. Initialize target network 𝑸′ and 𝝁′ with weights 𝜽𝑸′
← 𝜽𝑸, 𝜽𝝁′

← 𝜽𝝁

3. Initialize replay buffer 𝑹

4. for episode = 1, M do

 5. Initialize a random process 𝑵 for action exploration

 6. Receive initial observation state 𝒔𝟏, where the state is comprised of the 18 elements

described in Section 2.2.

 7. for t=1, T do

 8. Select action 𝒂𝒕 = 𝛍(𝐬|𝜽𝝁) + 𝑵𝒕 according to the current policy and exploration

noise, where the action is comprised of the 2 elements described in Section 2.3.

 9. Execute action 𝒂𝒕 and observe reward 𝒓𝒕 and observe new state 𝒔𝒕+𝟏, where the

pursuer reward is described in Section 2.5.

 10. Store transition (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝑹

 11. Sample a random batch of 𝒏 transitions (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) from 𝑹

 12. Set 𝒚𝒊 = 𝒓𝒊 + 𝛄𝑸′(𝒔𝒊+𝟏, 𝝁′(𝒔𝒊+𝟏|𝜽
𝝁′

)|𝜽𝑸′
)

 13. Update critic by minimizing the loss using a gradient descent optimizer:

𝑳 =
𝟏

𝑵
∑ (𝒚𝒊

𝒊
− 𝑸(𝒔𝒊, 𝒂𝒊|𝜽

𝑸))𝟐

 14. Update the actor policy using the sampled policy gradient:

𝜵𝜽𝝁𝑱 ≈
𝟏

𝑵
∑𝜵𝒂𝑸(𝒔, 𝒂 |𝜽𝑸)

𝒊

|𝒔=𝒔𝒊, 𝒂=𝝁(𝒔𝒊)𝜵𝜽𝝁𝛍(𝐬|𝜽𝝁)|𝒔𝒊

 15. Update the target networks:

𝜽𝑸′
← 𝝉𝜽𝑸 + (𝟏 − 𝝉)𝜽𝑸′

 𝜽𝝁′
← 𝝉𝜽𝝁 + (𝟏 − 𝝉)𝜽𝝁′

 end for

end for

29

The terms used in the DDPG algorithm outlined above are summarized in

Table 7.

Table 7 DDPG Terminology

DDPG

Term
Short description

γ Discount factor applied to future rewards.

M
Number of episodes. Number of pursuit games to play during the DDPG

training phase. For us, this is 30,000 pursuit games.

T
Number of steps for each episode. This is maxed out at 500 steps for our

pursuit games.

t Current time step index.

n
Batch size. Governs the number of transitions that are sampled from the

replay buffer to compute the expected game reward.

𝜃𝑄 Weights in the current critic network.

𝜃𝜇 Weights in the current actor network.

𝑄
Current critic neural network. The neural network that governs reward

function approximation.

𝜇
Current actor neural network. The neural network that governs action

selection.

𝑄′ Target critic neural network.

𝜇′ Target actor neural network.

𝜃𝑄′
Weights in the target critic neural network, updated at a slower rate than

the current critic neural network.

𝜃𝜇′
Weights in the target actor neural network, updated at a slower rate than

the current actor neural network.

𝑅

The replay buffer. Storage of transitions saved in memory for later

reference. Here, we save transitions from a current state to the next

state, in accordance with our acceleration and heading actions, and the

associated reward.

𝑁𝑡
Exploration noise for time t. Noise is added to the action itself to

promote exploration of the state space.

𝑎𝑡
Action for time t, where the action is composed of two parts, heading

and acceleration, as described in Section 2.3.

𝑠𝑡
State for time t, where state is composed of 18 elements described in the

observation Space Section 2.2.

𝑟𝑡 Reward for time t, where the pursuer reward is described in Section 2.5.

𝐿 Loss function. Bellman equation as described in Section 3.2.

𝛻𝜃𝜇𝐽
Sampled policy gradient. Take the mean of the sum of gradients

calculated from the mini-batch experiences in the batch indexed by i.

𝝉
Proportion of target network weights that are updated from the current

networks.

30

Specific DDPG implementation parameters and their values are listed in Table 8.

Table 8 DDPG Run Parameters

Parameter Value

optimizer Adam [36]

target network update

parameter (τ)
0.99

batch size (n) 64

actor and critic linear neural

net structures

18 (inputs/Section 2.2) x

400 (hidden layer) x 300

(hidden layer) x 2

(outputs/Section 2.3)

discount factor (γ) 0.99

Section 4 Results & Discussion

After execution of 5000 randomized testing trials, we compared the DDPG-trained

agent capture performance to that of a baseline bearing-following (always taking a

direct angle to the target) pursuit approach. Moreover, we studied performance

sensitivities to initial conditions. Each trial consisted of initial position randomization

of the pursuer and target within a 1200 by 1200 meter (m) operating space and

randomized maximum target speed between 0 and 8 meters per second (m/s).

Sensitivities to performance were analyzed for three initial conditions:

1) The starting distance of the pursuer from the target

2) The initial relative angle to the target

3) The maximum speed of the target

31

4.1. Bearing-Following Baseline Algorithm

The baseline bearing-following capture strategy takes a direct route to the

target from the pursuer’s position using the algorithm described in Table 9, and

further illustrated in Figure 4.

Table 9 Baseline bearing-following pursuit algorithm

Algorithm 2 Baseline bearing-following pursuit algorithm

1. Compute the pursuer to target position bearing vector 𝒗

2. Compute the angle from the pursuer to the target, where 𝒗𝟏 and 𝒗𝟐 are the Cartesian X

and Y components of the vector 𝒗

𝛉 = 𝐚𝐫𝐜𝐭𝐚𝐧 (
𝒗𝟐

𝒗𝟏

)

3. Compute the current pursuer heading 𝜶

4. Compute the maximum heading action which will align the pursuer heading with the

velocity heading

𝝋 = 𝝎 ∗ (𝛉 − 𝜶)

5. Continue at constant speed (zero acceleration) and apply change in heading action 𝝋

Figure 4 Baseline bearing-following policy illustration

The bolded action 𝝋 complies with the 𝝎 limit on maximum heading change,

analogous to the turning radius limitations studied in the homicidal chauffeur

problem. In our case, 𝝎 was equal to 30 degrees per second, governing how fast the

agent can turn. That is, the agent can only turn so much in one simulation time step.

In the baseline pursuit strategy, the pursuer maintains a constant speed, consistent

with previous literature [12, 14, 9, 11] and the classic homicidal chauffeur problem

[5] and its derivatives surveyed in [6, 7].

32

4.2. Baseline-RL Results Comparison

The DDPG agent was trained using a Pytorch platform on an HP ZBook 15

computer with a modest 16GB of memory and an Intel Core i7-6820HQ CPU. A

training episode is analogous to running the pursuit game simulation once. The

DDPG agent analyzed in this Chapter was trained against 30,000 training episodes;

2,000 training episodes were timed and took approximately 3 hours of computational

runtime without any efforts for parallelization. The timing scaled nearly linearly for

30,000 episodes, taking approximately two days of processing time, though the

experiment was not explicitly timed.

The following figures show the performance of the RL agent compared to the

baseline agent. The X axis represents the discretized bins associated with the

corresponding initial conditions, using the lower limit bin value as the axis label.

Figure 5 shows the performance superiority of the RL agent over the baseline agent

with respect to the initial speed of the target. The X axis represents the maximum

speed of the target and the Y axis represents the number of cumulative (aggregated)

captures as the maximum speed increases. Here, based on superior performance, we

know that the RL agent has learned anticipatory strategies sufficient to plan an

interception point in advance of the target’s current position. Otherwise, its

performance would present the same or worse than the baseline algorithm. In the

cases where the target maximum speed is greater than that of the pursuer’s (where the

X axis value is greater than 2 m/s), the pursuer is successful in a speed-overmatched

game. This result is novel and no prior work has realized a RL pursuer agent capable

of pursuing a speed-advantaged target.

33

Figure 5 DDPG RL pursuit algorithm outperforms baseline algorithm against increasing target

maximum speed parameters

The non-cumulative captures as a function of maximum target speed, as

shown in Figure 6.

Figure 6 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures

against initial angle to target conditions

34

Figure 7 shows the performance sensitivities of both algorithms to the initial

distance between the pursuer and the target.

Figure 7 DDPG RL pursuit algorithm outperforms baseline algorithm against increasing initial

distance to target parameters

The non-cumulative plot of the initial distance to target effects on baseline and

RL-trained performance is shown in Figure 8. Here, the performance advantage of

the DDPG algorithm over the baseline algorithm becomes exaggerated early in the

parameterization space, achieving significant separation around 200 meters, but then

shrinks around 900 meters.

Figure 8 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures

against initial angle to target conditions

35

Figure 9 shows the non-cumulative captures as a function of the initial angle

of the pursuer to the target. This plot illustrates an expected result in which the

baseline algorithm performs at a level commensurate with the RL algorithm when

positioned “ahead” or “in front” of the target (orange rectangle). Here, we would

expect a simple bearing-following (direct angle to the target position) strategy to be

successful, and it is.

Figure 9 Baseline pursuit algorithm performs well in certain pursuer-to-target angle

initializations

The cumulative (aggregated) plot of the initial angle effects on baseline and

RL-trained performance is shown in Figure 10.

Figure 10 DDPG RL pursuit algorithm outperforms baseline algorithm in aggregated captures

against initial angle to target conditions

36

4.3. Comparison to DDPG Approach without Uncertainty

 In addition to analyzing the effects of the RL-based solution against a course-

aligned baseline control policy, we also performed an experiment to quantify the

benefits of the inclusion of the covariance error into the observation space. Here, the

new baseline algorithm consists of the same DDPG approach with a modified

observation space. While the original observation space contained 18 elements,

including the error covariance matrix for the target, the modified observation space

only contains 4 elements, corresponding to the mean 2-d position estimate for the

pursuer and the target.

 When we train each algorithm over 10,000 trials and perform an experiment

over 5,000 trials, we find that the RL algorithm that directly accounts for uncertainty

in its observation space outperforms the baseline RL approach without uncertainty by

a factor of 4 times. The RL algorithm with uncertainty wins 1011 of 5000 games

while the baseline algorithm only wins 252 of 5000 games. The fraction of captures

over the initial distance to target condition is shown in Figure 11.

Figure 11 Comparison of RL pursuit algorithm with uncertainty to baseline RL pursuit

algorithm without uncertainty

37

 This result shows the importance of encoding known information about

uncertainty directly into the observation space. However, the RL algorithm may be

able to learn the uncertainty on its own over time based on uncovering the

relationship between the relevant pursuer-to-target geometries, consistent with

simulated measurements. In any case, the incorporation of an error covariance

tracker for pursuit games with uncertainty shows considerable benefits over its

exclusion.

4.4. Online Decision-making Leveraging Conditional Past Performance

While randomness was controlled between RL and baseline experiments, the

sampling from the initial parameters was not deliberately controlled for the initial

angle to the target and distance to the target since each trial was initialized by placing

the pursuer and target agents down randomly in the operating space. Thus, the

number of samples across the initial distance to target and initial angle to target

parameter spaces were not evenly sampled.

Regardless, in the next set of results, we consider the historical performance

of the DDPG RL algorithm for supporting the decision of whether to pursue an agent

given the current conditions. Figure 12 shows the experimental capture success, as a

fraction of wins over total trials, in a heat map over the coupled conditional effects of

the initial distance to the target and the maximum speed of the target.

38

Figure 12 Heat map of DDPG RL performance under coupled conditions for 5000 sample games

Further analysis of Figure 12 indicates that when the pursuer starts close to a

slow-moving target (upper left of heat map), its performance supports high capture

success. Conversely, as the pursuer’s initial distance to the target grows and the

maximum speed of the target increases, the chances of successful capture decrease.

We note the anomalous historical capture success cells in the 11th and 12th

distance bins and explain them by recalling that the number of samples across the

horizontal bins was not uniform. Only 5 samples were analyzed for each of those two

anomalous parameter combinations resulting in 2 of 5 and 3 of 5 successful captures

for the 11th and 12th column anomalous cells, respectively.

39

4.5. RL Agent Strategy Abstraction

Our final analysis segment focuses on categorization of the strategies which

emerged out of the DDPG RL optimization policy. These motivate the automated

strategy mechanism employed in Chapters 3 & 4. Figure 13 shows the paths of the

first 17 successful runs of the 5000 test cases and human visual inspection supports

that the pursuer follows five different types of strategies:

1) “L-shaped”: The pursuer closes in on the target perpendicular to the target’s

direction of travel; then, the pursuer turns approximately 90 degrees toward the

target and closes distance until capture.

2) “Direct”: The pursuer takes an efficient route toward the target, anticipating the

capture point near-perfectly.

3) “Unsure”: The pursuer attempts to improvise a favorable approach angle to the

target, unsure of the capture point.

4) “Race”: The pursuer runs near-parallel to the target until it catches up, then turns

toward the target to secure a capture.

5) “Sweep”: The pursuer attempts to approach the target along an arc, leading to a

successful capture.

Interestingly, these strategies are determined automatically through the

introspective methods in Chapter 3 (Figure 20). In Figure 13, we manually labeled

the scenarios with each of the five strategy abstractions discussed here.

40

Figure 13 17 successful run samples and their associated manual strategy abstraction labels in X-

Y space

Successful captures without labels did not have discernable qualities or were

trivial scenarios where the target moved especially slow.

Section 5 Conclusions

We demonstrated the utility of an agent trained with the DDPG

reinforcement-learning algorithm in a speed-overmatched pursuit game with

uncertain target information. The RL agent outperformed a baseline bearing-

following strategy by increasing capture successes by more than 100% in a 5000-trial

experiment. Furthermore, the RL agent was more robust to harsher distance and

angle-to-target starting conditions and overmatched target speeds. As the target speed

increased, the benefits of the RL approach over the bearing-following baseline

41

strategy widened greatly. Future research could explore the introduction of obstacles

and their effects on agent performance, as explored in [10] via mixed

complementarity problem modeling.

Additionally, we discussed the potential utility of leveraging historical

performance partitioned by initial conditions for online unmanned system decision-

making. Future work could consider integrating conditional historical performance

data into an online capability which predicts the probability of successful capture

from historical data and current operating conditions. This capability could help the

pursuer determine whether it should pursue the target of opportunity, wait for a

different target, or avoid resource expenditure under unlikely success situations;

examples include expending energy to attempt to intercept a pass in sports or

expending limited ballistic missile defense resources toward incoming threats. Such

analysis would also help determine the timing for when the pursuer should begin

pursuit, leading to better energy efficiencies for unmanned systems with endurance

limitations.

Moreover, we analyzed the underlying strategies employed by the RL-trained

pursuer agent against the target agent. We manually inspected the resulting paths and

aggregated them into five labeled categories. Future work could investigate online

strategy and inference, such as methods for online strategy and performance

prediction, prototyped in Chapter 4.

42

Chapter 3: Uncovering Strategies and Commitment

through Machine Learning System Introspection

Section 0: Overview

Deep neural networks are naturally “black boxes”, offering little insight into

how or why they make decisions. These limitations diminish the adoption likelihood

of such systems for important tasks and as trusted teammates. We employ

introspective techniques to abstract machine activation patterns into human-

interpretable strategies and identify relationships between environmental conditions

(why), strategies (how), and performance (result) on a deep reinforcement learning 2-

d pursuit game application. “Introspection” here refers to the analysis of neural

network activation patterns, and is analogous to looking into one’s own brain from

psychology. Activation patterns refer to the outputs of each neural network hidden

layer over time and are considered synonymous with machine “behaviors”. For

example, we found that activation patterns that were abstracted into “head-on” or “L-

shaped” maneuver strategies were successful and intuitively corresponded to

favorable initial conditions, such as the initial distance to the target and the maximum

speed of the target. In this time-series application, we are performing introspective

analysis after the game has been played. As we have shown considerable utility in

studying machine strategies, we motivate future research into development of an

online strategy predictor. An online strategy predictor could provide near real-time

updates to a human partner about the estimated strategy that the machine is using to

perform the task. As a result, the human can anticipate the strategy that the ML is

43

employing prior to making important actions, like a 90-degree turn associated with an

“L-shaped” maneuver strategy.

We are interested in characterizing machine strategies abstractly so that

humans can gain insights into the “black box”, understanding how the machine

arrived at its output rather than accepting it blindly. For example, a human is more

likely to accept an ML output of an “airplane” classification of an object in an image

if the machine says it used the “looked for wings” strategy rather than just accepting

the result without any understanding of how the machine determined that an airplane

was present.

