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Driver behavior heterogeneity is a significant aspect to understand the individual behavioral variations and develop driver
assistance systems.,is study characterizes the heterogeneity in driving behavior using real-time driving performance features. In
this context, the study investigates the extent of variations in the individual’s driving styles during routine driving. ,e driving
styles are conceptualized using the vehicle kinematic data, that is, speed and accelerations performed during longitudinal control.
,e data is collected for 42 professional drivers using instrumented vehicle over a defined study stretch. An algorithm is developed
for data extraction and total 7548 acceleration and 6156 braking maneuvers and corresponding driving performance features are
extracted. ,e driving maneuver data are analyzed using the unsupervised techniques (PCA and K-means clustering) and three
patterns of acceleration and braking are identified, which are further associated with two patterns of speed behavior. ,e results
showed that each driver is found to exhibit different driving patterns in different driving regimes and no driver shows constantly
safe or aggressive behavior.,e aggression scores are found to be different among drivers, indicating the behavioral heterogeneity.
,is study results demonstrate that, driver’s level of aggression in different driving regimes is not constant and characterizing the
driver by means of abstract driving features is not indicative of the diversified driving behavior. ,e proposed method identifies
the individualized driving behaviors, reflecting the driver’s choice of driving maneuvers. ,us, the insights from the study are
highly useful to design driver-specific safety models for driver assistance and driver identification.

1. Introduction

Road traffic accidents are one of the leading causes of death
resulting in approximately 1.35 million deaths every year [1].
,e factors associated with road crashes are studied over
decades and driver behavior is concluded to be the major
contributory factor [2–7]. ,erefore, understanding the
driver behavior is important for many applications like
driver assistance or personalized feedback provision for
enhancing the driving safety, economy, and comfort. In
addition, the implications of driver behavior research are
significant inputs for the design of autonomous vehicles.

Driver behavior indicates the manner of executing
various driving tasks, which can be perceived as controlling
the vehicle in the longitudinal and lateral directions. ,e

habitual way of performing driving maneuvers is considered
as driving style, which characterizes the individual driver or
a group of drivers [8]. Many researchers have attempted to
classify the drivers and the driving styles based on the
outcomes of driving tasks in the perspective of driving safety
[9–20]. Most of the studies considered the same predefined
criteria (thresholds for abstract features of driving data or for
safety-critical events) for all the drivers neglecting the
variation in driver attributes and driving skills. ,e differ-
ences in the individual driving characteristics among drivers
might result in different driving responses toward a set of
driving conditions [21]. ,us, classifying the driver behavior
based on the predefined thresholds common to all the
drivers may not yield to the proper evaluation of driver
behavior. Moreover, the driving styles are assumed to be
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constant or consistent in the entire trip, which is unrealistic
as the external driving conditions tend to change time to
time [22, 23]. In other words, the driver classified as ag-
gressive may not continuously exhibit aggressive behavior in
all the driving maneuvers performed in a trip.,erefore, this
study proposes a framework to explore the behavioral
heterogeneity in the longitudinal control by segmenting the
driving profiles into driving maneuvers and identifying
different driving patterns. ,e analysis is conducted using
unsupervised machine learning techniques to group and
interpret the driving patterns, without any fixed thresholds.

In this study, a high-frequency (10Hz) GPS instru-
mentation is used to collect the real-time driving data for
passenger car drivers. ,e longitudinal control exhibited by
drivers in terms of speeding, accelerating, and braking were
considered to explore the driving pattern variations in short-
term driving decisions. ,e next section of the paper
presents a summary of the literature review on driving style
identification. ,e third section details the data collection
techniques and the fourth section presents the adopted
methodology. ,e fifth section details the results and dis-
cussion. ,e last section of the paper presents the conclu-
sions, and future work.

2. Literature Review

Over the last three decades, many researchers have con-
ducted the safety analysis of driving behavior that promi-
nently involved identifying and classifying driving styles.
,e driving style detection and classification were mainly
regarded as a means of differentiating drivers in the per-
spective of driving safety and to evaluate individuals. ,e
existing literature on driving style classification is synthe-
sized as per the nature of the data used for the analysis and
presented in the following subsections.

2.1. Predefined*resholds of Safety Critical Events. With the
advancement in the data collection techniques, the driving
styles were conceptualized using different driving perfor-
mance features depending on the research motive and
method of data collection. Majority of the studies classified
the driving styles based on the predefined thresholds of
safety-related events, such as sudden acceleration, sudden
braking, and sharp turning [9, 11–13, 16, 17, 20, 24–29].
Johnson and Trivedi [11] developed smartphone-based
application, which categorizes the driving styles as aggressive
and nonaggressive based on the nature of detected driving
maneuvers. ,e sudden accelerations and braking, swift
swerves, and hard right and left turns were the typical
maneuvers considered, for which the reference thresholds
were recorded by a single driver and a vehicle. Aljaafreh et al.
[12] classified driving styles into four categories using the
fuzzy logic inference system. ,e fuzzy rules for classifica-
tion were predefined based on the driving performance of
three expert drivers in terms of speed and longitudinal/
lateral accelerations. Similarly, Feng et al. [24] developed a
fuzzy logic driver model to simulate different driving styles.
,e fuzzy rules were framed based on experts’ knowledge on

drivers’ decisions using the parameters such as vehicle speed,
headway distance, pedal position, and gear selection. Van Ly
et al. [13] explored the possibility of CAN bus data to build
driving profiles for characterizing individuals. Authors
represented the driving maneuvers using acceleration,
braking, and turning events. ,e k-means clustering and
support vector machine were used in the training algorithm
and showed an accuracy of 60%. Vaiana et al. [16] classified
driving behaviors into safe and aggressive using a g-g dia-
gram developed by referencing a single driver. Eboli et al.
[17] constructed a g-g diagram and defined the safety do-
main for driver behavior classification.,e frequency of data
points out of the safety domain was considered to classify
drivers as safe or unsafe. Mantouka et al. [20] categorized the
trips into six distinct groups with the increasing level of
safety. ,e driving performance over the trip was defined
using the frequencies of harsh accelerations and harsh
brakes per kilometer traveled and the percent of speeding
and mobile usage during the trip. Chen et al. [25] developed
a supervised hierarchical Bayesian model to understand the
latent driving styles using the labeled data. ,e vehicle
motion data, including acceleration, speed, and turning
signals were categorized into multiple levels ranging from
very low to very high and encoded to input the model. In
these studies, the predefined thresholds were needed to
detect the driving events, but the thresholds used for de-
fining the driving events were not consistent. Paefgen et al.
[26] used± 0.1 g (1m/s2) for identifying critical acceleration
and braking events, whereas Fazeen et al. [27] used the
thresholds of ±0.3 g (3m/s2). Bagdadi [28] used± 0.48 g
(4.8m/s2), and Bergasa et al. [29] considered± 0.4 g (4m/s2)
as thresholds for critical events.

