17,217 research outputs found

    Characterizing Search Behavior in Productivity Software

    Get PDF
    Complex software applications expose hundreds of commands to users through intricate menu hierarchies. One of the most popular productivity software suites, Microsoft Office, has recently developed functionality that allows users to issue free-form text queries to a search system to quickly find commands they want to execute, retrieve help documentation or access web results in a unified interface. In this paper, we analyze millions of search sessions originating from within Microsoft Office applications, collected over one month of activity, in an effort to characterize search behavior in productivity software. Our research brings together previous efforts in analyzing command usage in large-scale applications and efforts in understanding search behavior in environments other than the web. Our findings show that users engage primarily in command search, and that re-accessing commands through search is a frequent behavior. Our work represents the first large-scale analysis of search over command spaces and is an important first step in understanding how search systems integrated with productivity software can be successfully developed

    Towards evaluation of personalized and collaborative information retrieval

    Get PDF
    We propose to extend standard information retrieval (IR) ad-hoc test collection design to facilitate research on personalized and collaborative IR by gathering additional meta-information during the topic (query) development process. We propose a controlled query generation process with activity logging for each topic developer. The standard ad-hoc collection will thus be accompanied by a new set of thematically related topics and the associated log information, and has the potential to simulate a real-world search scenario to encourage retrieval systems to mine user information from the logs to improve IR effectiveness. The proposed methodology described in this paper will be applied in a pilot task which is scheduled to run in the FIRE 2011 evaluation campaign. The task aims at investigating the research question of whether personalized and collaborative IR retrieval experiments and evaluation can be pursued by enriching a standard ad-hoc collection with such meta-information

    Overview of the personalized and collaborative information retrieval (PIR) track at FIRE-2011

    Get PDF
    The Personalized and collaborative Information Retrieval (PIR) track at FIRE 2011 was organized with an aim to extend standard information retrieval (IR) ad-hoc test collection design to facilitate research on personalized and collaborative IR by collecting additional meta-information during the topic (query) development process. A controlled query generation process through task-based activities with activity logging was used for each topic developer to construct the final list of topics. The standard ad-hoc collection is thus accompanied by a new set of thematically related topics and the associated log information. We believe this can better simulate a real-world search scenario and encourage mining user information from the logs to improve IR effectiveness. A set of 25 TREC formatted topics and the associated metadata of activity logs were released for the participants to use. In this paper we illustrate the data construction phase in detail and also outline two simple ways of using the additional information from the logs to improve retrieval effectiveness

    Evaluation of MIRACLE approach results for CLEF 2003

    Get PDF
    This paper describes MIRACLE (Multilingual Information RetrievAl for the CLEf campaign) approach and results for the mono, bi and multilingual Cross Language Evaluation Forum tasks. The approach is based on the combination of linguistic and statistic techniques to perform indexing and retrieval tasks

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method

    BlockTag: Design and applications of a tagging system for blockchain analysis

    Full text link
    Annotating blockchains with auxiliary data is useful for many applications. For example, e-crime investigations of illegal Tor hidden services, such as Silk Road, often involve linking Bitcoin addresses, from which money is sent or received, to user accounts and related online activities. We present BlockTag, an open-source tagging system for blockchains that facilitates such tasks. We describe BlockTag's design and present three analyses that illustrate its capabilities in the context of privacy research and law enforcement

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given
    corecore