Moreover, we characterize machine commitment by the introduction of a

novel measure and reveal significant correlations between machine commitment,

strategies, environmental conditions, and task performance. By uncovering

temporally dependent machine “thought processes” and commitment through

introspection, we contribute to the larger explainable artificial intelligence initiative,

increasing transparency and trust in machine learning systems. And we motivate

online exploitation of machine behavior estimation for competency-aware intelligent

systems by revealing correlations between strategies, commitment and resulting

performance.

The motivation and summary of prior work (n Table 2.

44

Table 2) pertinent to this research area are discussed in Chapter 1. In this

chapter, we uncover and analyze machine behaviors through dimension reduction and

time-series clustering for a RL agent playing a 2-dimensional pursuit game, as

introduced in Chapter 2. In the game, a pursuer agent employs a deep deterministic

policy gradient (DDPG) algorithm [30] to capture a moving target under imperfect

information.

In Chapter 2, we showed significant performance advantages and robustness

of this deep RL approach over a baseline pursuit strategy. Prior to the work presented

in Chapter 2, no approach to pursuit or pursuit-evasion games addressed imperfect

information, dynamic speed control, and speed overmatch (Table 1). Tackling

challenges of uncertainty, speed control, and speed overmatch supports deployment

of the resulting algorithm on real, unmanned systems in dynamic environments. In

this case, the pursuer must learn anticipatory strategies to capture a speed-advantaged

target and robust strategies to account for uncertainty. And results support that the

pursuer does learn anticipatory strategies needed in order to capture a speed-

advantaged target. In Chapter 2, based on [37], the authors hypothesized machine

strategies through manual inspection and characterized performance in terms of user-

proposed environmental conditions.

In this research, we make important observations across behaviors, game

outcomes, environmental conditions, and human relatability. We demonstrate utility

of machine introspection over action-only alternatives (Figure 17), uncover aggregate

human-relatable strategies in terms of explainable initial conditions (Figure 20 &

Figure 21), and discuss how these relationships can be exploited for online

45

performance prediction. Action-only analysis refers to examination of only the

actions that the machine took over time, without consideration of the activation

patterns leading up to the action determination. Lastly, we define a novel measure of

machine commitment based on the volatility of activation expressions, measured as a

function of rolling-horizon Shannon entropy and analyze its correlation to resulting

machine performance (Figure 24).

Section 1: Defining Machine Behavior

In general, we, and others [25], define machine behavior as the activation

patterns inherent to outputs (yi) in a neural network. A neural network is typically

composed of a series of layers, wherein each node in subsequent layers receives an

input signal from its previous layer (∑ 𝑤𝑗𝑥𝑗
𝑛
𝑗=1), whereby their weights (𝑤𝑗) are

activated, via a non-linearity function, to produce corresponding output(s) to the next

layer in the network until the final output layer is reached. This process is shown in

Figure 14 for a single node. During online inference while the trained agent is

competing in the pursuit game, input signals arrive, starting with the 18-dimensional

pursuer and target state observation described in Chapter 2 Section 2.2, weights are

applied (that were learned during training) using a linear operation to combine inputs

to produce a single input, and an activation function (Figure 19) is applied to the

single input to determine the output of the node. The output from this layer is fed to

the subsequent layer until the final output layer (consisting of heading & acceleration

actions for our 2-d pursuit application) are reached. The specific network structure

and the outputs used in our behavior definition are described in Figure 15.

46

Figure 14 Visual depiction of neural network basic functions at a single node level. [38]

The neural network learns particular weight parameters in the network during

a training phase, using the DDPG algorithm described in Chapter 2 Table 4 over

30,000 training episodes (2-d pursuit games) and associated target outputs

(rewards). Weights are optimized so they maximize the expected future rewards, as

defined in Chapter 2 Section 2.5 for our pursuit problem, encouraging target

capture. Once the network is trained, we “freeze” weights associated with each

node. That is, when we provide the network particular inputs, we get the same

outputs (hence the “deterministic” qualifier for the DDPG method).

Figure 15 The network structure that determines our pursuit agent action consists of an 18-

dimensional observation state input, two linear hidden layers, and a final output layer. A total of

702 outputs from the hidden layers, shown in green, are included in our behavior definition.

47

In our network, we have an input layer (the Observation, as described in

Chapter 2 Section 2.2), two hidden layers, and an output layer (the two-dimensional

action, as described in Chapter 2 Section 2.3). Here, when we refer to dimension, we

refer to the number of nodes that are present in each layer. Each node works as

described in Figure 14. We use batch normalization and the Rectified Linear Unit

(ReLU) activation function (Figure 16 left) for our hidden layers and the hyberbolic

tangent (tanh) activation function (Figure 16 right) on the final output layer,

consistent with choices made in the successful DDPG implementation in [30]. The

activation function is applied to the weighted sum, prior to determining the final node

output, as shown in Figure 14.

Figure 16 Activation functions used in our network

When conducting introspection (analysis of the internal machine activation

patterns / behaviors), we consider our machine behavior definition as the 702

activations (400 (output from hidden layer 1) + 300 (output from hidden layer 2) + 2

(output from hidden layer 3) nodal outputs) in the network, specifically, the outputs

of the layer weights through their respective ReLU and tanh activations. In other

48

words, the yi outputs from each ith node (as shown in Figure 14) in the hidden layers

make up our behavior (shown in green in Figure 15).

Similar behaviors (activation patterns) are then clustered together into

strategies, many of which are interpretable by humans and in terms of conditions.

Moreover, fluctuations in neuron channels are examined by our commitment

measure, which is based on Shannon entropy.

Section 2: UMAP Algorithm

To abstract the strategies of a trained Deep RL agent, we employ a dimension-

reduction technique on the activation patterns as the agent negotiates the pursuit task.

More precisely, we define a single-machine behavior as the underlying neurons

(nodes) activated during inference over the entire game duration. Then, we reduce

the dimensionality of each game episode using the UMAP algorithm [29]. UMAP,

developed in 2018, is a graph-based method for dimension reduction that is rooted in

Riemannian geometry and algebraic topology; it is robust for use on sparse, time-

series, and high-dimensional data. Here, UMAP takes as input all 702 activations for

each time step and maps them into a two-dimensional space, amenable to human

inspection. That is, we reduce 351,000 data points from each pursuit game (500 time

steps x 702 activations) to just two values, encoding relevant information for

machine-behavior analysis. The resulting illustration of these games, color-coded by

the game outcome, is shown in Figure 17 (left).

Interestingly, when we apply the same dimension-reduction technique to just

the two-dimensional action space (heading & acceleration outputs from the neural

network) over the course of the game, we lose separation over the game outcomes

49

(Figure 17 right). In the case of Figure 17 (right), we analyze 1000 data points per

game that contain the two-dimensional action and heading actions that occur at each

of the 500 time steps. In summary, we can learn more from looking at machine

“thought processes” (activations) over time (351,000 data points per game)

rather than just the actions themselves (1,000 data points per game), even

though only the actions affect the environment. This is a very important result,

motivating further XAI research into analyzing machine behaviors for insights into

machine competency.

Figure 17 Visual inspection reveals that UMAP-embedded behaviors (left) encode more

information relevant to the game outcome (color) than just the actions (right). Understanding

how the agent thought about its actions revealed more relevant performance information than

actions alone.

Complete details for the UMAP algorithm and theoretical foundations are

available in [29]. UMAP is a graph-based dimension-reduction technique that aims

to preserve local structure in data through manifold approximation. A manifold is a

topological space that resembles Euclidean space around each point in the space [39].

In our 2-d pursuit game application, we used UMAP to reduce 351,000 activations

50

associated with each game into a two-dimensional space. The behavior for each

game is represented by 702 neurons changing over 500 time steps, yielding 351,000

data points. The resulting UMAP dimension reduction from 351,000 data points to

two dimensions supported behavior visualization and interpretability with respect to

other game parameters, such as outcome, conditions, and strategy abstractions.

The UMAP algorithm can be broken down into two phases: 1) relevant

weighted-graph construction and 2) low-dimensional layout optimization. In Phase 1,

we assume that data are uniformly distributed on some manifold, despite the fact that

not all data are distributed uniformly. To create such a space, we employ Riemannian

metrics [40], which take as input a pair of tangent vectors at a point (in our case, a

node connecting two edges in an abstracted graph) and produce a scalar that

characterizes the length and angle between the vectors, similar to a dot product. We

surmise a manifold where data are separated by varying Riemannian metrics, forcing

uniformity. That is, we craft a metric that is defined dynamically to force uniformity

between data placed into the manifold. Since we have forced uniformity in this

approximate manifold, we now have data separated with different metrics that we

wish to merge into consistent global structure and do so using local fuzzy simplicial

sets constructed using a k-nearest neighbor descent algorithm [41]. In our 2-d pursuit

game application, we chose a k of 100, where 100 closest games are evaluated in the

nearest neighbor algorithm. Then, we constructed a weighted directed graph over this

manifold using a weight function described in Eq. 10 where we compute the set of k

nearest neighbors of each data point 𝑥𝑖 under the metric 𝑑 where 𝑑 represents a

customized metric parameterized by 𝜌𝑖 and 𝜎𝑖 that ensures that at least one other point

51

(𝑥𝑖−) of the k nearest neighbors considered is connected by an arc in the graph to 𝑥𝑖.

Here, 𝑥𝑖− refers to any point other than 𝑥𝑖. In other words, we choose the distance

metric to be loose enough so that every point (node) is connected to at least one other

point by choosing the appropriate 𝜌𝑖 and 𝜎𝑖 that guarantee this property.

𝑤((𝑥𝑖, 𝑥𝑖−)) = exp(
−𝑚𝑎𝑥(0, 𝑑(𝑥𝑖, 𝑥𝑖−) − 𝜌𝑖)

𝜎𝑖
) (Eq. 10)

Ensuring connectedness has considerable computational benefits over other

dimension-reduction techniques, such as t-distributed Stochastic Neighbor

Embedding (t-SNE); for example, UMAP takes 87 seconds to perform dimension

reduction on the Modified National Institute of Standards and Technology (MNIST)

data set while t-SNE takes 1450 seconds [29]. The MNIST data set [42] is a large

database of handwritten digits that is commonly used for training machine learning-

based image processing systems to correctly classify the digit that was written.

Finally, the UMAP algorithm optimizes the total cross entropy between the higher-

dimensional graph and the graph projected into lower-dimensional space. Cross

entropy [29] measures the difference between two probability distributions. This step

guarantees matching of the dimensionality-reduced topology as closely as possible to

the overall topology of the original data, thus providing a good low-dimensional

representation.

Section 3: UMAP Dimension Reduction & Visualization of Deep RL Behaviors

In Table 10, we share the procedure for abstracting machine behaviors into

strategy clusters. In Figure 17 (left), we see natural groupings into three color-coded

regions corresponding to wins, max distance losses, and time-out losses.

Table 10 Procedural Pseudocode for Behavior Analysis
Parameters: Number of clusters (nk), as determined by “elbow” method illustrated in Figure 18

52

1. Load in activation patterns, game outcomes, and conditions

2. Perform UMAP dimensionality reduction

3. Display UMAP results color-coded by game outcome (Figure 17)

4. Display UMAP results color-coded by condition (Figure 21)

5. Cluster behaviors using kmeans over nk clusters to assign strategies

6. Display UMAP results color-coded by strategy cluster (Figure 20)

7. Display strategy-outcome plot (Figure 19)

8. Organize game visualizations into strategy-delineated file structure

9. Manually inspect strategy file folders for human-interpretable strategy labels (labels provided in Figure 20 and

sample games provided in Appendix)

Section 4: Abstracting behaviors into human-relatable strategies.

Now that we have a compact representation of machine behaviors in two-

dimensional UMAP-reduced space (Figure 17 Left), we define strategies. Strategies

are clusters of machine behaviors. We grouped behaviors into 13 clusters using a k-

means algorithm and analyzed the game trajectories across each strategy. 𝑘-means

clustering [43] organizes data into 𝑘 groups, where each data point belongs to a single

cluster with the nearest center. In our application, we clustered the pursuit games

after they were reduced to two dimensions using UMAP. For k-means clustering, the

number of clusters 𝑘 is given as a parameter to the algorithm. Then the algorithm

performs a heuristic routine to minimize within-cluster variances (Eq. 11) using the

heuristic approach described next where the distance metric is also provided as an

argument. In our case, we used the Euclidean distance.

argmin
𝑺

∑ ∑‖𝒙 − 𝑢𝑖‖
2

𝒙∈𝑆𝑖

𝑘

𝑖=1

 (𝐸𝑞. 11)

In Eq. 11, 𝒙 are the data points organized into 𝑘 clusters noted by the sets 𝑆𝑖 and 𝑢𝑖 is

the centroid of the ith cluster. Heuristic approaches vary for solving this NP-hard

problem. Here, we employed a TimeSeriesKMeans algorithm from the

tslearn.clustering toolbox with default settings, Euclidean distance metric,

and a given k [44].

53

First, the standard algorithm initializes assignments randomly by choosing k

points at random as the cluster center. Next, it assigns each data point to the cluster

with the nearest center. Finally, it re-computes the cluster centroids and repeats the

assignment step until the assignments no longer change or a maximum iteration is

reached.

We chose 𝑘 based on two factors: the inertia and the resulting mixture of

game outcomes. Inertia is the sum of distances of data points to their closest cluster

center. In other words, it is the value found in Eq. 11 for particular assignments,

∑ ∑ ‖𝒙 − 𝑢𝑖‖
2

𝒙∈𝑆𝑖

𝑘
𝑖=1 . To determine the range of acceptable numbers of clusters, we

performed an “elbow analysis” [43] over the inertia attribute. The plot in Figure 18

shows how the inertia varied based on the different numbers of clusters given.

Figure 18 Using the “elbow method”, we find a range of acceptable numbers of clusters, k,

highlighted in blue

Similar to “knee of a curve” analysis, the goal of the elbow method is to

identify a region of diminishing returns. In this case the elbow appears somewhere

between k=9 and k=14 by visual inspection. To cut down our selection of k further,

we examined the breakdown of game outcomes for each of the six k candidates and

found that k=13 had the most homogeneous clusters with respect to game outcome

(Figure 19). That is, we visually inspected the resulting mixtures of strategies and

associated game outcomes and found that k=13 had the best separation over game

54

outcomes. For example, strategies 3, 9, and 10 are solid green indicating those

strategies led to 100% Win outcomes (homogeneous mixture). Conversely, Strategy

0 is a heterogeneous mixture over game outcomes, including wins (green), time-out

losses (orange), and max-dist losses (blue). Selection of k is important for behavior

analysis as it can also serve as a tuning parameter for the granularity of strategies,

explored further by ongoing research summarized in [45].

As shown in Figure 20, we see natural separation over strategies that are

able to be assigned human-relatable labels. Many of the strategies correspond to

the manual strategies determined in Chapter 2. Moreover, we see separation of

strategies over wins (Figure 19). That is, some strategies, like Strategy 9: “L-shaped

maneuvers” and Strategy 3: “head-on approaches” are more likely to result in a

winning outcome than others, such as “Strategy 12: Large distance traveled, no

capture” (Figure 19, Figure 20). Thus, if we know the strategy employed by the

underlying AI system, we can characterize expected performance. This result

further motivates an online predictive capability for strategies, as developed in

Chapter 4.

Figure 19 Strategies are composed of different, sometimes homogeneous, game outcome

mixtures.

55

Figure 20 Clustering behaviors led to human-interpretable separation over strategy clusters.

Additional sample games for each of the 12 strategies are available in Appendix B.

56

Section 5: Determining effects of environmental conditions on strategies and

performance

Next, we examine the relationships between three expert-provided

environmental conditions, strategies, and performance. The three expert-proposed

conditions for this analysis are “initial angle to target”, initial distance to target”, and

“maximum speed of the target”, as proposed and analyzed in Chapter 2 based on

familiarity with the problem and resulting performance plotted with respect to each

proposed condition. Instinctively, we expect these conditions to affect the game

outcome and relate to machine behaviors; the plots in Figure 21 confirm our intuition.

For example, when we examine the collection of points associated with max

distance losses (purple points in Figure 17), we observe that the pursuer’s initial

position is behind the target (Figure 21 Left), far away from the target (Figure 21

Center), and at a speed disadvantage (Figure 21 Right). Here, we classify an initial

angle as “behind the target” in the approximate range [-1, 1] radians (-60 to 60 deg).