2.2. Abstract Driving Features. Some studies classified the
driving styles based on the abstract features of driving
performance data observed during the study period
[10, 15, 30]. Constantinescu et al. [10] classified driving styles
as per the risk-proneness of drivers in the context of road
safety. ,e hierarchical cluster analysis was performed on
the abstract features of driving performance data, such as the
mean and standard deviation of speed, acceleration, de-
celeration, percentage of time speeding over speed limit, and
the mechanical work over the entire trip. ,e identified
driving styles were compared against the test driver’s per-
formance and categorized into five groups ranging from
nonaggressive to aggressive. Similarly, Kalsoom and Halim
[30] classified driving styles into slow, normal, and fast
categories based on the abstract features such as maximum
and average speed, number of brakes, and number of horns
during the trip. Given that, the performance aggregated over
an entire trip was used for classification, the results of these
studies cannot directly indicate the unsafe practices or the
individual’s driving faults to diagnose through assistance.

2.3. Driving Profiles. A few studies explored the driving
styles using continuous driving profile data, without any
prior ground truth [19, 22, 23, 31, 32]. Li et al. [31] con-
sidered the transition probabilities between driving
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maneuvers as indicators of driving styles and analyzed the
transitions among 12 types of maneuvers. All the maneuver
episodes were manually identified from the naturalistic data
corresponding to 28 drivers. ,e authors developed random
forest classifier based on the optimized set of five transition
features and classified drivers into three risk groups, that is,
high, moderate, and low-risk representative of the entire
trip. Further, the obtained classification was compared
against the subjective evaluation scores given by expert team.
,e authors concluded that transition probabilities were
resulting in better estimation accuracy (overall recognition
rate of 93%) compared to other traditional methods. Chen
et al. [22] developed driving behavior graph for each driving
performance feature by considering the driving pattern
exhibited over every three seconds. However, the univariate
approach in behavior recognition does not account the
interdependencies of driving decisions. Higgs and Abbas
[23] considered the combination of driving performance
features to segment and cluster the car-following periods
and explore the driving patterns of individual drivers.
Authors analyzed the driving data of 10-truck and 10-car
drivers collected as a part of the 100-car naturalistic driving
study. ,e state-action variables corresponding to the seg-
mented car-following periods were used for clustering. A
total of 30 clusters were identified representing different
driving patterns and the proportion of patterns varied
among drivers. Similarly, Chen and Chen [19] analyzed the
base-line events (recorded as a part of SHRP-2 study)
concerning the driving performance over the event. ,ree
clusters of events were identified representing three different
driving styles. Li et al. [32] proposed an unsupervised
framework to segment the driving sequences into fragments
and cluster the fragments into descriptive driving patterns.
,e authors utilized two Bayesian algorithms for segmen-
tation, and two extended latent Dirichlet allocation (LDA)
models for clustering the driving patterns. Total four driving
patterns were identified common to all the driving ma-
neuvers, where each pattern was a combination of both
longitudinal and lateral behavioral characteristics. Although,
these studies evaluated the driving maneuvers and driving
patterns using the driving profile data, the variation in the
individual driving characteristics is still unclear and not
conclusive. ,e objectives of studies, instruments used for
data collection, the sampling frequency, the driving features,
and the kind of data used for analysis across the previous
studies is summarized in Table 1.

2.4. Research Gaps. ,e literature review shows that the
number of classes or groups to which the drivers or driving
styles are classified was not consistent among the studies.
Also, the definition of the class or group was inconsistent
across the studies and varied concerning the study meth-
odologies. Based on the in-depth review of the literature on
driving style classification, the research gaps observed are
highlighted as follows:

(1) Most of the studies classified driving styles based on
either the abstract performance features or the
predefined thresholds. ,e aggregated features over

entire trip does not indicate the nature of short-term
driving decisions and the respective pattern varia-
tions in the individuals. Whereas in case of pre-
defined thresholds, the thresholds used across the
studies were not uniform.

(2) In majority of the studies, the drivers and driving
styles were characterized by a single classification of
safe or aggressive for the entire trip. Very limited
research is available which speaks of variations in the
individual’s driving styles.

(3) None of the previous studies presented the intra-
driver and interdriver behavioral heterogeneity in
the instantaneous driving decisions in different
driving regimes.

2.5. Research Objectives. Given the research gaps, the study
is aimed to pursue the following objectives to explore the
extent of variability in individual’s driving patterns in short-
term driving decisions.

(a) Segmenting the high-frequency (10Hz) driving
profile data into driving maneuvers (acceleration
and braking), and extracting the respective driving
performance data.

(b) Identifying different driving patterns using unsu-
pervised machine learning techniques, without using
predefined ground truth.

(c) Assigning the driving style classification to indi-
viduals and quantifying the driver performance
using relative aggression score.

(d) Exploring the individual’s behavioral heterogeneity
in instantaneous driving decisions.

3. Methodology

,e proposed framework for the current study is presented
in Figure 1.,e framework is divided into five steps: (1) Data
acquisition, (2) Maneuver detection and feature extraction,
(3) Dimensionality reduction, (4) Maneuver clustering and
driving style classification, and (5) Driver behavior het-
erogeneity. First, the real-time driving profiles of passenger
car drivers were collected using high-frequency (10Hz) GPS
instrumentation. Second, the driving profiles were seg-
mented into acceleration and braking maneuvers, and the
respective driving performance features were extracted. As
the extracted dataset was unlabeled concerning the nature of
maneuver, the unsupervised learning techniques were used
to explore the underlying patterns. ,erefore, in the third
step, the principal component analysis was conducted on
acceleration and braking datasets, to reduce the feature
dimensionality and to improve the clustering efficiency.
Fourth, the k-means clustering was used to group the similar
patterns of maneuvers. ,en, the identified groups were
assigned a driving style classification based on the respective
characteristics of performance features. Finally, the pro-
portion of each driving pattern was computed for indi-
viduals, and assigned a relative aggression score based on the
frequency of the aggressive maneuvers exhibited per
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kilometer traveled. ,en, the behavioral heterogeneity was
presented based on the driving style variations observed
with-in, and among the individuals.

