34,624 research outputs found

    Characterizing Driving Context from Driver Behavior

    Full text link
    Because of the increasing availability of spatiotemporal data, a variety of data-analytic applications have become possible. Characterizing driving context, where context may be thought of as a combination of location and time, is a new challenging application. An example of such a characterization is finding the correlation between driving behavior and traffic conditions. This contextual information enables analysts to validate observation-based hypotheses about the driving of an individual. In this paper, we present DriveContext, a novel framework to find the characteristics of a context, by extracting significant driving patterns (e.g., a slow-down), and then identifying the set of potential causes behind patterns (e.g., traffic congestion). Our experimental results confirm the feasibility of the framework in identifying meaningful driving patterns, with improvements in comparison with the state-of-the-art. We also demonstrate how the framework derives interesting characteristics for different contexts, through real-world examples.Comment: Accepted to be published at The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017

    Heterogeneity in the Driver Behavior: An Exploratory Study Using Real-Time Driving Data

    Get PDF
    Driver behavior heterogeneity is a significant aspect to understand the individual behavioral variations and develop driver assistance systems. This study characterizes the heterogeneity in driving behavior using real-time driving performance features. In this context, the study investigates the extent of variations in the individual's driving styles during routine driving. The driving styles are conceptualized using the vehicle kinematic data, that is, speed and accelerations performed during longitudinal control. The data is collected for 42 professional drivers using instrumented vehicle over a defined study stretch. An algorithm is developed for data extraction and total 7548 acceleration and 6156 braking maneuvers and corresponding driving performance features are extracted. The driving maneuver data are analyzed using the unsupervised techniques (PCA and K-means clustering) and three patterns of acceleration and braking are identified, which are further associated with two patterns of speed behavior. The results showed that each driver is found to exhibit different driving patterns in different driving regimes and no driver shows constantly safe or aggressive behavior. The aggression scores are found to be different among drivers, indicating the behavioral heterogeneity. This study results demonstrate that, driver's level of aggression in different driving regimes is not constant and characterizing the driver by means of abstract driving features is not indicative of the diversified driving behavior. The proposed method identifies the individualized driving behaviors, reflecting the driver's choice of driving maneuvers. Thus, the insights from the study are highly useful to design driver-specific safety models for driver assistance and driver identification. © 2022 Jahnavi Yarlagadda and Digvijay S. Pawar

    Characterizing driving behavior using automatic visual analysis

    Full text link
    In this work, we present the problem of rash driving detection algorithm using a single wide angle camera sensor, particularly useful in the Indian context. To our knowledge this rash driving problem has not been addressed using Image processing techniques (existing works use other sensors such as accelerometer). Car Image processing literature, though rich and mature, does not address the rash driving problem. In this work-in-progress paper, we present the need to address this problem, our approach and our future plans to build a rash driving detector.Comment: 4 pages,7 figures, IBM-ICARE201

    An Action-Based Approach to Presence: Foundations and Methods

    Get PDF
    This chapter presents an action-based approach to presence. It starts by briefly describing the theoretical and empirical foundations of this approach, formalized into three key notions of place/space, action and mediation. In the light of these notions, some common assumptions about presence are then questioned: assuming a neat distinction between virtual and real environments, taking for granted the contours of the mediated environment and considering presence as a purely personal state. Some possible research topics opened up by adopting action as a unit of analysis are illustrated. Finally, a case study on driving as a form of mediated presence is discussed, to provocatively illustrate the flexibility of this approach as a unified framework for presence in digital and physical environment

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic
    corecore