519 research outputs found

    Characterizing Polarization-MIMO Antennas in Random-LOS Propagation Channels

    Get PDF
    Abstract-In the 5G system, we foresee the use of LOSdominated mm-wave radio links to moving users being subject to slow fading resulting from the users' random locations and orientations. We refer to this as a Random-LOS channel. MIMO processing algorithms will be used in 5G to improve performance in slow fading, similar to how they are used in Rayleigh fading. To this end, we study the probability of detection (PoD) in the Random-LOS channel when there are dual-polarized antennas on both sides of the link. We introduce two polarization deficiencies: the polarization non-orthogonality and the amplitude imbalance between the ports of a two-port antenna. The MIMO efficiency is evaluated as a function of these deficiencies. In the analysis, we consider the MRC algorithm for one bitstream, and the ZF and SVD algorithms for two bitstreams. We also present two analytical formulas for the MIMO efficiency that can be used to determine performance. We use the formulas on two ideally orthogonal dipoles, and show by means of coverage plots how much the 1-and 2-bitstream performances degrade due to the polarization deficiencies in off-boresight directions

    Polarimetric properties of indoor MIMO channels for different floor levels in a residential house

    Get PDF
    This paper analyzes polarimetric characteristics of power delay profiles (PDPs), cross polarization discrimination (XPD), and received power of specular and diffuse multipath components of indoor MIMO radio channels at 2.45 GHz. Measurements were done in a residential house at two floors levels: "same floor" and "cross floor". Variations of 5 to 15 dB in PDPs between co-and cross-polar links were found in the same floor level; however these changes decrease as radio links move from line-of-sight to non-line-of-sight propagations. XPDs of radio waves were found to be higher for cross floor configuration, about 5 dB in horizontally and 7 dB in vertically polarized waves. Also, diffuse components of channels were less affected compared to that of specular components in same floor setups for cross-polar links. Our results demonstrate that the contribution of diffuse components to total channel power is higher than previously presented studies for large industrial indoor environments

    Millimeter wave and UWB propagation for high throughput indoor communications

    Get PDF
    Millimeter-wave systems at 60 GHz and ultra-wideband (UWB) systems in the microwave range of 3-10 GHz have been received with great interest for their high data rate wireless communications. In design, test and optimization of future wireless systems, channel models featuring the relevant characteristics of radiowave propagation are required. Furthermore, detailed understanding of the propagation channel and its interaction with system, creates insights into possible solutions. In this work, both theoretical (ray-tracing) and statistical models of the 60 GHz and UWB channels are studied. Propagation characteristics of the 60 GHz and UWB indoor channels are also compared for providing useful information on design of radio systems. More specifically, based on real-time channel sounder measurements performed in the 60 GHz band, propagation mechanisms including person blocking effect are concluded. Ray-based models in LOS and NLOS indoor corridors are proposed. Multipath power distributions in the 60 GHz band are studied first time. Moreover, propagation interdependencies of path loss, shadowing, number of paths, Rice K-factor and cross polarization discrimination (XPD) with channel delay spread are established. In the UWB propagation channel, frequency- and bandwidth- dependencies are investigated. Multipath and clustering propagation characteristics are analyzed. A new cluster model is proposed and compared with the classical Saleh-Valenzuela model for gaining more understanding of channel general properties. Finally, the performance and capacities of the 60 GHz UWB and MIMO (multiple-in and multiple-out) systems are analyzed for providing reliable parameters for system design and useful information for standardization groups

    Measured Probabilities of Detection for 1- and 2 Bitstreams of 2-port Car-roof Antenna in RIMP and Random-LOS

    Get PDF
    Autonomous cars will in a near future drive around in cities and on highways. Antennas will then be needed to secure the wireless connection to these cars. To be able to test the antennas we have defined two edge environments: the Random Line-of-Sight (LOS) and the Rich Isotropic Multipath (RIMP). This paper shows a throughput performance comparison between measurements and simulations of a car-roof (shark-fin) antenna mounted on a ground plane in both of these environments. The comparison is done for both one and two bitstreams in a 22 MIMO system. The analysis is based on probability of detection (PoD) curves representing the throughput performance with digital threshold receivers

    A Survey of Dense Multipath and Its Impact on Wireless Systems

    Get PDF

    Design and Evaluation of Compact Multi-antennas for Efficient MIMO Communications