Moreover, when we examine cases where the agent failed due exceeding the

maximum time limit (blue points in Figure 17), we see many instances of high target

speed (Figure 21 Right). Lastly, just as Strategy 3 (“head-on approaches”) visually

presented many cases where the target was initially positioned ahead of the pursuer

(Figure 20), we see favorable angles in that region (Figure 21 Left) which correspond

to 100% Win outcomes (yellow points in Figure 17). Here, we classify an initial

angle as “favorable” in the range [−𝜋, −2] ∪ [2, 𝜋] radians.

57

Figure 21 Behaviors relate to expert-proposed conditions intuitively.

Section 6: Defining machine commitment and determining commitment effects on

game outcome

Now, we define and analyze a novel measure of machine commitment

generalizable to all deep learning time-series applications. The goal of a commitment

measure is to capture volatility in machine behavior, where volatility captures the

fluctuation in activation patterns. We use Shannon entropy (Eq. 12) as a measure of

volatility. We hypothesize that machine “indecision” leads to less favorable

outcomes. Here, we define “indecision” as high volatility in activations over time.

This indicates that the machine has (widely) volatile behavior, analogous to a human

58

exhibiting wavering behavior, switching from one strategy to another without

commitment to a specific strategy. However, we note, perhaps conversely, that

empowerment (Section 7), which measures the act of leaving one’s options open [46]

[47] [48], has shown positive effects on machine performance as well as curiosity

[49].

To frame a discussion around machine commitment, we showcase different

activation patterns for a sample of ten games, chosen arbitrarily, from our 2-d pursuit

application in Figure 22. We refer to each particular hidden node in the network as a

neuron and each neuron channel represents the outputs (activations) from each of the

702 nodes over time. In Figure 22, we show these 702 neuron channels (subplot y-

axis) over 500 time steps (sub-plot x-axis) for 10 sample 2-d pursuit games

(subplots). We display how the raw machine activation patterns (before dimension

reduction) change over time using color intensity and notice how they differ greatly

between games. For example, just two neuron channels of 702 are active in Game 7

while seven are active in Game 4; in some cases, like Game 6, neurons “turn on” and

stay on; whereas in others, like in Game 9, they turn on and off at various times in the

game. Not surprisingly [50], we see very sparse utilization across the neuron

channels. That is, few neuron channels are active for any one game, and this is a

common observation for deep learning approaches [50]. This is analogous to using

few neurons in your brain to think about something. We use a measure of volatility

to understand the fluctuations inherent to these behaviors, and we leverage strategy

clustering to make sense of these patterns at a higher level of abstraction.

59

Figure 22 Neuron channels are sparsely utilized and vary throughout each game. Each subplot

represents a separate game episode.

Shannon entropy (Eq. 12) has long been used as a measure of the amount of

uncertainty inherent to a variable over time [51].

− ∑ 𝑃(𝑥𝑡) log 𝑃(𝑥𝑡) (Eq. 12)

𝑡 ∈ 𝜏

In our application, we are studying the Shannon Entropy of each of the neuron

channels as they evolve over the course of the 2-d pursuit game. For each neuron

channel, each 𝑃(𝑥𝑡) is the activation value (output from the node) for a time 𝑡 in a

time horizon 𝜏, such as {10, 20, 30, 40}. The entropy is calculated by the expression

given in Eq. 12 for each node channel by using the entropy function available in

the scipy.stats Python library [52].

60

We capture a rolling-horizon entropy score from the current horizon planning

start time to the end of the game as the agent progresses through the game. As we are

performing analysis after the games have been completed, we have perfect foresight

to the end of the game at each time step for our behavior analysis. We note that

rolling-horizon entropy knowledge into the future is not information that is available

while the agent is online during the game execution itself and would have to be

obtained similarly to simulating expected action interactions with the environment.

That is, the machine does not have perfect foresight into its future behavior; we are

analyzing its behavior throughout the game after the game has ended. An online

predictive capability would need to be designed in order to anticipate future behavior

and predict machine commitment in situ in order to gain insights into machine

commitment while the machine was performing its task. We also note that for games

with long or unknown durations, a shorter planning horizon would need to be

considered for computational tractability. However, we study perfect foresight

Shannon entropy here to determine its utility for a commitment attribute discussed in

more detail in the next section.

We propose a novel definition of machine commitment, wherein we measure

volatility of the neurons over receding (or rolling, based on the length of the game)

time horizons. Shannon entropy describes the level of volatility and information

gained from activation values as they change over the course of the game.

 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 = max
𝜏 ∈ 𝑻

∑ ∑ 𝑃(𝑥𝑡𝑛) log𝑃(𝑥𝑡𝑛)

𝑛 ∈ 𝑵𝑡 ∈ 𝝉

 (𝐸𝑞. 13)

61

𝑻 consists of the set of all time horizons under evaluation. For example, for a

long game with a rolling horizon entropy commitment calculation over a time horizon

step size of 10 and horizon of 30, = {{0, 10, 20, 30}, {10, 20, 30, 40}, {20, 30, 40, 50}, … } ,

where 𝜏 is a set of times in 𝑻, such as {10, 20, 30, 40}. In Eq. 13, to calculate the

level of machine commitment in each game, we sum over the Shannon entropy [53]

of the neurons 𝑛 in the set of all 702 neurons 𝑁. For each neuron channel 𝑛, each

𝑃(𝑥𝑡𝑛) is the activation value (output from the node) for a time t in time horizon 𝜏.

We characterize commitment as the maximum negative entropy value over all of the

horizons 𝜏. For example, if the highest value was associated with 𝜏∗ = {10, 20, 30, 40},

then it would correspond to the second element in T, where t indexes each element of

𝜏∗.

We note that this is a worst-case assessment of volatility because the entropy

of two simultaneous events is no more than the sum of the entropies of each

individual event [51]. In other words, the entropy of one neuron channel added with

the entropy of another neuron channel is an upper bound on their joint entropy.

Thus, we can sum entropies over all the neuron channels to obtain an upper bound on

their joint entropy. While not studied in this research, we note further that the sum of

entropies is equivalent to their joint entropy if all events (separated along neuron

channels) are independent [51]. Next, we take the maximum value over all times to

capture the worst-case volatility value for each game. And finally, since we are

aiming to measure commitment (opposite of volatility), we take the negative of the

volatility measure provided by the Shannon entropy.

62

In our 2-d pursuit game application, we chose a planning step size of 20

seconds for a game with 500 seconds (4% increments). That is, 𝑻 was equal to the set

of time horizons, {{0, 20, 40,…𝑇𝑓}, {20, 40, 60… ,𝑇𝑓}, {40, 60, 80,… ,𝑇𝑓},… }, and the set

of time horizons was truncated according to 𝑇𝑓. The rolling-horizon approach is

extensive to long games with a finite planning horizon less than that of the entire

game, so that it can scale computationally. However, for this analysis, we assume

perfect foresight knowledge of the machine behaviors until the end of the game and

examine the resulting receding-horizon volatility over time. That is, the planning

period gets shorter as we step through the game.

Figure 23 shows the volatility portion (Eq. 14) of the commitment measure,

which is computed for each time horizon 𝜏 𝜖 𝑻. Each line plot represents a separate

game episode and is color-coded by game outcome; each point in the line represents

the volatility measure for a certain time horizon 𝜏. The receding-horizon volatility (y-

axis) captures the fluctuation in activation patterns from the current planning period

start time (x-axis) to the end of the game. Since the planning period is receding

(getting shorter in duration) and we are adding entropy (positive value) at every time

step in the receding horizon, the volatility monotonically decreases over time. This is

because fewer and fewer time steps are included in the calculation as we get closer to

the end of the game.

∑ ∑ −𝑃(𝑥𝜏𝑛) log 𝑃(𝑥𝜏𝑛)

𝑡 ∈ 𝝉𝑛 ∈ 𝑁

 (𝐸𝑞. 14)

63

Figure 23 Receding-horizon volatility measured to the end of the game monotonically decreases

as the agent progresses through the game, as expected.

In Figure 23, we note that games with “win” outcomes (green) tend to have

lower receding-horizon volatility at the start and over the course of the game than the

other game outcomes, decreasing significantly toward the ends of the games (lowest

green lines on the plot). We also note that games with “time-out loss” outcomes tend

to be flatter with respect to their receding-horizon volatility than the other game

outcomes.

As an alternative to entropy, we also investigated the standard deviation of

machine behavior over time as a volatility measure suitable for basing a commitment

definition. However, as standard deviation accounts for the fluctuation in the actual

value of a variable, it was not as well-suited for the desired measure of volatility.

Standard deviation measures the spread of the data in terms of actual values, which

we do not care about. For example, for a bimodal distribution of activation values, as

the distance between peaks widens, the standard deviation increases. Conversely, the

64

Shannon entropy stays the same. In our application, this is analogous to a cyclical

pattern of activation values over time, which we want to characterize as more

committed than a random expression of activation values over time. Shannon entropy

characterizes this as desired while standard deviation would not. In addition to this

distinction, we also examined the resulting commitment values and found that they

did not vary significantly between game outcomes, rendering it a worse alternative to

characterize machine commitment.

Finally, we examine the relationship between commitment and game outcome

by taking the negative of the maximum receding-horizon volatility (shown as box

plots in Figure 24 with respect to game outcomes and in Figure 25 with respect to

strategies). In the case of perfect foresight and full-game receding planning horizons,

this is the first (maximum) value in Figure 23. In Figure 24, we observe that when

the commitment is above a value of -342 (unitless), 100% of the games result in a

Win.

In order to test the significance of our commitment results, we employed a

Mann-Whitney U test, which tests whether one population of observations is greater

than another [54]. In particular we used a Mann-Whitney U test to determine whether

the commitment distribution for any game outcome was significantly greater than

another. The results from the test revealed the distribution of commitment levels for

the Win outcome was significantly greater than those of the Time-Out Loss (p-value

= 1e-3) and Max Dist Loss (p-value = 2e-8) game outcomes.

65

Figure 24 Games with Win outcomes have significantly higher commitment than games with

Loss outcomes. Games with commitment values above -342 always resulted in a Win.

Here, again (like strategies), we determine that commitment is a behavior-

based predictor of expected performance that can be exploited during online machine

control; we also postulate that when commitment is estimated as high, humans

can gain more trust in machine behaviors, because machines will remain

committed to a certain strategy. For example, if the “L-shaped” strategy was

estimated with high confidence and commitment was also accurately estimated to be

high, then the human teammate could anticipate a 90-degree turn from its machine

partner prior to its occurrence; this discussion and its derivatives have many

redeeming benefits for human-machine teaming.

In Figure 25, we show the commitment distributions partitioned by each

strategy group. Each game is assigned a strategy using the procedure described in

Table 10 and the results for each strategy assignment are provided visually in Figure

20. We see interesting relationships between high commitment and Strategy 1 (as

clustered by the method in Table 10), which surprisingly results in frequent maximum

distance losses (described in detail in Chapter 2 Section 2.5), but executes straight

line trajectories under impossible scenarios. We also note that Strategy 10 exhibits

66

low commitment values but results in 100% Win outcomes, where many of the

trajectories are jagged. Strategies 3 (“head-on approaches”) and 9 (“L-shaped

maneuvers”), however, also result in 100% Win outcomes and have higher

commitment expressions than Strategy 10.

Figure 25 Strategies correspond to varying distributions of commitment values

In summary, the procedure for performing the commitment analysis is given

in Table 11.

Table 11 Procedural Pseudocode for Commitment Analysis

Parameters: Rolling horizon step size

1. Load in activation patterns and game outcomes

2. for each game, do

 3. initialize game rolling horizon entropy structure

 4. for each rolling horizon start time, do

 5. initialize entropy sum to 0

 6. for each neuron channel, do

 7. calculate the rolling horizon entropy for each time horizon

∑ ∑ −𝑷(𝒙𝒕𝒏) 𝐥𝐨𝐠𝑷(𝒙𝒕𝒏) 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝝉 ∈ 𝑻

𝒕 ∈ 𝝉𝒏 ∈ 𝑵

 end for

 8. Store rolling horizon entropy in game rolling horizon entropy structure

 end for

 end for

9. Visualize rolling-horizon time steps (x-axis) and rolling horizon entropies for each time horizon

(y-axis) (Figure 23)

10. Calculate commitment: 𝐦𝐚𝐱
𝝉 ∈𝑻

∑ ∑ 𝑷(𝒙𝒕𝒏) 𝐥𝐨𝐠𝑷(𝒙𝒕𝒏)𝒏 ∈ 𝑵𝒕 ∈ 𝝉

11. Visualize box plot of commitments by game outcome (Figure 24) and strategy (Figure 25)

12. Perform Mann Whitney U test on commitments for significance across game outcomes

67

Section 7: Empowerment

In order to mimic basic human curiosities and survival instincts, scientists

have attempted to equip machines with intrinsic motivations. Approaches vary, but

one intrinsic reward, Empowerment, seeks to maximize mutual information by taking

actions which allow the machine to reach the largest number of future states within

some planning horizon [48, 46, 47, 49]. Mutual information (𝐼(𝑋; 𝑌)) (Eq. 15)

measures dependence between random variables X and Y through their conditional

probability distribution (𝑝(𝑋,𝑌)(𝑥, 𝑦)) and their corresponding marginal

probability distributions (𝑝𝑋(𝑥) and 𝑝𝑦(𝑦)).

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑋,𝑌)(𝑥, 𝑦) log (
𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑦(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (Eq. 15)

Empowerment seeks to maximize mutual information gathered across future actions

over some planning horizon, annotated in Eq. 16.

𝐸 = max
𝑝(𝑎)

𝐼(𝐴; 𝑆) (Eq. 16)

Here, A describes the actions taken over some planning horizon, p(a)

represents the probability distribution of actions, and S describes their respective

observations. Empowerment seeks to find the probability distribution of actions that

leads to the most diverse set of expected observations. In other words, when

observations stay the same over time, as determined by mutual information scoring

(Eq. 15), the machine is not empowered, as the mutual information would be zero.

Conversely, if the machine observes widely varying observations, consistent with

“exploration”, then the machine is empowered as the mutual information is high

[55].

68

Empowerment, however, does not explicitly consider the machine’s behavior.

Instead, it encourages different behaviors by motivating sensory exploration through

its intrinsic reward. Commitment measures volatility of the underlying behaviors

themselves. We note that commitment, defined as a function of behavior entropy,

could serve as an alternate intrinsic reward when a desired attribute of the resulting

agent is to be decisive. This does not directly conflict with the Empowerment

intrinsic reward, as high commitment to a certain strategy may result in varying

observations (high Empowerment). Future research could study the benefits of

combining expectations of Empowerment and commitment as intrinsic rewards.

However, intuitively, the Empowerment motto of “keeping one’s options open”

seems in opposition to commitment to a certain strategy.

Section 8: Interpretations.

In summary, we have shown considerable value in analysis of “thought

processes” that govern machine behavior. For our 2-d pursuit application, we found

that compact representations of activation patterns (behaviors) preserved more

information relevant to machine performance than the machine’s actions themselves.

Moreover, we found that clusters of behaviors (strategies) separated naturally over

pursuit trajectories that were relatable to humans and that strategies could be

exploited as predictors for machine performance. Next, we found that machine

behaviors related to expert-proposed environmental conditions intuitively. And

finally, we defined machine commitment, and found that it was significantly higher in

games with Win outcomes than Loss outcomes. As such, future research on

predicting machine strategy and commitment in situ can offer greater insight and

69

predictability into machine expected behavior and performance, thereby increasing

user awareness and trust in “black box” ML systems.

Currently, the authors are applying these XAI introspective techniques to a

supervised machine learning system for an image-based obstacle avoidance task,

funded by the DARPA Competency-Aware Machine Learning (CAML) program

[45], and the focus of the next chapter. Preliminary results attest to the

generalizability and applicability of this approach to other AI systems and

applications. In conclusion, research in this chapter contributes to increased AI

interpretability and competency-awareness needed to increase trust and transparency

of AI systems.

70

Chapter 4: Achieving Competency-Aware Machine

Learning through Machine-Derived Conditions and Online

Strategy & Performance Prediction

Section 0: Overview

Understanding the strengths and limitations of machine competency is

important both to machines and to humans. Machine competency refers not only to the

expected performance of a machine learning system, but also to the strategy (how)

employed by the machine to perform its task. If humans understand machine

performance, they gain trust into machines to perform tasks in high-probability success

environments. Moreover, if humans understand machine strategies, they gain

transparency into the machines and also increase trust in these otherwise “black box”

systems. When humans understand how the machine is performing its task along with

the expected performance, humans can adequately assess the competency of the

underlying system. If the machine expected performance was high, but the strategy

was random, a human would have less confidence in the overall competency of the

system. For example, the expected capture performance (i.e. a percentage of 90%) for

our Chapter 2 deep reinforcement learning pursuit game along with the expected

strategy, such as “L-shaped maneuver”, make up the machine’s competency. Lastly,

understanding the environmental conditions that affect machine competency helps

provide additional context and insight into why the machine behaves the way it does,

promoting additional trust in machines.

