15,738 research outputs found

    Training Complex Models with Multi-Task Weak Supervision

    Full text link
    As machine learning models continue to increase in complexity, collecting large hand-labeled training sets has become one of the biggest roadblocks in practice. Instead, weaker forms of supervision that provide noisier but cheaper labels are often used. However, these weak supervision sources have diverse and unknown accuracies, may output correlated labels, and may label different tasks or apply at different levels of granularity. We propose a framework for integrating and modeling such weak supervision sources by viewing them as labeling different related sub-tasks of a problem, which we refer to as the multi-task weak supervision setting. We show that by solving a matrix completion-style problem, we can recover the accuracies of these multi-task sources given their dependency structure, but without any labeled data, leading to higher-quality supervision for training an end model. Theoretically, we show that the generalization error of models trained with this approach improves with the number of unlabeled data points, and characterize the scaling with respect to the task and dependency structures. On three fine-grained classification problems, we show that our approach leads to average gains of 20.2 points in accuracy over a traditional supervised approach, 6.8 points over a majority vote baseline, and 4.1 points over a previously proposed weak supervision method that models tasks separately

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    Full text link
    Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios.Comment: This revised version fixes two small typos in the published versio

    Compressive Nonparametric Graphical Model Selection For Time Series

    Full text link
    We propose a method for inferring the conditional indepen- dence graph (CIG) of a high-dimensional discrete-time Gaus- sian vector random process from finite-length observations. Our approach does not rely on a parametric model (such as, e.g., an autoregressive model) for the vector random process; rather, it only assumes certain spectral smoothness proper- ties. The proposed inference scheme is compressive in that it works for sample sizes that are (much) smaller than the number of scalar process components. We provide analytical conditions for our method to correctly identify the CIG with high probability.Comment: to appear in Proc. IEEE ICASSP 201

    Automatic Throughput and Critical Path Analysis of x86 and ARM Assembly Kernels

    Full text link
    Useful models of loop kernel runtimes on out-of-order architectures require an analysis of the in-core performance behavior of instructions and their dependencies. While an instruction throughput prediction sets a lower bound to the kernel runtime, the critical path defines an upper bound. Such predictions are an essential part of analytic (i.e., white-box) performance models like the Roofline and Execution-Cache-Memory (ECM) models. They enable a better understanding of the performance-relevant interactions between hardware architecture and loop code. The Open Source Architecture Code Analyzer (OSACA) is a static analysis tool for predicting the execution time of sequential loops. It previously supported only x86 (Intel and AMD) architectures and simple, optimistic full-throughput execution. We have heavily extended OSACA to support ARM instructions and critical path prediction including the detection of loop-carried dependencies, which turns it into a versatile cross-architecture modeling tool. We show runtime predictions for code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2 micro-architectures based on machine models from available documentation and semi-automatic benchmarking. The predictions are compared with actual measurements.Comment: 6 pages, 3 figure
    • 

    corecore