3.1. Data Acquisition

3.1.1. Study Stretch. Driving behavior depends on several
external factors, among which the road geometry and
driving environment play a significant role. To keep the
driving environment (with respect to road geometry) uni-
form for all the participants, a predefined study stretch was
used for collecting the driving data. ,e identical test route
ensures each participating driver faces similar geometrical
elements and other road infrastructure features. ,e study
stretch is of total 23 km length on the four-lane national

highway (NH-64) near Hyderabad city. ,e selected route
consists of 12 intersections, 13 mid-block openings, and four
gentle curves.

3.1.2. Driver Participation. ,e recruitment of drivers for
the present study was primarily conducted among the fleet
management companies surrounding the Hyderabad city.
,e participation was voluntary, and the interested candi-
dates were asked to fill a short questionnaire consisting of
demographic questions of suitability. ,e knowledge of the
route and how frequent the driver travels on a particular
route influences the driving outcomes [33].

Considering the route familiarity and minimum driving
experience of one year, total 42 drivers were chosen who
were frequent travelers on the study route. ,e age of the

Table 1: Summary of the literature on driving style classification.

Studies Objective Instruments Sampling
frequency Driving features Nature of the data

Murphey et al. [9] Driving style classification—calm,
normal, aggressive, no speed — —

Acceleration and jerk
features from 11

standard driving cycles

Pre-defined
thresholds of
safety critical

events

Johnson and
Trivedi [11]

Driving style
classification—aggressive,

nonaggressive

Smartphone
sensors 1 Hz Speed, acceleration,

rotation

Eboli et al. [17] Driver behavior classification—safe,
unsafe GPS 1 Hz Speed, acceleration

Feng et al. [18] Driver classification—aggressive,
nonaggressive CAN bus 10Hz Speed, acceleration, jerk

Mantouka et al.
[20]

Trip classification—six categories
from aggressive to nonaggressive

Smartphone
sensors 1 Hz

Speed, acceleration,
percentage of mobile
usage while driving

Feng et al. [24] Simulating driving
styles—aggressive, normal, defensive

On board data
logger (OBD-II),

radar
1 Hz

Speed, headway, pedal
movement, gear

position

Chen et al. [25] Driving style modeling—aggressive,
moderate, careful GPS 10Hz Speed, acceleration

Bagdadi [28] Detection of safety critical braking
events GPS 10Hz Acceleration, jerk

Constantinescu
et al. [10]

Driver classification—six categories
from very aggressive to

nonaggressive
GPS 1 Hz Speed, acceleration

Abstract driving
featuresHong et al. [15]

Driving style
classification—Aggressive,

nonaggressive

Smartphone
sensors 2 Hz

Self-reports, speed,
acceleration, engine

RPM

Kalsoom and
Halim [30]

Driver classification—slow, normal,
fast Driving simulator 0.1Hz

Speed, acceleration,
frequency of brakes,
horns, gear, indicators

Chen and Chen
[19]

Driving style classification—three
groups GPS 10Hz Speed, acceleration

Driving profiles

Chen et al. [21] Driving style modelling—Individual
driving habit graphs Driving simulator —

Speed, acceleration,
steering wheel angle,
throttle actuation

Chen et al. [22] Identifying individual driving
patterns GPS 1 Hz Speed, acceleration

Higgs and Abbas
[23]

Driving pattern identification—30
patterns

GPS, cameras,
radar 10Hz Speed, acceleration, yaw

rate, range, lane offset

Li et al. [31] Driving-style classification—low-
risk, moderate-risk, high-risk CAN bus, cameras 10Hz Speed, acceleration,

headways, video data

Li et al. [32] Identifying descriptive driving
patterns—four patterns CAN bus, cameras 10Hz Speed, acceleration,

headways, video data

4 Journal of Advanced Transportation



selected drivers ranged from 19 to 45 years with a mean of
29.9 (sd� 6.8) years and an average driving experience of 7.4
(sd� 5.4) years. ,e participants were introduced to the
goals of the study and informed to drive in their natural way
as they would generally drive in day-to-day routine. ,e
study was ethically approved by the Institutional Ethics
Committee, Indian Institute of Technology Hyderabad, and
a declaration of consent was obtained from each participant
before the commence of trip. ,e data were collected for a
minimum of two trips for each participant and were
compensated by a gift after the study period.

3.1.3. Driving Data Acquisition System. A passenger car was
used to collect the driver behavior data and was equipped
with a high-frequency GPS instrumentation and four video-
cameras (see Figure 2). ,e vehicle was instrumented before

starting the scheduled trip and removed after completion of
the trip. ,e instrument captures the vehicle speed, longi-
tudinal/lateral acceleration, heading, and positional coor-
dinates at a frequency of 10Hz along with the synchronized
video data. ,e measured absolute position and speed are
accurate to ±3m and 0.1 km/h, respectively. To minimize the
effect of weather and traffic conditions, the data was col-
lected in the dry weather conditions, for the trips (ride
requests) that were scheduled during off-peak hours. A total
of 98 trips data were collected, comprising 65 hours of
driving data over 2254 kilometers.

3.2.ManeuvreDetection. ,e speed and acceleration are the
most commonly used kinematic parameters to distinguish
the driver behaviors with respect to the level of aggres-
siveness [11, 12, 17, 26, 34–37]. Considering the knowledge

Instruments
acquisition & installation Driving data collection

Kinematic data
• Speed 
• Acceleration

Selection of study stretch Participant recruitment
• Route familiarity
• Demographics

Step 1: Data acquisition

Step 2: Maneuver detection and feature extraction

Positional data
• Longitude & Latitude
• Distance and heading 

Video data
• Road view
• Driver view

Segmenting the driving
profile

Extracting driving
performance features

Removing errors and
inappropriate maneuvers

• Acceleration maneuvers
• Braking maneuvers

Step 3: Dimensionality reduction PCA

Feature reduction

Step 4: Maneuver clustering & Driving style classification

Step 5: Driver behavior heterogeneity

Multi-variate K-means
clustering

• Acceleration clusters
• Braking clusters
• Speed clusters

Classifying driving styles

Driving pattern
proportions of individuals

Driving performance
score

Intra & inter-driver
driving style changes

Figure 1: Proposed framework of the study methodology.
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from previous studies, present study explores the changes in
driving styles based on the driving patterns exhibited in
acceleration and braking maneuvers. An algorithm was
designed to segment the driving profiles into acceleration
and braking maneuvers and extract the respective driving
performance features. ,e algorithm works at three levels to
extract the significant acceleration and braking maneuvers.
,e conceptual representation of the segmentation process
is depicted in Figure 3. (i) In the first level, the acceleration
and braking maneuvers are identified, and the respective
driving performance features are extracted. In this level, the
instantaneous rate of change in the speed profile was
computed and the segments with the positive and negative
rate of change were categorized under acceleration and
braking segments, respectively. Keeping the sign of rate of
change as a reference, the consecutive positive change
points/negative change points were grouped (speed bins) to
represent a segment. However, this resulted inmany number
of segments corresponding to minor fluctuations in the
high-frequency GPS data.