Competency assessment of machines is particularly important for the future of

human-machine teaming applications. Example use cases include: manned aircraft

working with unmanned aircraft; manned ground vehicles working with unmanned

71

systems; human intelligence analysts working with machines to exploit intelligence

imagery; human commanders working with machines to understand the battlespace and

make informed decisions; unmanned transportation resources rendezvousing with

manned surface vessels; and a multitude of other commercial and military human-

machine teaming application areas.

Currently, most machine learning systems are trained on a static set of training

data until a certain level of performance is achieved and the system is deemed effective

by a subject matter expert (SME). Next, trained systems perform their assigned task,

regardless of their competency to do so or to do well. Typical maintenance of AI/ML

systems includes human monitoring of self-reported confidence scores, which are

artifacts of machine experiences limited to the training data set and oftentimes not

calibrated to probabilistic interpretation. Once a system is determined defective by a

human performance monitor, a labor-intensive retraining phase ensues, and the labor-

intensive deployment cycle repeats with fragile trust from the human teammate.

Alternative state-of-the-art maintenance of AI/ML systems relies on online learning

mechanisms; however, lifelong learning mechanisms are prone to catastrophic

forgetting and lack human-verified performance validation, as the system is constantly

evolving. In the future, we must ensure that trained systems maintain acceptable levels

of performance even after long periods of deployment; and we need to recognize when

such systems may be losing efficacy or under-performing on assigned tasks. Our

MindfuL™ competency-assessment framework, described in this Chapter, provides a

persistent and extensible capability for assessing competency of ML systems.

72

To exploit the relationships between environmental conditions and machine

competency (strategies and performance) motivated by results in Chapters 2 & 3, we

develop an online predictor system to share near real-time competency estimates with

a user. Moreover, we aim to automatically derive conditions that affect machine

competency so that our approach can be more broadly applicable to other applications

and so that competency predictions can be traced back to identifiable conditions.

Traceability supports explainability of our competency predictions in terms of

environmental conditions for a human user. While Chapters 2 & 3 considered a time-

series deep RL agent that took target observations as inputs, Chapter 4 considers a

supervised ML system that performs a task on a per-instance basis with visual image

data inputs. The obstacle recognition machine learning system takes images as input

and determines whether an obstacle is present in the image. In this simple obstacle

recognition application, the user is monitoring the machine results and associated

competency. This is analogous to a human intelligence analyst determining whether to

trust or not trust that a machine has processed an image for identifying objects of

interest. And by applying introspective techniques in Chapter 3 to a different

application and input data type, we show how our competency-awareness approaches

generalize.

In this chapter, we develop an offline procedure for learning relationships

between automatically-derived environmental conditions and machine learning

competency that is generalizable to a large number of ML systems and applications.

Specifically, we can work with any set of inputs and any deep learning system. There

are no known limitations on applications to which this approach could generalize. In

73

fact, this approach could assess performance even for systems that are not deep learning

systems; however, the ability to predict the machine strategy would not be available,

as the strategy approach works on the activation patterns of the underlying deep

learning system.

Moreover, we employ and demonstrate an online competency-awareness

system that predicts machine strategies and performance in near real-time and attributes

competency predictions to environmental conditions. The resulting competency-aware

machine learning (CAML) system is attached to a ML system under evaluation to act

as a supervisor, passively determining whether the underlying system will maintain

consistent behavior and performance under dynamically changing environments. The

competency-aware system, dubbed MindfuL™ software, interacts with the user to

safeguard underlying ML systems from being used inappropriately, and prioritizes

tasks that require user intervention. For example, if a human and machine are tasked

with the imagery exploitation (processing of an image for identifying objects of

interest) of 1000 images to search for airplane objects, and the machine has never been

trained on an image that is similar to 100 of those images, the competency-aware

MindfuL™ system will flag these 100 images for manual exploitation. Conversely,

the machine has been trained adequately, according to MindfuL™ environment

similarity calculations, to exploit 900 of those images. However, 10 of them have low

expected machine performance; the MindfuL™ system again flags these 10 images for

manual inspection. Finally, the machine processes 890 of those images with high

expected performance and associated condition and strategy predictions. The human

can “spot check” any of these 890 instances and gain insights into why the machine

74

determined there was or was not an airplane present in the image, such as “airport”,

along with the associated strategy, such as “looked for wings”, thereby increasing

transparency & trust in machine’s ability to perform the task without human

verification.

Without MindfuL™ software, state-of-the-art machine automated target

recognition systems process all 1000 images, regardless of whether they have been

adequately trained. The confidence scores associated with machine predictions are

prone to miscalibration, as they are based solely on the training data. And humans have

no insights into why (conditions) or how (strategies) these “black boxes” arrived at

their result. Competency-aware machine learning systems provide a built-in machine

supervisor to quantify and qualify expected competency for each assigned task.

Chapter 4 focuses on the competency components (conditions, strategies, and

performance) of the MindfuL™ system. The entire system is composed of 14

components, all of which have been developed and integrated for an obstacle

recognition supervised ML application. The inputs and outputs of all components are

summarized in Figure 26. However, detailed expositions for the MindfuL™ Memory

Bank, Competency Statement Generator, Element Interpreter, Element Ingester,

Competency User Interface (UI) and Information Analyzer components are not

included in this dissertation. These supporting components are not considered novel

and enable database storage and interfaces to the user.

75

Figure 26 MindfuL™ online system input/output architecture

Chapter 4 is organized as follows. Section 1 describes our machine learning

application and “ML system under evaluation”; this is the system whose competency

is being assessed. Section 2 provides a description of our Experience Encoder,

including how we automatically learn conditions from the environment using a

Bayesian nonparametric (BNP) data processing method and store them compactly in a

database (Memory Bank) for later reference. The application of BNP for enabling

competency predictions is novel, expanding on prior research in crafting compact data

representations [56] [57]. Section 3 describes how we leverage compact

representations of the environment, stored in our Memory Bank, to determine the

similarity of the current environment to past machine experiences. We also share how

we leverage recognition of similar past environments to yield historical competency

scores. This gives the user a sense of how many training experiences the machine has

endured similar to the current one, and a distribution on both historical performance

and historical strategies (historical competency) associated with those past experiences.

76

In Section 4, we discuss our approach to offline strategy and performance definitions,

where we use the same UMAP dimension reduction and k-means clustering techniques

from Chapter 3 on a new machine task and different deep learning approach. Section

5 discusses our approach to online strategy (how) prediction, where we take the outputs

from the Experience Encoder and layer on a deep learning technique to learn strategy

predictions. Similarly, in Section 6, we take in the same compact representation of the

environment output from the Experience Encoder and learn performance (result)

predictions. Next, in Section 7, we discuss how we layer on deep explainer methods

(Performance Correlator & Strategy Correlator components) onto our predictors

discussed in Sections 5 & 6 to determine which environmental conditions (why) were

most influential on the predictions using SHapley Additive exPlanations (SHAP). In

Section 8 we walk through the offline and online system distributed functional

architectures, explaining how the MindfuL™ system is trained (offline) and how it

works to process new data (online). And finally, in Section 9, we share interpretations

of the aforementioned competency capabilities and implications to broader XAI

research initiatives.

Throughout this chapter, reference will be made to our prototype Competency

User Interface (UI), shown in Figure 27. In addition to being a debugging tool for

software developers, the UI showcases our proof-of-concept competency assessments

to a user. In the future, we will garner feedback from imagery analysts to see what

competency information they find most useful for the tasks they share with their

machine partners. Additionally, MindfuL™ software could be integrated into analyst

workspaces, including widely used tools such as BAE Systems SOCET GXP® or

77

Government-owned iSpy software. Through the user interface, the user can provide

additional semantic-label information to be used by the MindfuL™ system and can

see machine competency information for the current image being processed.

Here, we briefly describe the competency information shared through the

Competency UI. Outputs from the Environment Similarity Calculator component

feed into the light blue boxes. In our imagery exploitation use case, this is the output

that would correspond to the number of similar training experiences that the machine

has seen previously; this output would help to flag the 100 samples that the machine

should not process, as it has no similar experience with those 100 tasks. This

measure gives the user an idea of how many times the machine has performed the

task at-hand during its training.

Outputs from the Performance Predictor describe the expected machine

performance to correctly exploit a particular image. Outputs from the Performance &

Strategy SHAP components correspond to the conditions (why) that influence our

competency predictions, such as “airport”. Output from the Strategy Predictor

corresponds to the strategy (how) employed by the machine to perform the task, such

as “looked for wings”. Through this interface, the user can observe the overall

competency of the machine learning system and see estimates on the conditions that

incited particular competence for the current task environment (image being

processed). For example, overall competency could be low for cases where the entire

image is spanned by “clouds” as a condition that negatively affects machine

performance, especially if the ML system has not had training samples that included

clouds.

78

Data acquired from a robot camera in simulation populate the image shown,

which corresponds to the rest of the competency information displayed. Labels are

assigned to different conditions output from the Experience Encoder either

automatically or through the Element Ingester & Interpreter components, which are

omitted from detailed discussion in this dissertation. Competency Statements are

constructed by using open-source natural language generation software, which is also

omitted from the scope of this dissertation. Finally, truth information is displayed

both for performance, whether the ML was actually “blocked” or “free” according to

LiDAR truth information, and for the strategy, as determined by UMAP

transformation and k-means inference.

Figure 27 Prototype Competency User Interface (UI)

Figure 28 shows a simplified version of our prototype competency user

interface, easier to view without overlaid labels summarizing the information

displayed. The competency information shown is an actual result from a MindfuL™

79

assessment of the associated image data shown. In this case, past performance and

predicted performance are high, and the ML system has been trained on 8,312 images

similar to this one; as such, MindfuL™ software summarizes to the user that the

situation is “suitable” and “familiar”. This would correspond to one of the 890

instances from our airplane exploitation use case, where the human can “feel good”

about trusting the ML result. In the application displayed here, the machine has high

expected performance of correctly determining that no obstacle is present in the

image.

Figure 28 Simplified Prototype User Interface

80

Section 1: Deep Supervised Machine Learning System under Evaluation

Separate from the deep RL introduced in Chapter 2 and analyzed in Chapter 3,

here we consider an agent that performs an image processing task on a per-image basis.

That is, we consider a machine that processes visual data and determines a binary

classification of whether there is an obstacle in the image or not. This task more

generally supports ground robotic autonomous operation. Moreover, this task is similar

to performing imagery exploitation to process images to determine whether an airplane

is present or not, as described in Section 0. Obstacle recognition classification is a

basic machine learning task that we are using as a proof-of-concept application. The

task of determining whether an obstacle is present or not is not novel and is used as a

simple task to use to show that our competency awareness approaches function

properly.

 The ML model is the same structure as the open-source Alexnet [58] model and

was modified by replacing the final object classification layer with a binary classifier,

where the output classification indicates a “blocked” or “free” estimate, based on

whether an obstacle is present (“blocked”) or not present (“free”) in the image being

processed. An illustration of the neural network structure is provided in Figure 29.

Figure 29 Deep Supervised Learning Model Structure

81

 This Obstacle Classifier ML system under competency evaluation takes in an

800x800 pixel image generated from a Robot Operating System (ROS) and Gazebo

simulation (described briefly in the next section) and outputs a classification of

probability “blocked” or “free”, depending on whether the machine perceives an

obstacle is present in the image. Sample visual data inputs for both “free” and

“blocked” cases are provided in Figure 30. In a larger-scoped ground autonomy

system, this obstacle recognition estimate could feed into an obstacle avoidance

module.

Figure 30 Example visual data inputs

A screenshot of our ROS/Gazebo simulation is shown in Figure 31. In the top

frame, you see the ground robot traveling through a simulation environment. The

camera is mounted on top of the robot along with a light detection and ranging

(LiDAR) sensor. LiDAR inputs are used to determine true distances from the vehicle

to the obstacle. The simulated LiDAR field of view is shown in blue. In the middle

of the screenshot, the Laser truth associated with the LiDAR returns and the ML

prediction from the Obstacle Classifier described above are shown.

82

Figure 31 ROS/Gazebo Simulation Screenshot

The LiDAR laser truth is provided by the simulation and determines the

distance to the nearest obstacle. It displays “free” if there is no obstacle within 6

meters; otherwise it displays “blocked”. The “ML Probability Free” is the output

from the Obstacle Classifier neural network described above. In the bottom left of

the screenshot we show the incoming visual data associated with the ML prediction.

And in the bottom right of the screenshot, we show a topic distribution associated

with the input image, where topic distributions are summaries over features extracted

from the image. The next section discusses in detail how we determine compact topic

distributions to describe the input image data.

83

Section 2: Automatic Derivation of Conditions via Bayesian Nonparametric Methods

In order to explain ML competency to the users, we apply a Bayesian

nonparametric (BNP) method that summarizes the competency-controlling conditions

while online. Data are taken as input, features are extracted, and features are

organized into different topics (clusters) using a BNP approach, described in detail

throughout this section. These topics (clusters) summarize the input data compactly

into a histogram over combinations of features (topic definitions). In other words, we

transform an image into a histogram over topics, where topics are defined as

combinations of features extracted from the image. Ideally, our topics would separate

over environmental features that are pertinent to the machine task and to machine

competency. For our obstacle recognition task, this could include things like specific

obstacles, such as a single topic for “building”, “wall”, or “clear grassy foreground”.

For our airplane recognition task, this could include things like “airport”, “runway”,

“wings”, “nose”, or “wheel”. However, since a machine is determining the number

of clusters directly from images, there are no guarantees that topics will separate

cleanly over something with specific human-understandable semantic meaning.

Human interpretation of automatically generated topics from images is more difficult.

For the rest of this section, we focus on explaining how machine-derived topics are

arrived without respect for semantic meaning, so that we can compactly characterize

an image for comparison to other images under the same topic definition (common

representation).

84

We use Bayesian nonparametric methods as a clustering technique to

compactly describe our data in terms of a number of topics (clusters) learned from the

data. True to the name, Bayesian nonparametric methods perform Bayesian updates

when new information is received, where it leverages a prior belief of the information

explained by each input and assigns them to a topic, and updates the belief through

posterior update. Bayesian methods are memoryless, encoding all previously

processed data and associated uncertainties into its posterior belief, so we do not need

to keep a record of previously processed information. In our case, we have a

Bayesian probabilistic model over our clusters. Moreover, Bayesian nonparametric

methods are special because they support flexibility of the number of clusters gleaned

from the data. That is, as new information is received, the cluster definition can

expand according to the properties of the data. Bayesian nonparametric methods are

used when the number of clusters is unknown and we can add more clusters as

necessary to explain our data; BNP methods differ significantly from k-means

clustering, as the number of clusters does not need to be specified a priori. Instead,

we learn the number of clusters (topics) from the data. By employing Bayesian

nonparametric method to ingest our data and compactly characterize the data in terms

of a certain set of shared descriptors, we provide a transformation from input data to a

common compact representation. When refer to a common basis or common data

representation, we are referring to the topic definition over shared environmental

descriptors derived from HDP training described in the next section. In other words,

when we compare images to other images, we do so using the topic distributions that

resulted from processing each image through our HDP Experience Encoder.

85

Alternative to leveraging topic distributions for the foundation of our

competency assessments, we could train a predictor to go directly from input data to

competency predictions. However, then the approach would be limited to taking in a

consistent number data streams and would not be extensible to multi-modal data

stream applications when handling missing data and asynchronous data arrivals are

necessary. For our obstacle recognition task, this could include simultaneous

processing of inertial measurement unit (IMU), LiDAR and camera-based sensor data

simultaneously. Moreover, Our BNP approach can be extended to transform

observations from several sensors across disparate modalities into a common

representation. And perhaps more importantly, transforming input data into a

common representation provides us a way to summarize our inputs concisely and

trace back our predictions (providing the why) to shared environmental topics. By

taking this approach, we further increase the portability of our XAI capabilities to

other applications and input types. And to realize the approach on our application, we

implemented a hierarchical Dirichlet process (HDP) BNP approach to take in images

and produce compact descriptions of the data via “topic modeling”.

