7,756 research outputs found

    Quantum Hall conductance of two-terminal graphene devices

    Get PDF
    Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be distinguished, including N-shaped distortions of quantum Hall plateaus and conductance peaks and dips at the charge neutrality point. Generally good agreement is found between measurement and theory. Possible origins of discrepancies are discussed

    The geometry of the Barbour-Bertotti theories II. The three body problem

    Get PDF
    We present a geometric approach to the three-body problem in the non-relativistic context of the Barbour-Bertotti theories. The Riemannian metric characterizing the dynamics is analyzed in detail in terms of the relative separations. Consequences of a conformal symmetry are exploited and the sectional curvatures of geometrically preferred surfaces are computed. The geodesic motions are integrated. Line configurations, which lead to curvature singularities for N3N\neq 3, are investigated. None of the independent scalars formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit

    Trans-Planckian Dark Energy?

    Full text link
    It has recently been proposed by Mersini et al. 01, Bastero-Gil and Mersini 02 that the dark energy could be attributed to the cosmological properties of a scalar field with a non-standard dispersion relation that decreases exponentially at wave-numbers larger than Planck scale (k_phys > M_Planck). In this scenario, the energy density stored in the modes of trans-Planckian wave-numbers but sub-Hubble frequencies produced by amplification of the vacuum quantum fluctuations would account naturally for the dark energy. The present article examines this model in detail and shows step by step that it does not work. In particular, we show that this model cannot make definite predictions since there is no well-defined vacuum state in the region of wave-numbers considered, hence the initial data cannot be specified unambiguously. We also show that for most choices of initial data this scenario implies the production of a large amount of energy density (of order M_Planck^4) for modes with momenta of order M_Planck, far in excess of the background energy density. We evaluate the amount of fine-tuning in the initial data necessary to avoid this back-reaction problem and find it is of order H/M_Planck. We also argue that the equation of state of the trans-Planckian modes is not vacuum-like. Therefore this model does not provide a suitable explanation for the dark energy.Comment: RevTeX - 15 pages, 7 figures: final version to appear in PRD, minor changes, 1 figure adde

    Probing renormalization group flows using entanglement entropy

    Get PDF
    In this paper we continue the study of renormalized entanglement entropy introduced in [1]. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen.Comment: 58 pages, 6 figure

    Beyond developable: computational design and fabrication with auxetic materials

    Get PDF
    We present a computational method for interactive 3D design and rationalization of surfaces via auxetic materials, i.e., flat flexible material that can stretch uniformly up to a certain extent. A key motivation for studying such material is that one can approximate doubly-curved surfaces (such as the sphere) using only flat pieces, making it attractive for fabrication. We physically realize surfaces by introducing cuts into approximately inextensible material such as sheet metal, plastic, or leather. The cutting pattern is modeled as a regular triangular linkage that yields hexagonal openings of spatially-varying radius when stretched. In the same way that isometry is fundamental to modeling developable surfaces, we leverage conformal geometry to understand auxetic design. In particular, we compute a global conformal map with bounded scale factor to initialize an otherwise intractable non-linear optimization. We demonstrate that this global approach can handle non-trivial topology and non-local dependencies inherent in auxetic material. Design studies and physical prototypes are used to illustrate a wide range of possible applications

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Generation of scale invariant magnetic fields in bouncing universes

    Full text link
    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for the Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e{\rm e}-N{\cal N}-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.Comment: v1: 19 pages, 5 figures; v2: 20 pages, 5 figures, minor revisions, to appear in JCA
    corecore