To eliminate the fluctuations and identify the actual
maneuvers, a threshold was applied on the minimum size of
the speed bin ranging from 1 to 6 time stamps (0.1 sec to
0.6 sec). To finalize the appropriate minimum bin size, the
maneuvers were manually identified for five data files and
checked for the identification rate. ,e minimum bin size of
3 resulted in higher efficiency in the maneuver identification.
Whereas, the higher bin size resulted in losing more number
of maneuvers and smaller size lead to identification of more
inappropriate maneuvers.,us, all the bins of size less than 3
were eliminated as GPS fluctuations and the resulting se-
quential positive bins/negative bins were conglomerated
representing the acceleration/braking maneuvers. (ii) In the
second level, the insignificant maneuvers resulting due to
small speed fluctuations (change in speed <5 kmph) and
lower speed values (speed <15 kmph) were eliminated. (iii)
In the third level, the free decelerations resulted from the
release of acceleration pedal were separated from the braking
maneuvers. ,e part of the deceleration segments with a
deceleration value less than 0.05 g were deducted. ,e above

Camera 2-Driver view

Camera 3-Driver face view

Camera 4-Rear road view

Camera 1-Front road view

(a)

(c)

(b)

109

54.5

0

0

1.5
LongAcc (g)

Speed (km/h)

-1.5

1,300 1,400 1,500
Time (s)

1,600 1,700

1,300 1,400 1,500
Time (s)

1,600 1,700

GPS antenna

Forward facing camera

Rear-facing camera

Driver face camera

Driver facing camera

Main unit

Figure 2: (a) Instrumentation details; (b) Study vehicle; (c) Recorded speed and acceleration profiles; and snapshots of collected video data.
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thresholds used for data extraction were framed after the
manual video observation for 300 randomly chosen accel-
eration and braking maneuvers.

3.3. Feature Extraction. ,e driving performance features of
the final acceleration/braking segments were extracted from
the respective driving profile data. ,e driving performance
features include the motion data and the respective derived
statistical features (see Table 2). For each identified ma-
neuver, the speed and acceleration performance were
extracted along with the respective maximum yaw rate. ,e
yaw rate is the rate of change of heading angle, which in-
dicates the vehicular lateral movement while maneuvering.
,e acceleration/braking maneuvers associated with high
yaw rates tend to reflect the aggressive driving styles. ,us,
the maximum yaw rate corresponding to eachmaneuver was
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Figure 3: Illustration of segmentation and clustering process.

Table 2: Driving performance features of acceleration and braking
maneuvers.

Feature Description Variable
notation

Minimum speed (kmph) Vmin
Maximum speed (kmph) Vmax
Change in speed (kmph) ΔV
Duration of maneuver (sec) ΔT
Mean speed (kmph) Vmean
Standard deviation of speed Vsd
Maximum longitudinal acceleration/deceleration
(g) LAmax/LAmin

Mean longitudinal acceleration/
deceleration (g) LAmean

Standard deviation of longitudinal acceleration/
deceleration LAsd

Maximum yaw rate (o/sec) Yrmax
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computed from the raw data of heading values. ,e algo-
rithms for segmentation and feature extraction were coded
in Python 3.7.

3.4. Dimensionality Reduction Using PCA. ,e identified
acceleration and braking maneuvers are characterized by a set
of driving performance features. Each feature is representative
of different driving behaviors and interpreting the nature of
maneuver by combining all the features is a difficult or more
of a subjective task. ,us, a dimensionality reduction tech-
nique was used to reduce the number of original variables to a
more interpretable combination. ,e principal component
analysis (PCA) is an unsupervised dimensionality reduction
technique, which linearly transforms the correlated variables
to a new set of uncorrelated principal components (PC). ,e
number of successive PCs explaining 80–90% of total variance
are considered to be a good representative of the dataset [10].
To understand the meaning of PCs, the loadings are com-
puted, which shows the correlation between the PCs and
original features. Higher loadings represent stronger corre-
lations between features and the respective PCs. Based on the
results of the PCA, the feature dimensionality was reduced
prior clustering.

3.5. Clustering and Driving Style Classification. To explore
the underlying patterns and group based on the similarity,
we performed the k-means clustering on the feature data. K-
means is an unsupervised technique which groups the data
based on the intrinsic similarity in the dataset. K-means
clustering is the simplest and most widely used machine
learning algorithm, which finds similar groups by mini-
mizing the Euclidean distance between centroids. As the
algorithm works on unlabeled datasets, the target number of
centroids/clusters (k) should be defined prior to clustering.
In this study, we used elbow and silhouette methods to
decide the optimal k-value and validate the clusters.

Further, the identified clusters of driving maneuvers
were categorized based on the respective cluster charac-
teristics. ,en, the driving style classification was assigned to
each maneuver as per the cluster number under which it is
grouped.

3.6. Driver Performance Score. After assigning the driving
styles to each driving maneuver, the proportion of accel-
eration and braking maneuvers corresponding to different
clusters were computed for individuals. ,e drivers exhib-
iting higher proportions of aggressive driving maneuvers
indicate unsafe driving behavior and thus need to be
identified. In this context, the driving performance of each
driver was quantified based on the number of aggressive
maneuvers exhibited over the observed period. However, the
thresholds for safe or unsafe driving behaviors have not been
established in the literature. ,erefore, in this study, the
performance score was computed relative to the maximum
number of aggressive maneuvers per kilometer traveled
among all the drivers. ,e drivers exhibiting higher ag-
gression while accelerating, braking, and speeding were

considered as a benchmark to assign the relative aggression
score to other drivers. ,e number of aggressive patterns per
kilometer traveled is normalized using the reference max-
imum value, such that each driver takes a score between zero
to 100. ,e lower scores represent lower levels of aggression
on a relative scale.