Section 2.1 Hierarchical Dirichlet process (HDP)

HDP is a BNP method developed in 2006 [59] that clusters data into groups

based on a number of Dirichlet processes (described next). A common application of

HDPs is document processing where words & “bags of words” are analyzed, and

some (nonparametric) number of topics are determined using HDPs. In our case, a

document is synonymous with an input image, and bags of words are synonymous

with combinations of extracted image features, where each word is an image feature.

86

For example, if this dissertation document was processed, the resulting topics could

include “artificial intelligence” and “machine learning”. And if you were processing

many different documents, we would want the same topics to be available in the same

representation to support comparisons of topic distributions across documents. We

apply the same technique to our images so that we can store machine experiences

compactly and infer similarity and competency information for current environments

in terms of past experiences represented over a common representation of shared

topic descriptors.

One benefit of HDPs is their considerable ability to compress data into

compact topic distributions. Based on current sensor feeds, our HDP approach

reduces storage requirements by a factor of 40,000 or more on raw sensor data and

can store experiences for 1 year at less than 2 TB without implementation of

additional compression or memory management techniques. This compression

enables timely comparison of current environments to a vast memory of prior

experiences.

At a high level, HDPs use statistical techniques to determine sufficient

mixtures of features (words) and aggregations of features (topics) that explain a set of

data (images). Determining the features that go with each topic and topics that

represent each image is decided by Dirichlet processes. The Dirichlet process

𝐷𝑃(𝛼0, 𝐺0) is a distribution over probability measures; in other words, it is a

distribution over distributions. It is governed by two parameters, a concentration

parameter 𝛼0 and a base probability distribution 𝐺0. That is, for some measureable

space where 𝐺0 is a probability distribution on the space, 𝐷𝑃(𝛼0, 𝐺0) is the

87

distribution of 𝐺 over the measurement space so that for any finite measureable

partition of the space (𝐴1, 𝐴2, … , 𝐴𝑟), the random vector (𝐺(𝐴1), 𝐺(𝐴2),… , 𝐺(𝐴𝑟)) is

distributed as a finite-dimensional Dirichlet distribution with parameters

(𝛼0𝐺0(𝐴1),… , 𝛼0𝐺0(𝐴𝑟)) : (𝐺(𝐴1),… , 𝐺(𝐴𝑟))~𝐷𝑖𝑟(𝛼0𝐺0(𝐴1), … , 𝛼0𝐺0(𝐴𝑟)), as

established by Ferguson in 1973 [59].

A common metaphor for how DPs work is represented by the “Chinese

Restaurant Process” [59]. Initially, in this metaphor, some number of people are

seated at some number of tables at a restaurant with an unlimited capacity on the

amount of tables that can fit in the restaurant. A new guest arrives and sits down at

an existing table proportional to the number of people sitting at the table or at a new

table proportional to the concentration parameter 𝛼, set a priori. Specifically, a new

customer sits at an existing table with probability given in Eq. 17, where 𝑛𝑘

represents the number of people currently seated at table k and (i-1) is the total

number of customers already seated at the restaurant when the new customer arrives.

Meanwhile, the probability of sitting at a new table is given in Eq. 18. We note that

this promotes a “rich get richer” scheme, and that a new customer is more likely to sit

at an occupied table if many people are seated. This is known as the “clustering

effect”, introduced along with the Chinese restaurant process in [60]. We also note

that the greater the concentration parameter 𝛼, the more likely a new table is to form.

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡𝑎𝑏𝑙𝑒 𝑘 =
𝑛𝑘

𝛼 + 𝑖 − 1
 (𝐸𝑞. 17)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑡 𝑛𝑒𝑤 𝑡𝑎𝑏𝑙𝑒 =
𝛼

𝛼 + 𝑖 − 1
 (𝐸𝑞. 18)

The HDP extension of this DP metaphor is a Chinese Restaurant Franchise

process, wherein the HDP determines the number of restaurants, the number of tables

88

in each restaurant, and the number of shared dishes across the franchise. In our

application, this is analogous to the number of topics, the composition of features

present within each topic, and the number of environmental feature descriptors shared

across topics, respectively.

Integral to the HDP approach is the definition of a base distribution that is

itself a draw from a Dirichlet process 𝐷𝑃(𝛾, 𝛽). This is how we instrument

hierarchical links between a global topic distribution, governed by scaling parameter

𝛾 and base probability measure 𝛽 over a local topic distribution, where a Dirichlet

process for each topic is governed by scaling parameter 𝛼0 and a base probability

distribution 𝐺0. For our application, the local topic definition refers to the

combinations of features that make up a specific topic. The global topic definition

refers to how many topics we have overall. In summary, the HDP approach is

specified by Eq. 19 and Eq. 20 [59] and illustrated in Figure 32 [45].

𝐺0| 𝛾, 𝛽 ~ 𝐷𝑃(𝛾, 𝛽) (Eq. 19)

𝐺𝑚| 𝛼0, 𝐺0 ~ 𝐷𝑃(𝛼0, 𝐺0) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑜𝑝𝑖𝑐 𝑚 (𝐸𝑞. 20)

 In simplest terms, 𝛼0 determines when a new feature is assigned to a topic.

And 𝛾 determines when a new topic is necessary to describe the data that has been

processed. The complexity of the model adapts to the composition of features within

each environment as well as the number of distinct environments. Both concentration

parameters (𝛼0 and 𝛾) are tunable and can give rise to more or fewer clusters,

accordingly. We performed a parametric study to determine the best choices for the

concentration parameters using MIT’s high-performance computing environment, and

the results of the study are omitted from this dissertation.

89

For our application, we process images (documents) into compact descriptions

(topics) of machine experiences using HDP. The topic definitions are learned offline

using the method described. However, for online use, we freeze the number and

feature composition of topics and infer topic proportions of new images processed.

This is so we can compare new data to previous machine experiences under a

common representation. During offline training, the HDP learns topic distributions

that best characterize the data, allowing topic definitions to fluctuate. Online, we

make inferences over new data under the trained representation. In this way, we

guarantee that references to specific topics retain the same meaning over both offline

and online phases.

Figure 32 HDP of observations into compact representations and traceable conditions [45]

In Figure 32, we show the HDP model. Features (xmn) are extracted from the

input image (𝜙𝑘
𝑆) and compared to the feature represented associated with each topic

90

(zmn), which were governed by the concentration parameter α during training. The

incoming document is represented by 𝜙𝑘
𝑆

 from some sensor S. Data are organized

into separate groups each containing unstructured data features (xmn). All features are

derived from a common data type across all documents and combinations of features

are associated with expressions of each topic. New images are aligned with the set of

topics learned from previous experience. During training, concentration parameter γ

determines when a new topic is necessary to sufficiently capture the features

expressed in the data. The resulting histogram of topic distributions is the

compact representation of the machine experience that is saved into memory

and lays the foundation for competency predictor components and environment

similarity calculations. The image (environment) associated with the current task is

thus represented compactly by topic proportions determined by a trained HDP model.

And each previously experienced environment is described as a unique symbolic

mixture over the same set of shared topics.

The use of HDPs addresses several critical issues. HDPs are models over

shared descriptors; different environments are described by distinct proportions of

topics. Additionally, by design, each individual environment is a sparse mixture,

meaning only a few topics are present for each environment. The result is a compact

representation that explicitly encodes shared properties of different environments in

the global topic definition. We use the same HDP techniques to encode the current

operating environment into a local topic definition, thereby identifying emergent

environmental conditions automatically and providing the basis for making

competency predictions traceable back to topic dependencies (conditions).

91

Analysis and comparison of topic distributions is used to predict task

competency. With reference to Figure 32, topic proportions (θ) are a compact

sufficient statistic of historical data sets and experience [56] [57], resulting in a

dramatic reduction in required storage capacity. Consequently, reasoning over novel

environments is with respect to these parameters. The application of HDPs for

enabling competency predictions is novel, expanding on prior research using HDPs to

craft compact data representations [56] [57].

Over our images for the obstacle recognition task, HDPs work on features

(words) that are extracted from the image (document). While a multitude of feature

extraction methods can be used, we chose to use Oriented FAST and Rotated BRIEF

(ORB) feature extraction. ORB feature extraction is available for free from OpenCV

and describes local features in images [61]. The pre-processing pipeline for

transforming images into features for inputs to the HDP is involved, including feature

extraction, summarization, and quantization, for which details are omitted in this

dissertation.

The procedure illustrated in Figure 33 helps to summarize the HDP approach

used as the foundation for competency prediction in this chapter. An image is input,

features are extracted (top) and associated with topics (right) according to the feature-

topic memberships. Finally, topic proportions are determined (bottom) based on the

feature-to-topic analysis (right) that compactly describe the image. Every image is

processed this way.

92

Figure 33 HDP procedure illustration

In the following results, we used an HDP as described above and used ORB

feature extraction with additional spatial context. That is, we delineated extracted

features based on their location in the image. An example of this “ORB + spatial

context” feature extraction is illustrated in Figure 34. In the top left of the figure, we

can see the red, orange, dark blue, light green, and light blue spatial bins that were

defined a priori. Then, within those bins, ORB features are extracted, where different

orb features correspond to different color intensities. On the top right, we see the

magnitude of HDP features (combinations of ORB features shown on the y-axis)

represented by color intensity extracted from each image document (x-axis). In the

bottom left, we show the original image, as collected from the camera sensor in the

ROS/Gazebo simulation. And in the bottom right, we show the HDP-derived

distribution of topics over time, where the document index (image frame index) is on

the x-axis, topic weights are on the y-axis, and the color represents varying topic

indices. Both the top right and bottom right plots show results for a large set of

93

images. The example images on the left correspond to the first image index. We can

play the images as a video over time to conceptually show how the features and topic

expressions evolve over time. A snippet of the top row of frames is available online at

https://www.linkedin.com/feed/update/urn:li:activity:6752672510229143552/,

playing in the opening scene of the video. As the documents are ordered by frame

within a certain environment, it is encouraging that we see homogeneity in the topic

expressions in certain regions of orange (Star 1) and light blue (Star 2). This is an

important result that supports strong qualitative attribute of “stability” discussed

previously. Otherwise, if topic distributions varied significantly from frame to frame,

we would feel less confident that we could fairly compare the current environment to

past experiences adequately.

Figure 34 Illustration of ORB feature extraction with spatial context and associated topic

analysis

94

The measure we used to calculate topic distributions similarity is a Kullback-

Leibler divergence (KL-divergence) score (Eq. 21). KL-divergence measures the

difference between two probability distributions, and is thus a reasonable measure to

use to assess the similarity between one topic distribution and another.

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
) (𝐸𝑞. 21)

𝑥∈𝑋

Here, Q(x) is the distribution over the weights 𝑥 of HDP feature expression

based on topic proportions from a past environment; P(𝑥) is the distribution over the

weights 𝑥 of feature expression proportions from the current environment. This

measure is also foundation for our Environment Similarity Calculator, described in

Section 3.

Next, we attempt to qualitatively assess HDP processing of sensory inputs into

topic distributions. We introduce “stability” and “consistency” as two qualitative

attributes of HDP performance; we do not make any claims about significance or

quantitative assessments that in any way prove that we have adequately captured

important characteristics of the image for determining machine competency.

However, both sets of results are encouraging qualitatively and indicative of

“stability” and “consistency”.

First, “stability” refers to the sensitivity of topic distributions from frame to

frame. We would like the topic distributions to be stable in the sense that they vary

smoothly when the changes in the image are small. Second, “consistency” refers to

the topic distribution variation over different environmental properties. We would

like the topic distributions to follow a similar pattern when the ground robot passes

95

through environments where only an environmental property varies, such as snow

versus rain. We attempt to qualitatively assess both of these desirable attributes next.

To assess HDP stability, we calculated the KL-divergence score from one

image to the next image for two ground robot paths taken through the ROS/Gazebo

simulation as shown in Figure 35. And, as we had hoped, images with similar visual

content have reduced KL-divergence (y-axis) when assessed over time (x-axis).

From frame to frame, KL divergence varies smoothly when inspected by eye,

indicating HDP model is not sensitive to small changes in the environment.

Figure 35 HDPs produce stable transitions from frame to frame

96

To assess HDP consistency, we collected data across 10 simulated

environmental properties, as illustrated in Figure 36. We hope to see similar topic

distributions associated with each environmental property. And we also hope to see

similar patterns in topic distributions as the robot took the same approximate path

through each of the 10 environments.

Figure 36 Data collected over 10 different simulated environmental properties

97

In Figure 37, we show the KL-scores (y-axis) for each environment (white

gridlines) over time (x-axis). We also show how KL-scoring for each environment

compares to each other environment. Each of the gridlines separates data collected

from each environment given in Figure 36 and how it compares to data collected from

another environment. Intuitively, the results make sense. When we perform visual

inspection, for example, we see that the center column (night environmental

property), is very different (high KL-score, lighter heat index) than other most other

environments (except itself). Moreover, we see a repeated cross pattern within each

grid square, showing that the robot path through each environment is experiencing

similar fluctuation across each property. This indicates, qualitatively, that the HDP

model is consistent across environmental properties, and we have confidence that our

HDP approach provides stable topic distributions from small changes in the frame

and produces comparable topic distributions from environmental property to property.

Figure 37 HDP approach yields consistent results within each property and varies intuitively

across properties

98

Section 2.2 Semantic Interpretability of Topics

While human interpretability of HDP-derived topics is still an ongoing

research area, preliminary results support that HDPs can pick up on environmental

descriptors that have semantic meaning. When we refer to “semantic meaning”, we

refer to word labels associated with HDP-derived topics that a human can understand,

such as “airport”, “wings”, “nose”, and “wheel” for our airplane imagery exploitation

task. For our obstacle recognition task, when we simulate an environment with a lava

ground appearance and input and interpret labels that are available automatically

through Alexnet processing, we notice that images with high expression of Topic 9

(Figure 38) are associated with the label “volcano”, as provided in the MEIngester UI

(Figure 39).

Figure 38 Alexnet machine-provided labels & the MindfuL™ Element Interpreter automatically

attach the word “volcano” to Topic 9, which is often highly expressed in the lava simulation

environment

99

 While not described in detail in this dissertation, the MindfuL™ team

developed an interface, called the Element Ingester (Figure 39), which supports

efficient labeling efforts, where labels are interpreted and propagated through to topic

label estimates via a Bayesian update method inherent to the Element Interpreter

component.

Figure 39 Additional MindfuL™ Element Ingester interface supports human labeling.

Moreover, we spent approximately 4.5 person-hours to augment the

automatically-available Alexnet label set to improve topic semantic interpretability by

annotating data conditions that an expert proposes might have effects on underlying

competency. The set of expert-proposed condition labels is provided in Table 12.

Table 12 Expert-Proposed Condition Labels

Expert-Proposed Condition Labels

Object off to left side

Object off to right side

Clear (when no obstacle is present and foreground is clear)

Dark

Shadow

Building close

Barrier (for the jersey barrier/wall)

Obstacle very close

Obstacle close

Smooth surface (this goes with the red objects)

100

Using the Element Ingester, the annotator labeled images that seemed to

exhibit any of the expert-proposed condition labels. The Element Ingester interface

supported mass data labeling and the Memory Bank database stored relationships

between labels and data persistently. As a result of the labeling effort, our topics had

more human-relatable context. This is important for determining and communicating

environmental conditions we suspect strongly influence our strategy and performance

predictions, described in Section 7. Example labels, associated data, and high topic

expressions are shown in Figure 40.

Figure 40 Element Ingester & Interpreter components carry human-provided labels through to

improve topic semantic interpretability

Section 3: Environment Similarity Calculator

3.1 Assessing current environment similarity to past machine experiences using KL-

divergence scoring

Since the HDP experience encoder compactly represents ingested data in a

common representation via topic distributions, we can perform similarity calculations

over all prior experiences by comparing the topic distribution associated with the

current environment with those of past experiences. Similarity between the current

environment and historical environments, as defined as the similarity between two

101

topic distributions, increases confidence in ML capabilities in the current

environment, accuracy of Mindful performance predictions, and accuracy of

behavior-controlling topics.

We capture the number of experiences succinctly by performing pairwise KL-

divergence (Eq. 21) calculations over the current topic distribution and all previously

stored topic distributions (machine training experiences). In Figure 41, we show the

results of comparing the current document to all prior experiences, as encoded by

their topic distributions. The top row represents the most similar past experiences and

the bottom row represents the least similar past experiences, as determined by KL-

scoring. Through manual inspection, we see that the top row contains images that

look similar to the human eye. Conversely, the bottom row represents the least

similar images, which also makes intuitive sense.

