8,750 research outputs found

    Input-to-state stability of unbounded bilinear control systems

    Get PDF
    We study input-to-state stability of bilinear control systems with possibly unbounded control operators. Natural sufficient conditions for integral input-to-state stability are given. The obtained results are applied to a bilinearly controlled Fokker-Planck equation.Comment: 20 pages, completely new version based on the few preliminary ideas in v1. Compared to v1, the results have been significantly generalized and extende

    On continuity of solutions for parabolic control systems and input-to-state stability

    Get PDF
    We study minimal conditions under which mild solutions of linear evolutionary control systems are continuous for arbitrary bounded input functions. This question naturally appears when working with boundary controlled, linear partial differential equations. Here, we focus on parabolic equations which allow for operator-theoretic methods such as the holomorphic functional calculus. Moreover, we investigate stronger conditions than continuity leading to input-to-state stability with respect to Orlicz spaces. This also implies that the notions of input-to-state stability and integral-input-to-state stability coincide if additionally the uncontrolled equation is dissipative and the input space is finite-dimensional.Comment: 19 pages, final version of preprint, Prop. 6 and Thm 7 have been generalised to arbitrary Banach spaces, the assumption of boundedness of the semigroup in Thm 10 could be droppe

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
    • …
    corecore