4. Results and Discussion

4.1. Dataset Details. ,e acceleration and braking maneu-
vers were identified using the designed algorithm and the
final dataset consists of 7548 acceleration maneuvers and
6156 braking maneuvers corresponding to 42 drivers. Each
maneuver is characterized by ten driving performance
features, which includes minimum speed, maximum speed,
mean speed, standard deviation of speed, maximum ac-
celeration/deceleration, average and standard deviation of
acceleration/deceleration, change in speed during the ma-
neuver, duration of the maneuver, and maximum yaw rate.
Since the units of features are not uniform, the data were
prepared for analysis by scaling through the Z-score stan-
dardization technique.

4.2. Dimensionality Reduction. ,e PCA was performed on
the scaled data (Z-score standardization) of both accelera-
tion and braking datasets. ,e correlation circles were de-
veloped to understand the correlations between the PCs and
the original variables. ,e PC1 and PC2 loadings against
each feature for both datasets are shown in Figures 4(a) and
4(b). ,e direction of feature lines represents the positive or
negative correlations and lengths indicate the strength of the
correlation. In other words, the features closer to the cir-
cumference of the circle are more important to interpret the
respective components [38].

For both acceleration and braking datasets, most of the
features are cross-loaded on each PC and are showing higher
correlations with PCs. To aid the interpretation, the loadings
were rotated using Varimax rotation; the respective rotated
component (RC) loadings are shown in Table 3. Four
components were chosen as the cumulative explained var-
iance is greater than 85% for both the datasets. ,e loadings
with high magnitude are highlighted in bold (see Table 3), as
the higher absolute loadings indicate stronger correlations
between features and components.

In case of acceleration dataset (Table 3), RC1 is showing
significant and negative correlation with all the longitudinal
acceleration features. RC2 shows stronger positive correla-
tions with the mean and standard deviation of speed during
the maneuver. RC3 is associated with change in speed and
duration of the maneuver and RC4 is highly correlated with
the speed features and yaw rate. ,e similar correlations can
be observed for braking dataset, in which RC1 is associated
with longitudinal deceleration features and RC2 shows high
correlation with speed features and yaw rate. RC3 is showing
strong association with change in speed and duration of
maneuver and RC4 is significantly correlated with mean and
standard deviation of speed in the maneuver.
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,e PCA resulted in four components, each indicating
different driver behavior aspects. However, clustering each
component individually (respective features) would result in
four sets of clusters for both acceleration and braking datasets,
making the interpretation of results a tedious and non-
conclusive task. Hence, the rotated components are further
grouped based on the interpretation of correlations between
RCs and original features. In case of both the datasets, RC2 and
RC4 significantly represent the speed choices and speed var-
iability exhibited during the maneuver, whereas RC1 and RC3
are explaining the acceleration/braking behavior and the re-
spective change in speed over the full duration of themaneuver.
It is possible to exhibit the aggressive acceleration/braking
behavior at lower speeds, and similarly, the high-speed be-
havior may not be always associated with aggressive acceler-
ations/braking behavior. In other words, the individuals might
perform different frequencies of aggressive low-speed ma-
neuvers, aggressive-high speed maneuvers, nonaggressive low-
speed maneuvers, and nonaggressive high-speed maneuvers.
Each combination speaks a different aspect of driver such as
nonaggressive low-speed indicating base-line behaviors, and
aggressive-low speed maneuvers indicating rear-end collision
tendencies, whereas the nonaggressive high-speed signifies the
driving efficiency, and aggressive-high speed indicates the high-
risk/faulty behaviors. ,us, to aid the detailed analysis of
longitudinal control, the acceleration/braking behavior, and the
speed behavior are analyzed independently for each maneuver.

To this end, the original variables are divided into two groups
based on the observed correlations between rotated compo-
nents and the driving performance features. ,e first group of
variables ((LAmax/LAmin), LAmean, LAsd,ΔV,ΔT) represents
the acceleration/braking behavior, and the second group of
variables (Vmax, Vmin, Vmean, Vsd, Yrmax) indicates the speed
behavior exhibited while accelerating or braking. Further
analysis to identify the underlying patterns of acceleration/
braking behavior, and speed behavior is explained in the
following section.

4.3. Clustering and Driving Style Classification

4.3.1. Level-Wise Clustering. Considering the results of
principal component analysis, the k-means clustering
analysis was performed at two levels on the acceleration and
braking datasets. In the first level of clustering, the driving
patterns in terms of the acceleration/braking performance
are detected. In the second level of clustering, the speed
patterns exhibited during acceleration/braking are identified
by clustering the speed variable data. ,e features used for
each level of clustering are given in Table 4.

4.3.2. Level-One Clustering. To characterize the longitudinal
control concerning the acceleration and braking behavior,
the k-means clustering was performed on level-1 features
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Figure 4: Correlation circles for (a) acceleration maneuvers (b) braking maneuvers.

Table 3: Varimax rotated loadings of acceleration and braking datasets. Note: RC stands for rotated components.

RC loadings of acceleration maneuvers RC loadings of braking maneuvers
Features RC1 RC2 RC3 RC4 Features RC1 RC2 RC3 RC4
Vmin 0.321 0.116 0.078 0.908 Vmax −0.007 −0.888 −0.352 −0.179
Vmax 0.171 0.142 −0.290 0.911 Vmin −0.320 −0.879 0.198 −0.131
ΔV −0.383 0.043 −0.849 −0.110 ΔV −0.495 −0.112 0.815 0.051
ΔT 0.260 −0.037 −0.909 0.106 ΔT −0.111 0.025 −0.955 0.044
Vmean 0.010 0.904 0.015 0.121 Vmean −0.018 −0.184 −0.028 −0.753
Vsd −0.052 0.913 −0.018 0.045 Vsd 0.082 0.018 0.032 −0.829
LAmax −0.920 0.008 −0.124 −0.215 LAmin −0.922 −0.164 0.179 0.020
LAmean −0.869 0.056 0.045 −0.319 LAmean −0.934 −0.184 −0.002 0.055
LAsd −0.915 0.001 0.047 −0.261 LAsd 0.957 0.173 −0.011 −0.020
Yrmax −0.386 0.004 −0.214 −0.692 Yrmax 0.256 0.764 −0.260 −0.026
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(see Table 4) for acceleration and braking maneuvers. ,e
optimal k� 3 was chosen by considering the results of both
elbow and silhouette methods. To visualize the compactness
and separation of clusters, the individual silhouettes were
computed for each cluster and presented in Figure 5. Al-
though few data points under second and third clusters
(Figures 5(a) and 5(b)) are showing the negative silhouettes,
the average silhouettes of all the clusters of acceleration and
braking maneuvers are positive indicating well-separation
from neighboring clusters. Hence, the k-means clustering
was performed to group the acceleration and braking ma-
neuvers into three patterns each.

