7,153 research outputs found

    Automated Micromanipulation of Micro Objects

    Get PDF
    In recent years, research efforts in the development of Micro Electro Mechanical Systems, (MEMS) including microactuators and micromanipulators, have attracted a great deal of attention. The development of microfabrication techniques has resulted in substantial progress in the miniaturization of devices such as electronic circuits. However, the research in MEMS still lags behind in terms of the development of reliable tools for post-fabrication processes and the precise and dexterous manipulation of individual micro size objects. Current micromanipulation mechanisms are prone to high costs, a large footprint, and poor dexterity and are labour intensive. To overcome such, the research in this thesis is focused on the utilization of microactuators in micromanipulation. Microactuators are compliant structures. They undergo substantial deflection during micromanipulation due to the considerable surface micro forces. Their dominance in governing micromanipulation is so compelling that their effects should be considered in designing microactuators and microsensors. In this thesis, the characterization of the surface micro forces and automated micromanipulation are investigated. An inexpensive experimental setup is proposed as a platform to replace Atomic Force Microscopy (AFM) for analyzing the force characterization of micro scale components. The relationship between the magnitudes of the surface micro forces and the parameters such as the velocity of the pushing process, relative humidity, temperature, hydrophilicity of the substrate, and surface area are empirically examined. In addition, a precision automated micromanipulation system is realized. A class of artificial neural networks (NN) is devised to estimate the unmodelled micro forces during the controlled pushing of micro size object along a desired path. Then, a nonlinear controller is developed for the controlled pushing of the micro objects to guarantee the stability of the closed loop system in the Lyapunov sense. To validate the performance of the proposed controller, an experimental setup is designed. The application of the proposed controller is extended to precisely push several micro objects, each with different characteristics in terms of the surface micro forces governing the manipulation process. The proposed adaptive controller is capable of learning to adjust its weights effectively when the surface micro forces change under varying conditions. By using the controller, a fully automated sequential positioning of three micro objects on a flat substrate is performed. The results are compared with those of the identical sequential pushing by using a conventional linear controller. The results suggest that artificial NNs are a promising tool for the design of adaptive controllers to accurately perform the automated manipulation of multiple objects in the microscopic scale for microassembly

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces

    Full text link

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary
    • …
    corecore