Figure 41 Environment Similarity Calculator results comparing a current image to images in the

training data set. The top left image is the image being tested for similarity to previous

experiences. The rest of the top row are the most similar images and the bottom row are the

least similar images, as characterized by their pairwise KL-divergence score.

102

As the HDP offers considerable compression benefits, we can perform

pairwise calculations of current images over past experiences very quickly. In fact,

performing all of the competency predictions, similarity calculations, natural

language sentence generation, and user interface population takes less than 2 seconds

over 10,000 past experiences, stored compactly in the Memory Bank. We note that

this could be sped up considerably by parallelizing the similarity computations,

however, the resulting update rate is faster than human preference, so there are no

planned efforts for parallelization on this proof-of-concept application.

3.2 Historical competency distributions filtered by similar past experiences

 Another advantage of categorizing whether a past experience is similar to the

current environment is the ability to characterize historical competency in similar

environments. To enable this analysis, in addition to storing topic distributions

associated with training documents, we store the metadata associated with how and

how well the machine performed its task in that environment. In other words, we

store the historical performance (whether the machine performed its task well) and

historical strategy (as defined in Section 4.1) along with the topic distribution in the

Memory Bank.

As such, for the set of similar documents determined by the Environment

Similarity Calculator, we can provide a breakdown of the historical performance

distribution and historical strategy distribution. And if we have an online strategy

prediction for the current environment (as derived in Section 5) we can further break

down historical performance for each strategy class prediction. This concept is

illustrated in Figure 42.

103

Figure 42 Providing historical competency information through similar experience filtering

3.3 Leveraging environment similarity to detect data ingestion anomalies and sensor faults

 Lastly, another redeeming property of assessing the similarity of the current

environment to training experiences is the detection of data anomalies. That is, we

can determine when data inputs look significantly different (anomalous) compared to

prior data inputs. Not only can we identify when the ML system has not been trained

on an environment similar to the current one, but we can also detect when a different

type of data is being ingested, as it is classified as highly dissimilar (anomalous)

compared to previously ingested data. This can thus be used to detect when a sensor

is not acting as it has previously and other data anomalies. We tested this hypothesis

by simulating an event where the camera fell out of the housing on the ground robot

used in the ROS/Gazebo simulation to collect data. As desired, the Environment

Similarity Calculator outputs responded accordingly. Specifically, the number of

similar experiences dropped drastically from ~10,000 to ~200 for the same image

taken with a fully functional sensor and broken sensor. Thus, our environment

similarity calculator can detect an unfamiliar environment (anomalous sensor data)

when a sensor fault is simulated.

104

Section 4: Offline Definition of ML Strategies & Performance

4.1 Offline Definition of ML Strategies

Figure 43 Behavior Definition Network View. Outputs from the 4096 nodes in the second-to-last

layer (highlighted in green) are used as our behavior definition.

We used the same method (Table 10) in Chapter 3 to define a set of machine

strategies. In this case, we defined our behavior to be the outputs (yi outputs from

each ith node, defined in Figure 14), from the 4096 nodes in the second-to-last layer of

the ML system under evaluation (highlighted in green in Figure 43). Note that this is

analogous to the 702-dimension behavior definition from Chapter 3. However, as the

ML system performs its task on a per-instance basis, no time-series behaviors are

defined.

Additionally, we employ the same elbow analysis technique as we did in

Chapter 2. Here, we find that 11 clusters gives us both an acceptable inertia score and

the right granularity of strategies (Figure 44). For the latter, we manually examined

data associated with each of the 11 strategies and found that 9 of them had human-

interpretable meaning.

105

Figure 44 Elbow method analysis to inform number of strategies

Figure 45 shows the strategies that resulted from the k-means analysis. In this

case, one strategy stands out from the rest. Upon manual inspection, we see that all

images associated with that cluster have very low feature density and correspond to

the “night” environmental property.

Figure 45 UMAP Visualization of Strategy Clusters in an abstract two-dimensional space where

only relative distances between points is interpretable.

106

Additionally, 8 other clusters had human-interpretable meaning and are tagged

in Figure 46. Since strategy groupings are frozen after initial offline determination,

we can do this manual inspection analysis just once. The labels associated with each

strategy offline are then available for association to online strategy predictions of the

same name.

Figure 46 9 of 11 Strategies (clusters) have human-interpretable meaning!

107

Some strategies do not have human-interpretable meaning. In these cases, the

ML system is picking up on groups of features that are not easily categorized by the

human eye, or that require further separation (deeper granularity) to become

interpretable. We experimented with several numbers of clusters, as we did in

Chapter 3, however, k=11 resulted in the most human-interpretable context across all

clusters.

 While behavior clustering revealed some human-understandable context, we

are experimenting with incorporating separation over environmental properties and

expert-proposed condition labels to achieve semantic separation amongst strategies.

To do this, we adjust the cluster “gain” ratio in the k-means algorithm to nudge

separation of strategies from one another over a given set of labeled categories. This

encourages homogeneous organization of strategies over desired properties. The

following discussion and figures shares preliminary results associated with this line of

research, however, effects on downstream competency assessment performance have

not yet been evaluated.

Figure 47 and Figure 48 show the strategy distributions resulting from these

adjustments. In each figure, we show Strategy clusters across the top, labels along

the left hand side, and the ratio of the label in the set of data associated with each

strategy cluster. In this case, values close to 1 indicate that the strategy ratio is

consistent with the population proportion. In other words, values greater than 1

indicate that there are more of that label present in the associated strategy than the

population as a whole. For example, Strategy 2 has 10.25x more “lava” labels than

108

the population. We manually highlight the cases that have higher expression than

normal in blue.

Figure 47 Encouraging strategy definitions to separate over environmental properties

Figure 48 Encouraging strategy definitions to separate over expert-proposed conditions

By continuing this line of research, we contribute to the semantic

interpretations of strategies produced by the MindfuL™ system, an important aspect

of the DARPA CAML program and XAI research.

4.2 Offline definition of ML Performance

Offline definition of ML Performance is much simpler. For the obstacle

recognition task, we define a binary performance measure that takes on values of

“correct” or “incorrect”, based on whether the ML correctly recognized the presence

of an obstacle within six meters of its position.

109

Section 5: Online Prediction of ML Strategies

We use a deep learning approach to predict strategies from topic distributions.

In this case, we train on topic distribution inputs and learn strategy classifications in

accordance with the UMAP representation. That is, each training sample in Figure 45

is associated with an image. The image gets compressed by the HDP into a topic

distribution. And our Strategy Predictor is trained to learn transformations from topic

distributions into strategy classifications. The deep learning neural network structure

for our strategy predictor approach is provided in Figure 49.

Figure 49 Strategy Predictor Network Structure, where “hidden” refers to the deep network

layers between the inputs and the outputs.

In our preliminary approach, we achieved 64% correctness (Eq. 22) using this

framework. That is, for 48,000 images, MindfuL™ correctly predicted 30,561

strategies correctly.

Correctness =
Number of times system predicted the correct 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

Total number of trials
 (𝐸𝑞. 22)

110

The associated receiver operating characteristic (ROC) curves for each

Strategy Class are shown in Figure 50. The ROC curve shows how the true positive

and false positive rates vary as a function of setting different ML probability

thresholds. As the threshold for “ML probability blocked” corresponding with a

binary “blocked” classification gets looser (lower), the True Positive Rate and False

Positive Rate increase. That is, if we give the ML credit for correctly predicting that

an obstacle was present based on a low threshold confidence estimate (such as 0.1

probability “blocked”), the resulting True Positive Rate and False Positive Rate are

higher. The greater the area under the curve, the better the predictor. In the figure,

each class corresponds a different strategy. And we see that some strategies are easier

to predict than others.

Figure 50 Strategy Predictor ROC Curves by Strategy Class

111

We further analyze the associated confusion matrix in Figure 51. A confusion

matrix shares information about the strategy classifications that were confused with

one another. That is, the confusion matrix gives detailed information about how our

strategy predictor was wrong. Any entries on the off-diagonal of the confusion

matrix correspond with the number errors associated with the given predicted strategy

(column) and true strategy (row) occurrence. Any entries on the diagonal are correct

strategy classifications. In a perfect classifier, all of the off-diagonals would be zero

and the diagonal would be solid dark blue. Moreover, the darker the square, the more

numbers of occurrence that the row strategy class was confused with the column

strategy class.

Figure 51 Strategy Predictor Confusion Matrix

112

A screenshot of the strategy predictor running as part of the larger MindfuL™

system is shown in Figure 52. Here, the ground robot encounters red structures and the

“red objects/wall” strategy is predicted. The true strategy in the bottom left of the

figure agrees with the prediction.

Figure 52 Online system view of an accurate strategy prediction.

While we achieved 64% on strategy classification using, considerably better

than random chance (11%), where the expectation of a correct classification is equal

to 1 out of 11 strategies. We note further that we could achieve ~85% accuracy if we

combine confused classes cleverly (Figure 53). That is, if we combine strategy

classes that are often confused with one another, we can do better at predicting online

strategies. However, if we combined strategies in this way, we would lose semantic

understanding of strategies at the level of granularity shown in Figure 46. In other

words, these four strategy groups, which enable 85% strategy prediction accuracy,

would correspond to very high-level strategies that are too high of a granularity to

relate competency to the user. There would only be four strategies to provide

113

additional insight into machine competency, reducing the level of detailed

transparency into the “black box” ML system.

Figure 53 Clever combining of strategy classes could improve predictive performance, as we

combine classes that are confused with one another

We also explored strategy prediction accuracy sensitivity to the number of

clusters, neural network structures, and machine behavior definitions (experimenting

with other layers shown in Figure 43). The highest performance achieved was 73%

on 6 clusters, but again we sacrificed human-interpretable meaning associated with a

higher granularity of strategy definition and some of this performance gain is

attributable to random chance (1/6 clusters vs. 1/11 clusters).

Section 6: Online Prediction of ML Performance

Just as we layered on a predictor to go from topics to strategies, now we aim

to go from topics to performance predictions, with an additional input of the ML

blocked estimate. Here, we again employ a deep learning approach that trains on

topic distributions and determines a binary classification of whether the machine will

be correct or incorrect. In Figure 54, we show the results of our system on the

114

training data set. Here, the green ellipse covers the case when the MindfuL™

performance prediction is correct (98.8%) and the red ellipse notes when it is

incorrect (1.2%). Note, this is different than measuring whether the ML system

prediction of “free” vs. “blocked” was actually correct. For these plots, label 0

represents “incorrect” and label 1 represents “correct”, where we are assessing the

correctness of the MindfuL™ prediction of the ML system’s performance. The actual

label represents whether the ML system was correct (“1”) or incorrect (“0”) with

respect to ground truth over the incoming image while the predicted label represents

our Performance Predictor output. More precisely, the ML system was correct

45,951 (summing over the “1” row) times out of 48,034 images (96%) in the training

data set; it was incorrect (summing over the “0” row) 2,083 times (4%).

Figure 54 Performance Predictor accuracy on training data set.

The MindfuL™ system correctly predicted the machine performance over

98.8% of the training data images (green ellipse); it was incorrect 1.2% of the time

(red ellipse). Here, the performance predictions worked only off of the compact topic

distributions representative of each image to make its predictions, which is

encouraging since we preserved enough of the information in the image through our

topic distributions to assess machine competency for this task.

115

From the training data set to the testing data set, we note that the ML system

itself had a considerable performance drop from 96% (on the training data) to 69%

(on the testing data); these numbers are separate from the performance predictor

accuracy shown in Figure 54 and Figure 55. The performance drop occurs because

the testing data set was different than the training set in terms of a different array of

obstacles and presence of new obstacles in the simulation environment, and likely

because the ML system was over-trained in accordance with the training data set.

Ongoing research is investigating the sensitivities of new environments on both ML

system and Performance Predictor accuracy. However, we see that the performance

predictor still produces much better results than chance (50%) on the testing data set,

as shown in Figure 55. And while 68% has significant room for improvement, we are

encouraged that the topic distributions are capturing enough information about the

environment to make an informed (vice random) prediction on machine performance

prediction.

Figure 55 Performance Predictor accuracy on validation data set

116

The prototype Competency UI screenshot in Figure 56 shows a simulated

scenario where the ground robot endures a rain environment and nears an obstacle

(building) off to its left side, which are likely conditions that affect its task

performance. Consistent with intuition, our performance prediction decreases in this

scenario, as highlighted in Figure 56 as 51%. Both strategy and performance

prediction approaches resulted in useful capabilities, considerably better than random

chance. This indicates that topic distributions are capturing conditions in the

environment that are important for assessing machine competency, a huge result for

XAI research advancement and encouraging result for us to continue to use HDPs to

compress data for later use to inform online competency prediction.

Figure 56 Online view of intuitive performance prediction

117

Section 7: Online Prediction of Strategy- & Performance-Controlling Conditions

In order to explain the conditions (why) associated with our predictions of

machine strategy and performance predictions, we employ feature importance

methods to find which HDP topics contribute the most to each competency

prediction. Ideally, the important topics we find can be used to provide semantic

understanding to the user based on why the machine arrived at its result. For our

obstacle recognition task, a topic may represent that an obstacle is present like

“building” or “wall”. For our airplane recognition use case, a topic might correspond

with an “airport”, “runway” or the presence of “wings” or a “nose”. For now, we can

still leverage the presence of certain topics regardless of whether they carry semantic

meaning, such as “Topic 1” or “Topic 2” conditions by comparing across different

tasks. We refer to topic expression as “high” or “low” when the topic weight is more

than two standard deviations higher or lower than the mean, and we are considering

alternatives to this threshold.

In some cases, human connotation might be matched with high or low topic

expressions through manual inspection. In others, there may not be any human-

discernable correlations. Even if there is no human-understandable context, we can

group conditions, strategies, and performance together based on common results. For

example, we can construct an abstract rule such as “If Topic 3 is highly expressed,

then the machine employs Strategy 4 with predicted performance of 95%.” Then,

even though the human might not understand what Topic 3 or Strategy 4 are, he/she

can compare similar occurrences of this rule to one another to identify common

themes or gain some insights into the “black box” behavior, if only at an abstract

118

level. Again, we ideally aim to attach semantic meaning to both conditions and

strategies. A more useful-to-humans rule abstraction for competency would be “If

Topic 3: ‘airport’ is highly expressed, then the machine employs Strategy 4: ‘looked

for wings’ with predicted performance of 95%”.

To find these conditions which influence the strategy and machine

performance predictions, we employ Shapley Additive exPlanations (SHAP) [62]; in

our case, SHAP correlates specific topic expressions to the strength that they

contribute to the predicted performance (see below for a mathematical description).

More generally, Shapley feature values are computed leveraging coalitional game

theory, where for a given instance of data, the feature values (or group of features) are

treated as a single player. The contribution that this player has in shifting the

prediction from the average value, is the Shapley feature value. We apply SHAP to

the HDP topic distribution for a given image and use the magnitude and direction to

determine which topic values improved and worsened performance by what quantity

from average for a given data instance.

Shapley values [19] have traditionally been used to determine how to divide

the payoff or gain amongst a group of players in a cooperative game. It measures the

average marginal contribution from every sequence of players entering the game,

evaluated with and without the jth player. In our case, the players are the topics

themselves, derived from HDP processing of images described in Section 2, such as

Topic 1: “wings” or Topic 3: “airport”. The game is either the strategy prediction

(Section 5) or the performance prediction task (Section 6), depending on whether we

are estimating strategy-controlling or performance-controlling conditions. The “gain”

119

is the prediction for a particular image instance minus the average prediction for all

instances. And the Shapley Value is the average change in the competency prediction

when another topic value is added, given a competency prediction based on an

existing group of topic values, as described in the previous two sections.

We are interested in how each topic affects the competency prediction of an

image. In a linear model it is easy to calculate the individual effects. For example,

here is what a linear model prediction looks like for one data instance [62] (Eq. 23):

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝 (𝐸𝑞. 23)

where 𝑥 is the instance for which we want to compute the contributions. Each 𝑥𝑗 is a

topic value, with 𝑗 = 1,… , 𝑝. The 𝛽𝑗 is the weight corresponding to topic 𝑗.

The contribution 𝜑𝑗 of the j-th topic on the prediction 𝑓(𝑥) is (Eq. 24):

𝜑𝑗(𝑓) = 𝛽𝑗𝑥𝑗 − 𝛽𝑝𝐸(𝑋𝑗) (𝐸𝑞. 24)

The contribution is the difference between the topic effect minus the average effect.