,e identified clusters are further interpreted using the
bi-plots of acceleration and braking clusters against the
principal components (see Figure 6). ,e correlations be-
tween the performance features and the principal compo-
nents are shown in Table 5. PC1 is indicating the nature of
acceleration/braking behavior, and PC2 is representing the
speed surge/speed reduction and the duration of maneuver.
In Figure 6(a), the acceleration cluster-1 is taking lower
values in both dimensions, showing the smooth acceleration
behavior associated with low-speed surge and longer du-
ration of maneuvers. Acceleration cluster-2 is ranging over
low-to-moderate accelerations with high-speed surge and
longer maneuver duration. ,e cluster-3 is dispersed over
high acceleration values and low change in speed over
smaller durations. Considering the cluster separations as-
sociated with feature values, the three acceleration clusters
are characterized as smooth, moderate, and aggressive ac-
celeration patterns, respectively. ,e centers of the clusters
for each feature and the respective classification is shown in
Table 6. Similarly, the braking clusters are interpreted which
are showing smooth, moderate and aggressive patterns of
braking behavior (see Figure 6(b)). ,e characterization of
braking clusters and the respective centers are shown in
Table 6. ,e centers of all the features are notably different
among the cluster categories, affirming the classification.

4.3.3. Level Two Clustering. ,e second level of clustering is
performed to identify the speed patterns exhibited during
acceleration and braking. ,e level-2 features, as mentioned
in Table 4 were used for clustering. ,e k-means was per-
formed on both the datasets with an optimum k� 2, as
obtained through elbow and silhouette methods. ,e cluster
separation is shown in Figure 7, indicating well-separated
speed clusters with an average silhouette index equal to 0.29.
,us, k-means clustering was performed to group the speed
data of acceleration and braking maneuvers into two clusters
each.

,e correlations between the speed performance features
and the principal components are shown in Table 7. For

acceleration maneuvers, PC1 is showing strong positive
correlation with the minimum and maximum speeds and
negative correlation with the yaw rate. As the speeds are
higher, the steering action is low and at lower speeds drivers
are exhibiting high steering activity. PC2 is indicating sig-
nificant and positive correlation with the mean and standard
deviation of speeds during the maneuver.,e PC loadings of
braking dataset are showing similar correlations with the
respective performance features, with the negative correla-
tion. To summarize PC1 is indicating the speed choices and
steering action and PC2 speaks of speed variability during
the maneuver. Given the correlations, the results of level-2
clustering are presented as bi-plots against PCs in Figure 8,
to aid the cluster interpretation.

,e speed variability appears to be nearly equal in both
the clusters with cluster-2 taking relatively higher values (see
Figure 8). However, the speed choices are significantly
higher in cluster-2 and cluster-1 appears to take low values of
speed variables and higher value of yaw rate. Given the
interpretation, the cluster-1 is characterized to represent the
nominal-speed behavior and cluster-2 indicating the high-
speed behavior for both acceleration and braking maneu-
vers. ,e cluster centers of all the performance features and
the cluster categories are presented in Table 8. ,e speed
clusters of acceleration dataset, and braking dataset are
representing the similar speed behavior, which indicates the
uniformity in speed choices irrespective of the type of
maneuver.

,e proportion of maneuvers shared by each accelera-
tion/braking pattern and the respective share of nominal and
high-speed clusters are presented in Table 9. ,e major
proportion of maneuvers (56.9% accelerations and 61.6%
braking maneuvers) are observed to be classified under
smooth driving styles, in which 19.8% accelerations and
18.1% braking maneuvers are also associated with nominal
speeding patterns, indicating the safe driving behavior. In
case of moderate and aggressive driving maneuvers, 18.2%
accelerations and 15% braking maneuvers are associated
with high-speed patterns indicating unsafe behaviors. Fur-
ther, the aggressive maneuvers characterized by aggressive
acceleration/braking related with high-speed behavior are
observed in 6.2% of accelerations and 8.3% of braking
maneuvers, reflecting the actual faulty/critical driving be-
haviors. Although, the proportions of critical maneuvers are
relatively lower, the role of such maneuvers is vital in
assessing the driving performance of individuals in day-to-
day driving. Since, both the speed and acceleration behavior
defines the level of driving safety, further, we analyzed the
variations in accelerations, braking, and speeding at indi-
vidual driver level, which shows the in-detail driving nature
of individuals.

4.4. Validation of Driving Patterns. Based on the insights
from literature, the ground-truth about driving style of a
driver is determined by means of traffic accident data, or
subjective evaluation data (self-report/expert scoring), or
safety-critical event data [11, 15, 20, 22, 31]. In this study,
neither the crash-related information nor the self-reported

Table 4: Driving performance features used for level-wise
clustering.

Clustering level Features
Level-1 (LAmax/LAmin), LAmean, LAsd,ΔV,ΔT
Level-2 Vmax, Vmin, Vmean, Vsd, Yrmax
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driving violation data could be obtained for the participated
professional drivers. Hence, the frequency of safety-critical
event data is used as a means to describe the driving style of
individuals.,e safety-critical patterns are obtained through

unsupervised techniques and needs to be verified prior
proceeding to driving style classification. To this end, the
cluster characteristics of critical patterns are compared
against the feature thresholds used across studies.

Table 6: Level-1 Cluster centers of acceleration and braking maneuvers.

Acceleration clusters ΔV ΔT LAmax LAmean LAsd Classification

1 9.00 5.51 0.15 0.06 0.036 Smooth
2 21.08 12.27 0.18 0.07 0.038 Moderate
3 15.65 4.79 0.26 0.11 0.059 Aggressive
Braking clusters ΔV ΔT LAmin LAmean LAsd Classification
1 10.35 6.44 0.17 0.06 0.041 Smooth
2 35.35 13.41 0.29 0.10 0.065 Moderate
3 18.17 4.93 0.33 0.13 0.085 Aggressive
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Figure 5: Silhouettes of (a) acceleration clusters and (b) braking clusters.
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Figure 6: Bi-plots of (a) acceleration clusters and (b) braking clusters.