    Get PDF
    The use of multi-antenna systems with multiple-input multiple-output (MIMO) technology will play a key role in providing high spectrum efficiency for next generation mobile communication systems. This thesis offers valuable insights on the design of compact multi-antennas for efficient MIMO communications. In the course of the thesis work, several novel six-port antenna designs have been proposed to simultaneously exploit all six possible degrees-of-freedom (DOFs) by means of various antenna diversity mechanisms (Paper I & II). Moreover, the thesis also examines the potential of using uncoupled matching networks to adaptively optimize compact multi-antenna systems to their dynamic usage environments (Paper III). Furthermore, a simple and intuitive metric is proposed for evaluating the performance of MIMO antennas when operating in the spatial multiplexing mode (Paper IV). Last but not least, cooperation among multi-antenna systems at all three sectors of a given cellular base station is shown to deliver significant benefit at sector edges (Paper V). The thesis with five included research papers extend the understanding of MIMO systems from an antenna and propagation perspective. It provides important guidelines in designing compact and efficient MIMO antennas in their usage environments. In Paper I, a fundamental question on the number of effective DOFs in a wireless channel is explored using two co-located six-port antenna arrays. The antenna elements of both arrays closely reproduce the desired characteristics of fundamental electric and magnetic dipoles, which can efficiently extract angle and polarization diversities from the wireless channel. In particular, one of the two array designs is by far the most electrically compact six-port antenna structure in the literature. Analysis of measured channel eigenvalues in a rich multi-path scattering environment shows that six eigenchannels are successfully attained for the purpose of spatial multiplexing. To study the potential of implementing different diversity mechanisms on a practical multi-port antenna, Paper II builds on an existing dielectric resonator antenna (DRA) to provide a compact six-port DRA array that jointly utilizes space, polarization and angle diversities. In order to fully substantiate the practicality of the DRA array for indoor MIMO applications, the compact DRA array together with two reference but much larger arrays were evaluated in an office scenario. The use of the compact DRA array at the receiver is shown to achieve comparable performance to that of the reference monopole array due to the DRA array's rich diversity characteristics. In Paper III, the study of uncoupled matching networks to counteract mutual coupling effects in multi-antenna systems is extended by allowing for unbalanced matching impedances. Numerical studies suggest that the unbalanced matching is especially effective for array topologies whose effective apertures can vary significantly with respect to the propagation channel. Moreover, it is also demonstrated that the unbalanced matching is capable of adapting the radiation patterns of the array elements to the dynamic propagation environment. Paper IV introduces multiplexing efficiency as a performance metric which defines the loss of efficiency in decibel when using a multi-antenna prototype under test to achieve the same multiplexing performance as that of an ideal array in the same propagation environment. Its unique features are both its simplicity and the valuable insights it offers with respect to the performance impacts of different antenna impairments in multi-antenna systems. In Paper V, intrasite cooperation among three 120°-sector, each with a cross-polarized antenna pair, is investigated in a measured urban macrocellular environment. The single-user capacity improvement is found to exceed 40% at the sector edges, where improvements are most needed. In addition, a simple simulation model is developed to analyze the respective impact of antennas and specific propagation mechanisms on the measured cooperative gain

    Experimental analysis of dense multipath components in an industrial environment

    Get PDF
    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop

    Characterization and Enhancement of Antenna System Performance in Compact MIMO Terminals

    Get PDF
    Co-band multiple-antenna implementation in compact user terminals is necessary for harvesting the full potential of diversity and multiple-input multiple-output (MIMO) technology in cellular communication systems. The recent worldwide deployment of Long Term Evolution (LTE), which requires the use of MIMO technology in the downlink, adds to the urgency of achieving both practical and optimal multiple-antenna systems in user terminals. Contrary to conventional understanding, an optimal multiple-antenna implementation does not only involve the design and placement of antenna elements in the terminals, but extends beyond the antenna elements and common antenna parameters to comprise interactions with the near field user and the propagation environment. Moreover, these interactions are non-static, which implies that the multiple-antenna system must adapt to the prevailing overall communication channel in order to assure the highest performance gains. This doctoral thesis aims to address several key issues in optimal multiple-antenna system design for compact multi-band MIMO terminals, with the first half (Papers I to III) focusing on the performance characterization of such terminals in the presence of user interaction and propagation channel, under the challenging constraint that the terminals are compact. The second half of the thesis (Papers IV to VI) considers two performance enhancement approaches suitable for compact MIMO terminals in realistic usage conditions. In particular, the potential benefits of harmonizing compact multiple-antenna systems with the propagation channel and user influence are determined with respect to reconfigurability in antenna patterns and impedance matching circuits. In Paper I, the diversity performance of internal multiple antennas with multi-band coverage in a mock-up with the size of a typical mobile handset is investigated in different user interaction scenarios. For comparison, a second mock-up with only one multi-band antenna is also evaluated in the same user cases. An ideal uniform propagation environment is assumed. The performance at frequency bands below and above 1 GHz are presented and analyzed in detail. Paper II extends the study in Paper I by evaluating the single-input multiple-output (SIMO) and MIMO capacity performance of the same antenna prototypes under the same user interaction scenarios and propagation environment. In Paper III, the impacts of gain imbalance and antenna separation on the throughput performance of a dual-dipole configuration are studied at frequencies below and above 1 GHz in a repeatable dynamic multi-path environment, using a live HSPA network. Since the compactness of a user terminal has implications on the antenna separation and gain imbalance of the multiple antennas, the focus is to gain knowledge on how these two factors affect the end user experience in practice. In Paper IV, three simple dual-antenna topologies implemented in compact smart phone prototypes of identical form factors are evaluated in MIMO channel measurements in noise-limited and interference-limited urban scenarios. Each dual-antenna topology is intentionally designed to provide a distinct set of antenna patterns. The goal is to investigate the potential of antenna system design as one of the key performance differentiators in real terminal implementations. Paper V extends the work in Paper IV by introducing user interaction to the same MIMO channel measurement setup. Furthermore, the focus of this paper is on the evaluation of both the average and local channel performances and their potential enhancements. Finally, Paper VI ascertains the potential capacity gains of applying uncoupled adaptive matching to a compact dual-antenna terminal in an indoor office environment, under a realistic user scenario. The performance gains are evaluated by means of extensive MIMO channel measurements at frequency bands below and above 1 GHz
    • …
    corecore