Now we know how much each topic contributed to the prediction. And if we sum all

the topic contributions for one instance, the result is the following (Eq. 25):

∑𝜑𝑗(𝑓)

𝑝

𝑗=1

= ∑(𝛽𝑗𝑥𝑗 − 𝛽𝑝𝐸(𝑋𝑗))

𝑝

𝑗=1

= 𝑓(𝑥) − 𝐸 (𝑓(𝑋)) (𝐸𝑞. 25)

 However, this is only applicable to linear models. Shapley values provide a

way for us to do feature importance analysis over general models [62], such as the

neural network and random forest models used by our Strategy and Performance

Predictor, respectively. Shapley value is defined as (Eq. 26):

𝜑𝑗(𝑣𝑎𝑙) = ∑
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
𝑆 ∈ {𝑥1,…𝑥𝑝} \{𝑥𝑗}

(𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆)) (𝐸𝑞. 26)

120

Where val is the prediction for feature values in set S that are marginalized over

features that are not included in S, p is the total number of players, and xj represents

the value (topic weight) associated with player (topic) j. In our case, this means

computing the competency predictions without some of the topics. To compute

Shapley values, we simulate that only some topics are playing ("present") and some

are not ("absent").

The SHAP method leverages Shapley values to specify an explanation (Eq.

27):

𝑔(𝑧′) = 𝜑0 + ∑𝜑𝑗(𝑧𝑗
′)

𝑀

𝑗=1

 (𝐸𝑞. 27)

where 𝑔 is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the coalition vector, M is the

maximum coalition size and 𝜑𝑗 ∈ ℝ is the feature attribution for a feature j, the

Shapley values [62].

As an alternative to SHAP, Gini Importance or Mean Decrease in Impurity

calculates each feature importance as the sum over the number of splits (across all

tress) that include the feature, proportionally to the number of samples it splits. This

is a common ante-hoc XAI method used to determine general feature importance for

random forest tree models.

Unlike Gini importances, that are useful for determining the general

importance of features, SHAP supports per-instance feature importance, which is

necessary for our near real-time competency assessment framework. For example, in

our airplane recognition task, it is more useful to understand why the ML system

thinks there is an airplane in the current image that it is processing, such as “airport”

121

topic being highly expressed than a generality that an “airport” is an important feature

in general for identifying airplanes in an image. SHAP gives the former on a per-

image basis, as desired. Gini importances give the latter in a general sense over a set

of images. Figure 57 shows both the Gini importances and SHAP values for our

performance predictor. Each point represents a Shapley value for a topic and

performance prediction. The color represents the actual topic weight from low (blue)

to high (red). For example, if Topic 3 corresponds to “airport”, high expression of

Topic 3 would indicate that an airport is present in the image; low expression of

Topic 3 would indicate that no airport is present in the image.

Gini importances generated from the random forest model agree with top two

SHAP channels, supporting the SHAP approach validity. Other than the ML blocked

estimate, there is little variance in both SHAP values and Gini importances, and we

suspect this is likely due to needing all topics in order to make an informed

competency prediction. Future work is attempting to gain separation between topics

across features that are important for performing the ML task itself, rather than a

compressed distribution over all of the features in the image. In our airplane

recognition task, this would mean that we want a topic to separate specifically over

the presence of “airport”, and not contain overlapping features associated with that

topic, such as “grass” or “roads” that are not as well-associated with the ML task.

Automatic and reliable extraction of competency-relevant features from data at a

summarized level of granularity and semantic meaning is an open research problem,

currently being addressed by the author. In Figure 57, a large blocked estimate

negatively affects incorrect classification, noted by the yellow star, thereby yielding

122

positive effect on correct classification. Moreover, when Topic 7 is not expressed, it

could positively or negatively impact classification, as indicated by the orange stars;

these could be rare events corresponding to images with unique properties.

Figure 57 SHAP plot for incorrect performance prediction

And when we filter on high expressions of Topic 7, we visually can see

indicators of these rare edge cases, as shown in Figure 58.

123

Figure 58 High expressions of Topic 7 corresponds to unusual lighting and rare obstacle

proximity events (staring at wall with homogeneous features)

To compute strategy-controlling conditions, different from the performance-

controlling conditions found above, SHAP values are generated for each strategy

classification. The SHAP plot for Strategy 5 is provided in Figure 59. Gini

importances generated from a random forest alternative model are again consistent

with the top SHAP topics. Moreover, the top 5 important topics are preserved across

all strategy classifications. This means that five topics encode the most

distinguishable information over all strategy predictions. Notably, high expressions

of Topic 16, 19, and 0 positively contribute to an image clustered into #5 (black

stars), while Topic 15 and 1 negatively contribute (orange stars). For example, in our

airplane recognition task, we would expect that the high expression of Topic 1:

“wings” would positively contribute to Strategy 3: “looked for airplane wings”.

124

Next, we attempt to discern semantic meaning from manually inspecting images

associated with high expressions of Topics 16, 19, 0, 15, and 1 to see if we can

determine logical reasons why they might be affecting the machine’s propensity to

employ Strategy 5: “shadow detection”.

Figure 59 SHAP plot for Strategy 5 prediction

And when we look at the data associated with high expressions of these

topics, we make some useful observations. Topics 1 and 15 correspond with dark

images, making intuitive sense for distinguishing the Strategy 5: “shadow detection”

strategy from other strategies. Topic 19 seems to correspond to buildings, where the

125

building acts as a close obstacle and Topic 0 seems to consistently show a jersey

barrier wall, which was consistent with one of our human-interpretable strategies

(Strategy 8). However, Topic 16 doesn’t have any discernable human context when

parsing through images that have highly variable environmental features present in

the filtered data set. Here, we point out importantly that there are no guarantees that

the machine cares about what humans can distinguish by their eyes. In other words,

there might be commonalities in these data that the machine recognizes as important

for determining strategy that humans do not think would be intuitively important. A

powerful aspect of our approach is that we can still recognize these conditions, even

though they may only be identifiable by a common label (i.e. Topic 16), and not

interpretable further semantically.

Figure 60 High expressions of Topic 16, 19, and 0 positively contribute to correct clustering

In summary, our online competency-aware system uses a deep explainer

method, SHAP, to determine which conditions were most influential to the current

strategy and performance predictions for the current environment.

126

Section 8: System Training and Online Framework

8.1 Walkthrough of Offline Training System Diagram

Offline, we train our competency predictor components through a series of

training regimes. At a high level, this is how the system works to train all of its

components. The training is sequential in nature, but is also automated so we can

train on a new dataset with minimal human involvement. The MindfuL™ offline

system is illustrated in Figure 61 and the steps associated with the diagram are

described below.

1) We train the experience encoder to ingest data and produce topic models; during this

phase, the HDP determines the features associated with each topic and the number of

topics that sufficiently explain the training data set.

2) Topic distributions associated with each document in the training data set are stored in

the Memory Bank.

3) Labels ingested by the Element Ingester are linked to data in the Memory Bank.

4) We determine ground truth from comparing ML estimates over the sensor data to the

LiDAR data obtained from the simulation.

5) We train a performance predictor to go from topic models to “correct” or “incorrect”

predictions, giving rise to our trained Performance Predictor model.

6) We define strategies using the Behavior Clusterer method used in both Chapters 3 & 4

based on the underlying behaviors gleaned from the ML system activations.

7) We train a Strategy Predictor to learn relationships between topic models and strategies,

giving rise to a trained Strategy Predictor model.

Figure 61 Offline system training phase diagram

127

8.2 Walkthrough of Online Competency-Aware System Diagram

Both our offline and online functionally distributed architectures supported

analyses of alternative approaches easily due to a disciplined, function-based

input/output implementation. This was especially important when considering

alternatives to our HDP, SHAP, and Deep Neural Network approaches to predictor

components. Details of auto-encoder, feature importance, and random forest models

are omitted from this dissertation, but were explored by the MindfuL™ team during

system development. Online, we provide competency information to the user in

accordance with involved component interactions. These interactions are

summarized in Figure 62 and described in the steps outlined below.

1) Data is ingested and the Experience Encoder infers topic distributions based on the learned HDP

model, wherein features associated with each topic and the number of topics is constant.

2) Inference is performed over the trained Strategy Predictor to go from topics to a Strategy estimate.

3) Inference is performed over the trained Performance Predictor to go from topics to a Performance

estimate.

4) SHAP methods determine the most important conditions (topics) for both strategy and

performance predictions.

5) The number of environments and the historical competency is determined by the Environment

Similarity Calculator component by comparing the current topic model to those compactly stored

in the Memory Bank.

6) The Ingester & Interpreter components support user-provided labels.

7) The Competency Statement Generator produces long-form statements.

8) The Information Analyzer makes a determination of whether to allow the machine to perform the

task or whether user intervention is recommended.

9) The Competency UI displays all of the competency information derived above to the user.

Figure 62 Online system competency assessment diagram

128

8.3 Near real-time competency assessment offers “online” utility to users

The online system supports near-real time operation, and the processing times

for several of the components is provided in Table 13. MindfuL™ competency

assessments update every two seconds, which is a cadence faster than human

preference for current applications. The competency statement generator remains the

most expensive functionality, typically accounting for more than half of execution

time per frame. This is largely because the environment similarity algorithm searches

through all past experiences in the agent’s memory within a function call in this

component. Fortunately, this computation can be parallelized to realize even faster

update rates. Moreover, we could intelligently maintain a memory bank where we

discard experiences that are sufficiently similar to one another to speed up the

calculations.

Table 13 Computational times associated with several components for two sample updates

Component
Update Rate with

1k Image Set

Update Rate with 10k

Image set

Experience Encoder (HDP) 0.204 0.738

Performance Predictor 0.040 0.037

Performance Correlator 0.001 0.0004

Environment Similarity

Calculator
0.234 0.140

Competency Statement

Generator
1.076 0.919

Memory Bank 0.010 0.348

System 1.556 1.83

129

Section 9: Interpretations

In Chapter 4, we showed the utility of a competency-aware machine learning

approach to provide near real-time competency information to a user. We capitalized

on benefits hypothesized in Chapters 2 & 3 by realizing an online predictive capability

for strategy and performance (competency). We implemented an automated way to

devise conditions, strategies, and performance with no human involvement required

other than to improve semantic interpretability. To determine conditions, we leveraged

shared descriptor characterization from the HDP approach and SHAP feature

importance analysis to determine which conditions (HDP-derived topics) were most

influential for our online competency predictions. Our online competency predictions

performed well above chance with 64% accuracy on strategy predictions (compared to

11% chance) and 69% performance predictions (compared to 50% chance) when using

a generalizable HDP approach to compactly describe inputs. Importantly, this result

showed that HDPs captured competency-relevant information, in spite of their

incredible compression benefits (1 year of video data is compressed to just 2TB of

data). Finally, we showed timeliness of our approach to scale to near real-time as online

competency predictions took less than 2 seconds to compute over 10,000 previous

experiences, faster than a user would desire for an obstacle recognition task. In

conclusion, these results and those in Chapter 3 attest to the generalizability and

applicability of this approach to other AI systems and applications. Research in this

chapter contributes to increased AI interpretability and competency-awareness needed

to increase trust and transparency of AI systems.

130

Chapter 5: Conclusions and Future Work

Section 0: Conclusions

In conclusion, this research provides materials and methods to study and

assess the competency, including how (strategies), why (conditions), and the expected

result (performance), of otherwise “black box” machine learning systems. First, we

manually identified important relationships between environmental conditions and

emerging strategies on deep learning performance in a 2-d pursuit game application in

Chapter 2, driving further exploitation in Chapter 3 and motivating predictive

approaches in Chapter 4. Moreover, we demonstrated the effectiveness of an agent

trained with the DDPG reinforcement-learning algorithm in a speed-overmatched

pursuit game with uncertain target information. The resulting RL agent outperformed

a baseline bearing-following strategy by increasing capture successes by more than

100% in a 5000-trial experiment and was more robust to harsher pursuit game

conditions. No prior research approach addressed speed overmatch, uncertainty, and

dynamic speed control with deep learning or any other control system for a 2-d

pursuit game. Finally, we discussed the potential utility for leveraging historical

competency for online unmanned system control. We manually observed separation

of learned pursuit behaviors into strategy groups. And we manually hypothesized

environmental conditions that affected performance. These manual hypotheses

regarding machine competency motivated automated abstraction of conditions,

performance and strategy relationships investigated in Chapters 3 & 4.

In both Chapters 3 & 4, we found that neural network activation patterns

could be abstracted into human-interpretable strategies for two separate deep learning

131

approaches, including the pursuit game application analyzed in Chapter 2. In Chapter

3, we found that compact representations of activation patterns (behaviors) preserved

more information relevant to machine performance than the machine’s actions

themselves. Moreover, we found that clusters of behaviors (strategies) separated

naturally over pursuit trajectories that were relatable to humans and that strategies

could be exploited as predictors for machine performance. And finally, we defined

machine commitment, and found that it was significantly higher in games with Win

outcomes than Loss outcomes. These results motivated further exploration of online

competency prediction approaches.

And in Chapter 4, we realized online prediction capabilities for condition,

strategy, and performance competency assessments. The HDP approach encoded

information pertinent to the machine learning task and system, as evident by the

success of strategy and performance predictor components. Furthermore, the HDP

encoded data compactly, supporting scalability of the approach to handle a large

library of machine experience in our memory bank database. Our approach to

automated condition determination using SHAP, while difficult to assess in terms of

ground truth, yielded useful results consistent with human intuition. Our prototype

strategy and performance prediction components produced useful competency

estimates, significantly outperforming random chance. Moreover, our environment

similarity calculator adequately determines whether a machine is familiar with the

current task, and quantifies the number of similar experiences the machine has been

trained on in the past; and lastly, as a byproduct of its approach, it shows promising

results for detecting faulty sensor and other anomalous input data.

132

Since all of the prediction components are trained based on a common topic

representation (and not the input data directly), only the HDP component needs to be

modified to support competency prediction over other types of data. Moreover, only

the offline strategy definition needs to be modified to adapt to new ML systems.

Since only two of the 14 components require significant modification for new

applications and systems, the resulting MindfuL™ system is highly portable.

Therefore, the approach can be applied to a large number of machine tasks and

systems. By uncovering relationships between environmental conditions, machine

strategies, & strategies and by giving rise to online estimation of machine

competency, we increase transparency and trust in machine learning systems,

contributing to the overarching XAI initiative.

Section 1: Broader Implications & Future Work

For the 2-d pursuit game application, the RL approach should be tested in a

higher fidelity simulation and integrated with an unmanned system for testing in the

real world. Additionally, it can be extended to three dimensions for further

applicability to missile & space domains, for example.

Regarding XAI, MindfuL™ software provides insights into how, why, and the

expected result of an ML system for a particular task. This has many benefits

regarding trust and transparency, and broader implications for the future of manned

and unmanned teaming. Trust by humans is gained into the ML system under

assessment because the MindfuL™ system identifies when an ML system is likely to

succeed or fail. Transparency is gained by understanding why and how the ML

system performs its task a certain way. For example, in an “L-shaped” maneuver in

133

the pursuit game, the human could doubt that the ML system was on track for a

capture, even though the performance prediction was high. But if the human is aware

of the internal strategy of the ML system being consistent with and “L-shaped”

maneuver, then he/she can increase trust in a likely successful capture. Moreover, if

the human is teamed with the machine and knows about the “L-shaped” maneuver,

he/she can choose a complementary action or maneuver with strong confidence and

anticipation that the machine is going to make a 90-degree turn within some

timeframe.

In order to anticipate the maneuver, the machine must be thinking ahead and

have a plan for the L-shaped strategy prior to making its 90-degree turn. Future work

could examine activation patterns and attempt to understand the time in which an

agent commits to a certain strategy or is planning to execute a certain strategy based

on certain neuron activation values. The raw activation plot in Figure 63 for six

Strategy 9: “L-shaped maneuver” games is given here as further motivation for future

research. There are not obvious correlations between the activation patterns beyond

higher numbers of active neurons than other sample games examined by the eye.

Example military use cases for complementary human-machine tactics include small

unit maneuvers with UxV teammates or fighter jet dogfighting with UAV teammates.

134

Figure 63 Raw activation patterns for L-shaped maneuver pursuit games

Separately, competency awareness also helps with energy preservation for

deployed unmanned systems without human teammates or controllers. Performance

prediction could help a pursuer agent, for example, determine whether it should

pursue the target of opportunity, wait for a different target, or avoid resource

expenditure under unlikely success situations; examples include expending energy to

attempt to intercept a pass in sports or expending limited ballistic missile defense

resources toward incoming threats. Such analysis would also help determine the

timing for when the pursuer should begin pursuit, leading to better energy efficiencies

for unmanned systems with endurance limitations.