Table 5: ,e correlation between the features and components (PC loadings).

Features
Acceleration maneuvers Braking maneuvers

PC1 PC2 PC1 PC2
ΔV −0.483 −0.811 0.731 −0.616
ΔT 0.195 −0.937 0.196 −0.956
(LAmax/LAmin) −0.948 −0.039 0.949 0.112
LAmean −0.924 0.129 0.907 0.295
LAsd −0.939 0.135 0.931 0.283
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Figure 8: Bi-plots of speed clusters identified in (a) acceleration maneuvers (b) braking maneuvers.

Table 8: Speed cluster centers for acceleration and braking maneuvers.

Speed clustersacceleration Vmin Vmax Vmean Vsd Yrmax Classification

1 22.13 36.05 31.38 15.54 13.22 Nominal
2 49.15 61.13 44.84 16.64 5.45 High speed
Speed clustersbraking Vmin Vmax Vmean Vsd Yrmax Classification
1 17.83 37.76 31.93 16.37 14.53 Nominal
2 48.08 61.97 45.59 17.13 5.29 High speed

Table 9: Proportion of maneuvers shared by each pattern.

Acceleration Smooth Moderate Aggressive Total
Nominal speed 1491 (19.8%) 453 (6%) 1429 (18.9%) 3373 (44.7%)
High speed 2803 (37.1%) 907 (12%) 465 (6.2%) 4175 (55.3%)
Total 4294 (56.9%) 1360 (18%) 1894 (25.1%) 7548 (100%)
Braking Smooth Moderate Aggressive Total
Nominal speed 1116 (18.1%) 677 (11%) 759 (12.4%) 2555 (41.5%)
High speed 2678 (43.5%) 413 (6.7%) 513 (8.3%) 3601 (58.5%)
Total 3794 (61.6%) 1090 (17.7%) 1272 (20.7%) 6156 (0%)

Table 7: ,e PC loadings of speed variables for acceleration and braking datasets.

Features
Acceleration maneuvers Braking maneuvers

PC1 PC2 PC1 PC2
Vmin 0.923 −0.262 −0.923 0.179
Vmax 0.900 −0.208 −0.866 0.045
Vmean 0.466 0.780 −0.414 −0.648
Vsd 0.382 0.833 −0.224 −0.803
Yrmax −0.726 0.348 0.769 −0.316
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Figure 7: Silhouettes of (a) Speed_acceleration clusters (b) Speed_braking clusters.
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,e clustering results presented in Table 9 indicates that
the aggressive acceleration and aggressive braking maneu-
vers associated with high-speed behavior are representing
the critical/unsafe patterns exhibited by individuals. ,ese
patterns are quantitatively represented by means of the
cluster centroid plus/minus one standard deviation (SD),
and shown in Table 10.,e identified aggressive acceleration
pattern is in the range of 0.2 to 0.32 g acceleration, and the
aggressive braking pattern is varying over the maximum
deceleration of 0.25 to 0.41 g, corresponding to the vehicle
speed of 50.20 to 73.66 kmph. ,ese aggressive maneuvers
are observed to be falling in the range of thresholds used in
the previous studies by Johnson and Trivedi [11], Chen et al.
[22], Paefgen et al. [26], Fazeen et al. [27], and Bergasa et al.
[29]. ,us, the obtained clusters can be effectively used to
assess the driving styles of individuals.

4.5. Driver Behavior Heterogeneity. ,e identified driving
patterns are representing the acceleration and braking
behavior ranging from smooth to aggressive and the re-
spective speed patterns are identified to be nominal and
high-speed behavior. ,e proportion of maneuvers under
each identified pattern for all the 42 drivers are computed
and shown in Figure 9. Drivers are not executing driving
maneuvers in a single pattern, rather each individual is
showing variations in acceleration, braking, and speeding
behavior during the study period. In other words, drivers
are exhibiting each driving pattern at a certain proportion,
which is different from one driver to another driver, and
also from one driving regime to another. For instance, the
driver D1 is exhibiting aggressive behavior in 16% of the
accelerations, whereas 35% of the braking maneuvers are
associated with aggressive behavior. Similarly, each indi-
vidual driver is showing heterogeneity in the patterns of
longitudinal control. No driver was found to constantly
exhibit safe or aggressive behavior in the longitudinal
control during the entire trip. ,e differences in driving
conditions may result in different driving responses by the
same driver, which leads to changing driving styles within
the driving period. ,us, the individual’s driving styles are
found to be inconsistent and heterogeneous in both ac-
celeration and braking regimes. ,e study findings are
consistent with the existing literature on individual driving
characteristics [19, 22, 23]. In the study of Higgs and Abbas
[23], the car drivers have shown different proportions of
behavior patterns (ranging from 0 to 30 patterns) in the
car-following behavior, that differs among individuals.
Chen and Chen [19] and Chen et al. [22] also showed that
each driver was exhibiting a set of driving patterns that are
different from one driver to another.

As shown in Figures 9(a) and 9(b), the smooth accel-
eration and braking behavior is the dominating driving
pattern in most of the drivers, which indicates the base-line
or “normal” driving behavior of each individual. ,e pro-
portion of moderate and aggressive behaviors are changing
from one driver to another, which indicates different levels
of aggression among individuals. In addition, the speed
behavior in accelerations and braking maneuvers (see
Figures 9(c) and 9(d)) are notably different among the
drivers.

4.5.1. Driving Performance Score. ,e level of aggression of
each acceleration and braking maneuver depends on the
combination of acceleration/braking pattern and the re-
spective speed pattern. ,e aggressive behavior is repre-
sented by the aggressive acceleration/braking maneuvers,
which are further associated with high-speed behavior. In
order to separate the aggressive behavior of each driver, the
number of maneuvers of aggressive acceleration, aggressive
braking, and the high-speed patterns are computed per
kilometer traveled. ,e speed clusters of acceleration and
braking maneuvers are observed to be representing similar
characteristics in terms of the driving performance features
(see Table 8). ,us, the speed clusters of acceleration and
braking maneuvers are aggregated and the total number of
high-speed maneuvers per kilometer traveled during ac-
celeration and braking are summed up to propose a single
speed score as shown in Figure 10.

