488 research outputs found

    RowHammer: Reliability Analysis and Security Implications

    Full text link
    As process technology scales down to smaller dimensions, DRAM chips become more vulnerable to disturbance, a phenomenon in which different DRAM cells interfere with each other's operation. For the first time in academic literature, our ISCA paper exposes the existence of disturbance errors in commodity DRAM chips that are sold and used today. We show that repeatedly reading from the same address could corrupt data in nearby addresses. More specifically: When a DRAM row is opened (i.e., activated) and closed (i.e., precharged) repeatedly (i.e., hammered), it can induce disturbance errors in adjacent DRAM rows. This failure mode is popularly called RowHammer. We tested 129 DRAM modules manufactured within the past six years (2008-2014) and found 110 of them to exhibit RowHammer disturbance errors, the earliest of which dates back to 2010. In particular, all modules from the past two years (2012-2013) were vulnerable, which implies that the errors are a recent phenomenon affecting more advanced generations of process technology. Importantly, disturbance errors pose an easily-exploitable security threat since they are a breach of memory protection, wherein accesses to one page (mapped to one row) modifies the data stored in another page (mapped to an adjacent row).Comment: This is the summary of the paper titled "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" which appeared in ISCA in June 201

    Architectural Techniques to Enable Reliable and Scalable Memory Systems

    Get PDF
    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even building the next Exascale supercomputer. To ensure even a bare-minimum level of reliability, present-day solutions tend to have high performance, power and area overheads. Ideally, we would like memory systems to remain robust, scalable, and implementable while keeping the overheads to a minimum. This dissertation describes how simple cross-layer architectural techniques can provide orders of magnitude higher reliability and enable seamless scalability for memory systems while incurring negligible overheads.Comment: PhD thesis, Georgia Institute of Technology (May 2017

    An Experimental Analysis of RowHammer in HBM2 DRAM Chips

    Full text link
    RowHammer (RH) is a significant and worsening security, safety, and reliability issue of modern DRAM chips that can be exploited to break memory isolation. Therefore, it is important to understand real DRAM chips' RH characteristics. Unfortunately, no prior work extensively studies the RH vulnerability of modern 3D-stacked high-bandwidth memory (HBM) chips, which are commonly used in modern GPUs. In this work, we experimentally characterize the RH vulnerability of a real HBM2 DRAM chip. We show that 1) different 3D-stacked channels of HBM2 memory exhibit significantly different levels of RH vulnerability (up to 79% difference in bit error rate), 2) the DRAM rows at the end of a DRAM bank (rows with the highest addresses) exhibit significantly fewer RH bitflips than other rows, and 3) a modern HBM2 DRAM chip implements undisclosed RH defenses that are triggered by periodic refresh operations. We describe the implications of our observations on future RH attacks and defenses and discuss future work for understanding RH in 3D-stacked memories.Comment: To appear at DSN Disrupt 202

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF
    • …
    corecore