Future work should consider supporting a multi-modal HDP that ingests

unorthodox sensory inputs like labels and machine behaviors (activation patterns)

135

themselves in order to increase competency prediction efficacy. Such inputs are

different than what many consider orthodox sensory inputs, like those from cameras

or radar sensors. The diagram in Figure 64 illustrates the pipeline for training an

HDP on multiple sensory modalities. In this case, features are extracted from each

data stream and summarized via feature counts. Then, the topic model looks at the

distribution of feature counts in the data and determines the topic distribution

associated with that input data. One important property of HDPs is that they can

handle missing data. In this case, if one of the sensor data streams is missing, I can

still estimate a topic distribution and compare that to other samples where the data

stream was present.

Figure 64 Processing of Multi-Modal Sensory Inputs through HDPs

Additionally, an online mechanism to estimate machine commitment in situ

could be exploited for machine predictability and support human-machine teaming.

Moreover, future research, especially for human-machine teaming applications,

should focus on the semantic interpretability of machine-derived conditions and

strategies, so that a human teammate can understand the results more easily. And, in

cases of no human partners, a closed-loop controller should supervise ML behavior

and intervene with stoppages or fail-safe policies when unacceptable performance

estimates are estimated. We also note that while the UMAP representation of

136

strategies is good when it is trained on all of the data, it suffers to fit new data into

existing manifolds properly. This became a concern during use of the online

predictive capability when ingested images appeared to humans to correspond to a

different strategy than what was assigned as the true strategy. Further investigation

into ground truth definition is underway to resolve this potential issue. However, we

only expect to see improved Strategy Predictor performance and note that the current

system provides results that make sense to the user.

The Information Analyzer output currently supports just a binary interpretation:

“Continue normal operation” vs “manual override recommended”, as shown in Figure

65. In the future, MindfuL™ software could produce suggestions for other actions and

provide other alerts regarding system competency. Such actions could span sensor

modality selection or sensor acquisition of new data, beneficial for refining competency

assessment or suggestions to modify a selected action, like reducing speed in a ground

autonomy application, to maintain acceptable mission performance. We could also

prompt labeling actions for attaching semantic meaning to an unlabeled Condition.

These additional suggestions necessitate innate awareness of performance and strategy

predictions, their reasons (conditions) and their uncertainties, and should be paired with

a Value of Information (VoI) approach for more robust results.

Figure 65 Suggestions for user intervention

137

Finally, as the MindfuL™ approach was careful to be input- and ML system-

agnostic, the XAI capabilities should be exercised for other machine tasks and input

data types. User experience should be evaluated and interfaces updated accordingly.

138

Appendix

Section 0: Sample Pursuit Games from Automatically-Derived Strategies

Nine sample games are provided at random from each strategy grouping in the

figures that follow. The metadata in the filename corresponds to the game outcome,

initial distance to the target (meters), initial angle to the target (radians), maximum

target speed (meters per second), and game episode identifier parameters, delineated

by an underscore, respectively.

Figure 66 Strategy 0 Game Samples

139

Figure 67 Strategy 1 Game Samples

Figure 68 Strategy 2 Game Samples

140

Figure 69 Strategy 3 Game Samples

Figure 70 Strategy 4 Game Samples

141

Figure 71 Strategy 5 Game Samples

Figure 72 Strategy 6 Game Samples

142

Figure 73 Strategy 7 Game Samples

Figure 74 Strategy 8 Game Samples

143

Figure 75 Strategy 9 Game Samples

Figure 76 Strategy 10 Game Samples

144

Figure 77 Strategy 11 Game Samples

Figure 78 Strategy 12 Game Samples

145

Section 1: Analysis of dimension-reduced actions (heading & acceleration only)

In Figure 79, we show the same conditions studied for behavior analysis as

they relate to the UMAP-embedded action space (Chapter 2 Section 2.3). Again, we

see by visual inspection that the dimension-reduced behavior (activation pattern)

space (Figure 21) separates better over the conditions than those of the action space

shown here. Because of this, we can better estimate machine strategies from

conditions by analyzing machine behaviors defined as activation patterns rather than

their associated actions. That is, because of the lack of separation along these

conditions, we cannot draw conclusions like “favorable initial angles to the target

lead to Strategy 3: ‘head-on approach’” as we can do when we examine relationships

between conditions and strategies in the dimension-reduced behavior (activation

pattern) space (Figure 21).

Figure 79 UMAP-embedded actions have less informative separation over user-proposed game

conditions.

Moreover, in Figure 80, we see that clustering with respect to actions to

determine strategies also leads to less separation over game outcomes. That is, every

strategy leads to a heterogeneous mixture of game outcomes. In other words, there

are no strategies in the bar plot that contain only one color (game outcome). This

again motivates the analysis of underlying activation patterns more so than actions

alone to glean useful relationships between strategies and performance.

146

Figure 80 Action-clustered strategies separate less homogeneously over game outcomes.

The associated strategies for the action space are provided in Figure 81. The

games associated with each of the clusters were not analyzed for human

interpretability.

Figure 81 Strategy clusters for UMAP-embedded actions

147

Bibliography

References

[1] A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A.

Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila and F.

Herrera, "Explainable Artificial Intelligence (XAI): Concepts, taxonomies,

opportunities and challenges toward responsible AI," Information Fusion, pp.

82-115, 2020.

[2] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu, "Definitions,

methods, and applications in interpretable machine learning," PNAS, vol. 116,

no. 44, pp. 22071-22080, 2019.

[3] E. Schmidt, R. Work, S. Catz, E. Horvitz, S. Chien, A. Jassy, M. Clyburn, G.

Louie, C. Darby, W. Mark, K. Ford, J. Matheny, J.-M. Griffiths, K. McFarland

and A. Moore, "Final Report, Chapter 7: Establishing Justified Confidence in

AI Systems," The National Security Commission on Artificial Intelligence,

2021.

[4] D. Gunning and D. Aha, "DARPA’s Explainable Artificial Intelligence (XAI)

Program," AI Magazine, pp. 44-58, Summer 2019.

[5] R. Isaacs, "Games of Pursuit," RAND Corporation, 1951.

[6] P. Cheng, "A Short Survey on Pursuit-Evasion Games," 2003.

[7] T. H. Chung, G. A. Hollinger and V. Isler, "Search and pursuit-evasion in

mobile robotics," Autonomous Robotics, vol. 31, no. 299, 2011.

[8] A. Merz, "The homicidal chauffeur - a differential game: PhD thesis," Stanford

Univ., 1971.

[9] Y. Feng, L. Dai, J. Gao and G. Cheng, "Uncertain pursuit-evasion game," Soft

Comput, vol. 24, p. 2425–2429, 2018.

[10] K. Quigley, S. A. Gabriel and S. Azarm, "Multi-Agent Unmanned Vehicle

Trajectories with Rolling-Horizon Games," Military Operations Research

Society Journal, 2020.

[11] M. Wang, L. Wang and T. Yue, "An Application of Continuous Deep

Reinforcement Learning Approach to Pursuit-Evasion Differential Game," in

2019 IEEE 3rd Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), Chengdu, China, 2019.

[12] A. A. Al-Talabi and H. M. Schwartz, "A two stage learning technique using

PSO-based FLC and QFIS for the pursuit evasion differential game," in 2014

IEEE International Conference on Mechatronics and Automation, Tianjin,

2014.

[13] S. F. Desouky and H. M. Schwartz, "A novel technique to design a fuzzy logic

controller using Q-learning and genetic algorithms in the pursuit-evasion

game," in 2009 IEEE International Conference on Systems, Man, and

Cybernetics, San Antonio, TX, 2009.

148

[14] A. T. Bilgin and E. Kadioglu-Urtis, "Ana pproach to multi-agent pursuit evasion

games using reinforcement learning," in 2015 International Conference on

Advanced Robotics (ICAR), Istanbul, 2015.

[15] Google, "Explainable AI," [Online]. Available:

https://cloud.google.com/explainable-ai.

[16] IBM, "Explainable AI," 2021. [Online]. Available:

https://www.ibm.com/watson/explainable-ai. [Accessed 23 April 2021].

[17] P. Krishnamurthy, F. Khorrami, S. Schmidt and K. Wright, "Machine Learning

for NetFlow Anomaly Detection with Human-Readable Annotations," IEEE

Transactions on Network and Service Management, 2021.

[18] S. Schmidt, J. Stankowicz, J. Carmack and S. Kuzdeba, "RiftNeXt(TM):

Explainable Deepn Neural RF Scene Classification," in 14th ACM Conference

on Security and Privacy in Wireless and Mobile Networks, Abu Dhabi, United

Arab Emirates, 2021.

[19] M. Sundararajan and A. Najmi, "The many Shapley values for model

explanation," preprint arXiv, 2019.

[20] J. Hilton, N. Cammarata, S. Carter, G. Goh and C. Olah, "Understanding RL

Vision," Distill, 2020.

[21] L. Schubert, M. Petrov, S. Carter, N. Cammarata, G. Goh and C. Olah, "OpenAI

Microscope," 14 April 2020. [Online]. Available:

https://openai.com/blog/microscope/. [Accessed 21 April 2021].

[22] S. Booth, Y. Zhou, A. Shah and J. Shah, "BAYES-TREX: a Bayesian Sampling

Approach to Model Transparency By Example," Association for the

Advancement of Artificial Intelligence, 2021.

[23] G. Vilone and L. Longo, "Explainable Artificial Intelligence: a Systematic

Review," preprint arXiv, 2020.

[24] C. Firestone, "Performance vs. competence in human–machine comparisons,"

Proceedings of the National Academy of Sciences of the United States of

America (PNAS), 2020.

[25] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. Garcia

Castaneda, C. Beattie, N. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat,

T. Green, L. Deason, J. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu and T.

Graepel, "Human-level performance in 3D multiplayer games with population-

based reinforcement learning," Science, pp. 859-865, 2019.

[26] T. Zahavy and S. Mannor, "Graying the black box: Understanding DQNs," in

International Conference on Machine Learning, New York City, New York,

2016.

[27] P. Rauber, S. Fadel and A. Falcao, "Visualizing the hidden activity of artificial

neural networks," IEEE transactions on visualization and computer graphics,

vol. 23, no. 1, pp. 101-110, 2017.

[28] M. Ali, M. W. Jones, X. Xie and M. Williams, "TimeCluster: dimension

reduction applied to temporal data for visual analytics," The Visual Computer,

pp. 1013-1026, 2019.

149

[29] L. McInnes and J. Healy, "Uniform Manifold Approximation and Projection for

Dimension Reduction," preprint ArXiv, 2018.

[30] T. P. Lillicrap, J. J. Hunt and A. Pritzel, "Continuous Control with Deep

Reinforcement Learning," arXiv preprint, 2015.

[31] S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking,"

IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 1, pp. 5-18,

2004.

[32] Y. Kim and H. Bang, "Introduction and Implementations of the Kalman Filter,"

IntechOpen, 2018. [Online]. Available:

https://www.intechopen.com/books/introduction-and-implementations-of-the-

kalman-filter-and-its-applications. [Accessed 24 April 2021].

[33] M. S. Grewal and A. P. Andrews, "Applications of Kalman Filtering," IEEE

Control Systems Magazine, 2010.

[34] D. Silver, J. Schrittwieser and K. Simonyan, "Mastering the Game of Go

without Human Knowledge," Nature, vol. 550, pp. 354-359, 2017.

[35] D. Silver, G. Lever, N. Heess and T. Degris, "Deterministic policy gradient

algorithms," in ICML, 2014.

[36] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," CoRR,

2015.

[37] J. F. Allen, S. Schmidt and S. A. Gabriel, "Reinforcement Learning Approach to

Speed-Overmatched Pursuit Games with Uncertain Target Information," in

Naval Applications of Machine Learning (NAML), Virtual, 2021.

[38] N. Bharti, "What-is-meant-by-activation-function," Quora, 23 October 2018.

[Online]. Available: https://www.quora.com/What-is-meant-by-activation-

function. [Accessed 4 June 2021].

[39] M. Hazewinkel, "Encyclopedia of Mathematics," EMS Press, 1994.

[40] C. T. Dodson and T. Poston, Tensor geometry. Graduate Texts in Mathematics,

Berlin, New York: Springer-Verlag, 1991.

[41] W. Dong, C. Moses and K. Li, "Efficient k-nearest neighbor graph construction

for generic similarity measures," in 20th International Conference on World

Wide Web, New York, NY, 2011.

[42] Y. Lecun and C. Cortes, "The MNIST database of handwritten digits," Courant

Institute, NYU Corinna Cortes, Google Labs, New York Chirstopher J C

Burges, Microsoft Research, Redmond.

[43] R. L. Thorndike, "Who Belongs in the Family?," Psychometrika, vol. 18, no. 4,

pp. 267-276, 1953.

[44] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M.

Payne, R. Yurchak, M. Russwurm, K. Kolar and E. Woods, "Tslearn, A

Machine Learning Toolkit for Time Series Data," Journal of Machine Learning

Research, vol. 21, no. 118, pp. 1-6, 2020.

[45] Defense Advanced Research Projects Agency (DARPA), "Competency-Aware

Machine Learning (CAML)," 2019. [Online]. Available:

150

https://www.darpa.mil/program/competency-aware-machine-learning.

[Accessed 23 April 2021].

[46] A. Klyubin, D. Polani and C. L. Nehaniv, "All else being equal be empowered,"

in European Conference on Artificial Life, Berlin, Heidelberg, 2005.

[47] A. S. Klyubin, D. Polani and C. L. Nehaniv, "Keep your options open: An

information-based driving principle for sensorimotor systems," PloS one, vol. 3,

no. 12, p. 4018, 2008.

[48] T. Jung, D. Polani and P. Stone, "Empowerment for continuous agent -

environmental systems," Adaptive Behavior, vol. 19, no. 1, pp. 16-39, 2011.

[49] D. Pathak, P. Agrawal, A. Efros and T. Darrell, "Curiosity-driven Exploration

by Self-supervised Prediction," in Proceedings of the 34th International

Conference on Machine Learning (PMLR), 2017.

[50] S. Dey, K.-W. Huang, P. A. B eerel and K. M. Chugg, "Characterizing Sparse

Connectivity Patterns in Neural Networks," in Information Theory and

Applications Workshop (ITA), San Diego, CA, 2018.

[51] T. M. Book and J. A. Thomas, Elements of Information Theory, Hoboken, NJ:

Wiley, 1991.

[52] T. S. Community, "scipy.stats.entropy," SciPy.org, [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html.

[Accessed 5 June 2021].

[53] C. E. Shannon, "A Mathematical Theory of Communication," Bell System

Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[54] W. H. Kruskal, "Historical Notes on the Wilcoxon Unpaired Two-Sample Test,"

Journal of the American Statistical Association, vol. 52, no. 279, pp. 356-360,

1957.

[55] C. Marais, "Empowerment as Intrinsic Motivation," towards data science, 18

July 2018. [Online]. Available: https://towardsdatascience.com/empowerment-

as-intrinsic-motivation-b84af36d5616. [Accessed 24 April 2021].

[56] T. Campbell, J. Straub, J. W. Fisher III and J. How, "Streaming, Distributed

Variational inference for Bayesian Nonparametrics," Advances in Neural

Information Processing Systems, vol. 28, pp. 280-288, 2015.

[57] J. Chang and J. W. Fisher III, "Parallel Sampling of DP Mixture Models using

Sub-clusters Splits," Neural Information and Processing Systems, 2013.

[58] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep

convolutional neural networks," Communications of the ACM, vol. 60, no. 6,

pp. 84-90, 2017.

[59] Y. W. Teh, M. I. Jordan, M. J. Beal and D. M. Blei, "Hierarchical Dirichlet

Processes," Journal of the American Statistical Association, vol. 101, no. 476,

pp. 1566-1581, 2006.

[60] D. Aldous, "Exchangeability and Related Topics," Ecole d'Ete de Probabilities

de Saint-Flour XIII, pp. 1-198, 1983.

151

[61] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: an efficient

alternative to SIFT or SURF," in IEEE International Conference on Computer

Vision, 2011.

[62] C. Molnar, Interpretable Machine Learning, github, 2019.

[63] "Additional information is available as supplementary materials.".

[64] J. B. MacQueen, "Some methods for classification and analysis of multivariate

observations," in 5th Berkeley Symposium on Mathematical Statistics and

Probability, 1967.

[65] R. K. Pathria and P. Beale, Statistical Mechanics (Third ed.), Academic Press,

2011.