,e computed relative driver aggression in acceleration,
braking, and speed behavior are shown in Figure 10. ,e
driver D24 has exhibited the highest number of aggressive
maneuvers per kilometer traveled, in acceleration and
braking behavior and the driver D25 has shown the dom-
inance in high-speed behavior. ,e level of aggression of
individuals was found to be different in acceleration and
braking regimes, and changing among drivers. For example,
the drivers (D6, D18, D27, D29, D42) are showing higher
aggression score (>60) in accelerations, whereas the re-
spective individuals’ braking aggression scores are observed
to be lower than 40. Similarly, the drivers D1, D11, and D22
are exhibiting higher levels of aggression (>50) in braking
maneuvers and moderate-to-lower aggression in accelera-
tion behaviors. ,e aggression scores are indicative of
drivers’ propensity to exhibit harsh driving maneuvers and
are particularly relevant in driving assistance.

Each individual is showing a unique combination of
driver aggression in acceleration, braking, and speed be-
havior. ,e variation in the interdriver aggression might be
due to the individual driving characteristics or the external
influencing factors such as traffic and road geometry. In the

Table 10: Cluster characteristics of data-driven critical driving patterns.

Driving pattern Performance feature Mean SD Upper limit (Mean + SD) Lower limit (Mean - SD)
Aggressive acceleration LAmax

∗ 0.26 0.06 0.32 0.20
Aggressive braking LAmin 0.33 0.08 0.41 0.25
High-speed Vmax

∗ ∗ 61.97 11.68 73.66 50.29
Note: ∗,e units of accelerations are in “g” (9.8m/s2); ∗∗ the units of speed are in “kmph”
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present study, all the drivers made trips on the same road
stretch resulting in similar exposure to the geometric ele-
ments. Although, the participants drove vehicle during same
time of the day, the observed variations may be due to

varying traffic conditions. ,us, the identified patterns are
considered to be representing more of driver specific vari-
ation or the habitual driving styles of each individual cor-
responding to the exposed traffic.
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Figure 9: ,e proportion of (a) acceleration patterns; (b) braking patterns; (c) and (d) speed patterns for individuals.
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5. Conclusion

In the context of assisting the driver to optimize the driving
behavior, it is essential to understand the individual’s in-
stantaneous driving decisions. Most of the studies in this
context were undertaken in the developed countries and no
studies analyzed the behavioral heterogeneity of Indian
drivers. Moreover, majority of the existing studies con-
ceptualized the driving styles using predefined thresholds of
abstract driving features, and the drivers were characterized
as safe or aggressive. ,is study takes the advantage of
continuous driving profiles collected using high-frequency
GPS instrumentation to explore the extent of driving het-
erogeneity in different driving regimes. ,e framework is
designed to conceptualize the driving styles exhibited in the
longitudinal control by extracting the short-term driving
decisions and group the similar behaviors by means of
unsupervised techniques.

,e methodology is implemented on the driving profiles
of 42 professional car drivers, captured in the naturalistic
driving conditions over a defined study stretch. An algo-
rithm is developed to extract the acceleration and braking
maneuvers and the respective driving performance features
as representation of driving decisions in longitudinal con-
trol. ,e similar patterns of decisions are identified using
k-means clustering technique and interpreted using the

principal component analysis. Total three patterns of ac-
celeration and braking behavior each, characterized by
smooth, moderate, and aggressive behaviors, which are
associated with nominal and high-speed behavior are
identified. ,e proportion of each pattern observed during
the study period of individuals revealed the interesting
theories about the extent of driver behavioral variations. ,e
drivers showed varying proportions of patterns in each
driving regime, indicating the heterogeneity in driving be-
haviors. In addition, the driving performance scores were
different among individuals in both acceleration and braking
maneuvers. No driver was found constantly exhibiting either
safe or aggressive driving decisions over the observed driving
period.

6. Research Contribution

(a) In the existing literature, most of the studies derived
driving styles using predefined thresholds of safety-
critical events or the abstract driving performance
aggregated over the study period. ,e thresholds
were not consistent across studies and abstract
performance did not represent the faulty behaviors
in short-term driving decisions. In this context, this
study analyzed the driving profile data using un-
supervised techniques, without any prior ground
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truth. Also, the study proposed a methodology to
segment the continuous driving profiles as maneu-
vers of instantaneous driving decisions in the lon-
gitudinal control.

(b) Further, the previous studies assigned a single
characterizing driving pattern to an individual. ,e
heterogeneity in driving behaviors pertained to the
changes in driver attributes and driving environment
was not considered. In the light of these findings, this
study explored the individual’s behavioral variations
with-in driving period. Rather assigning a single
representative classification, the actual at-risk be-
haviors exhibited by each driver are identified.
Moreover, the unsupervised approach presented in
this study would theoretically account for the un-
observed influencing factors effecting the heteroge-
neity in individual’s driving patterns.

,e findings of the study emphasize the need for con-
tinuous monitoring of driver behavior for driver assistance
and personalized feedback provision. ,us, the study
methodology and study findings are useful for safety risk
profiling of drivers, and also risk scoring of roadway seg-
ments for hot-spot analysis.

7. Study Limitations and Future Scope

,is study accounts few limitations which provides scope for
future research.

Experimental design: As the study is short-term
instrumented vehicle study, the driving data is collected
using instrumented vehicle over a short-period of time.
,e presence of instrumentation might influence the
actual driver behavior even though the drivers were
informed that the collected data would be utilized for
only research purposes and not for any legal en-
forcement. ,e instrumentation used in this study
recorded the continuous vehicle kinematic data and the
video-data at a frequency of 10Hz. ,e advanced
sensors such as LiDAR and eye trackers can be used to
capture the other prominent driving parameters like
headway choices and distractions, that would help to
understand the comprehensive nature of various
driving patterns.
Influence of amount of the data: Driving data for longer
duration and for more number of drivers from different
age groups and gender would give detailed insights
about the variations in the driving patterns. With the
multiple trip data of individuals, the researchers can
evaluate the stability in driving behaviors and consis-
tency in different driving patterns.

,e methodologies presented in the current study are
replicable by future researchers to assess the driving patterns
of individuals. However, the study results are subjected to
change concerning the local driving habits and the traffic
laws corresponding to the study location.,e future scope of
the study can be extended to understand the driving pattern
variations in other driving regimes like car-following or

lane-changing scenarios for different vehicle types. ,e
future research efforts can also be focused on certain critical
driving patterns to better understand the influencing factors
behind such typical behaviors.
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